--- ray/src/rt/ambcomp.c 2014/04/19 19:20:47 2.28 +++ ray/src/rt/ambcomp.c 2014/04/24 06:03:15 2.31 @@ -1,5 +1,5 @@ #ifndef lint -static const char RCSid[] = "$Id: ambcomp.c,v 2.28 2014/04/19 19:20:47 greg Exp $"; +static const char RCSid[] = "$Id: ambcomp.c,v 2.31 2014/04/24 06:03:15 greg Exp $"; #endif /* * Routines to compute "ambient" values using Monte Carlo @@ -28,15 +28,15 @@ typedef struct { COLOR acoef; /* division contribution coefficient */ struct s_ambsamp { COLOR v; /* hemisphere sample value */ - float p[3]; /* intersection point */ + FVECT p; /* intersection point */ } sa[1]; /* sample array (extends struct) */ } AMBHEMI; /* ambient sample hemisphere */ #define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)] typedef struct { - FVECT r_i, r_i1, e_i; - double nf, I1, I2, J2; + FVECT r_i, r_i1, e_i, rI2_eJ2; + double nf, I1, I2; } FFTRI; /* vectors and coefficients for Hessian calculation */ @@ -96,7 +96,6 @@ ambsample( /* sample an ambient direction */ { struct s_ambsamp *ap = &ambsamp(hp,i,j); RAY ar; - int hlist[3]; double spt[2], zd; int ii; /* ambient coefficient for weight */ @@ -104,11 +103,8 @@ ambsample( /* sample an ambient direction */ setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); else copycolor(ar.rcoef, hp->acoef); - if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) { - setcolor(ap->v, 0., 0., 0.); - VCOPY(ap->p, hp->rp->rop); - return(NULL); /* no sample taken */ - } + if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) + goto badsample; if (ambacc > FTINY) { multcolor(ar.rcoef, hp->acoef); scalecolor(ar.rcoef, 1./AVGREFL); @@ -125,37 +121,45 @@ ambsample( /* sample an ambient direction */ dimlist[ndims++] = i*hp->ns + j + 90171; rayvalue(&ar); /* evaluate ray */ ndims--; - multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ - copycolor(ap->v, ar.rcol); if (ar.rt > 20.0*maxarad) /* limit vertex distance */ ar.rt = 20.0*maxarad; + else if (ar.rt <= FTINY) /* should never happen! */ + goto badsample; VSUM(ap->p, ar.rorg, ar.rdir, ar.rt); + multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ + copycolor(ap->v, ar.rcol); return(ap); +badsample: + setcolor(ap->v, 0., 0., 0.); + VCOPY(ap->p, hp->rp->rop); + return(NULL); } /* Compute vectors and coefficients for Hessian/gradient calcs */ static void -comp_fftri(FFTRI *ftp, float ap0[3], float ap1[3], FVECT rop) +comp_fftri(FFTRI *ftp, FVECT ap0, FVECT ap1, FVECT rop) { - FVECT v1; - double dot_e, dot_er, dot_r, dot_r1; + FVECT vcp; + double dot_e, dot_er, dot_r, dot_r1, J2; + int i; VSUB(ftp->r_i, ap0, rop); VSUB(ftp->r_i1, ap1, rop); VSUB(ftp->e_i, ap1, ap0); - VCROSS(v1, ftp->e_i, ftp->r_i); - ftp->nf = 1.0/DOT(v1,v1); - VCROSS(v1, ftp->r_i, ftp->r_i1); - ftp->I1 = sqrt(DOT(v1,v1)*ftp->nf); + VCROSS(vcp, ftp->e_i, ftp->r_i); + ftp->nf = 1.0/DOT(vcp,vcp); dot_e = DOT(ftp->e_i,ftp->e_i); dot_er = DOT(ftp->e_i, ftp->r_i); dot_r = DOT(ftp->r_i,ftp->r_i); dot_r1 = DOT(ftp->r_i1,ftp->r_i1); + ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) / sqrt(dot_r*dot_r1) ) * + sqrt( ftp->nf ); ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)/dot_r1 - dot_er/dot_r + dot_e*ftp->I1 )*0.5*ftp->nf; - ftp->J2 = 0.25*ftp->nf*( 1.0/dot_r - 1.0/dot_r1 ) - - dot_er/dot_e*ftp->I2; + J2 = 0.5/dot_e*( 1.0/dot_r - 1.0/dot_r1 ) - dot_er/dot_e*ftp->I2; + for (i = 3; i--; ) + ftp->rI2_eJ2[i] = ftp->I2*ftp->r_i[i] + J2*ftp->e_i[i]; } @@ -176,7 +180,7 @@ compose_matrix(FVECT mat[3], FVECT va, FVECT vb) static void comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm) { - FVECT v1, v2; + FVECT vcp; FVECT m1[3], m2[3], m3[3], m4[3]; double d1, d2, d3, d4; double I3, J3, K3; @@ -187,19 +191,17 @@ comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm) d3 = 1.0/DOT(ftp->e_i,ftp->e_i); d4 = DOT(ftp->e_i, ftp->r_i); I3 = 0.25*ftp->nf*( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + - 3.0*d3*ftp->I2 ); + 3.0/d3*ftp->I2 ); J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3; K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3); /* intermediate matrices */ - VCROSS(v1, nrm, ftp->e_i); - for (j = 3; j--; ) - v2[j] = ftp->I2*ftp->r_i[j] + ftp->J2*ftp->e_i[j]; - compose_matrix(m1, v1, v2); + VCROSS(vcp, nrm, ftp->e_i); + compose_matrix(m1, vcp, ftp->rI2_eJ2); compose_matrix(m2, ftp->r_i, ftp->r_i); compose_matrix(m3, ftp->e_i, ftp->e_i); compose_matrix(m4, ftp->r_i, ftp->e_i); - VCROSS(v1, ftp->r_i, ftp->e_i); - d1 = DOT(nrm, v1); + VCROSS(vcp, ftp->r_i, ftp->e_i); + d1 = DOT(nrm, vcp); d2 = -d1*ftp->I2; d1 *= 2.0; for (i = 3; i--; ) /* final matrix sum */ @@ -251,8 +253,7 @@ comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm) f1 = 2.0*DOT(nrm, vcp); VCROSS(vcp, nrm, ftp->e_i); for (i = 3; i--; ) - grad[i] = (0.5/PI)*( ftp->I1*vcp[i] + - f1*(ftp->I2*ftp->r_i[i] + ftp->J2*ftp->e_i[i]) ); + grad[i] = (0.5/PI)*( ftp->I1*vcp[i] + f1*ftp->rI2_eJ2[i] ); } @@ -288,17 +289,17 @@ back_ambval(struct s_ambsamp *ap1, struct s_ambsamp *a VSUB(vec, ap1->p, orig); d2best = DOT(vec,vec); - vback = ap1->v[CIEY]; + vback = colval(ap1->v,CIEY); VSUB(vec, ap2->p, orig); d2 = DOT(vec,vec); if (d2 > d2best) { d2best = d2; - vback = ap2->v[CIEY]; + vback = colval(ap2->v,CIEY); } VSUB(vec, ap3->p, orig); d2 = DOT(vec,vec); if (d2 > d2best) - return(ap3->v[CIEY]); + return(colval(ap3->v,CIEY)); return(vback); } @@ -328,12 +329,12 @@ eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3 error(INTERNAL, "bad eigenvalue calculation"); if (evalue[0] > evalue[1]) { - ra[0] = 1.0/sqrt(sqrt(evalue[0])); - ra[1] = 1.0/sqrt(sqrt(evalue[1])); + ra[0] = sqrt(sqrt(4.0/evalue[0])); + ra[1] = sqrt(sqrt(4.0/evalue[1])); slope1 = evalue[1]; } else { - ra[0] = 1.0/sqrt(sqrt(evalue[1])); - ra[1] = 1.0/sqrt(sqrt(evalue[0])); + ra[0] = sqrt(sqrt(4.0/evalue[1])); + ra[1] = sqrt(sqrt(4.0/evalue[0])); slope1 = evalue[0]; } /* compute unit eigenvectors */ @@ -454,9 +455,9 @@ ambHessian( /* anisotropic radii & pos. gradient */ if (ra != NULL) /* extract eigenvectors & radii */ eigenvectors(uv, ra, hessian); - if (pg != NULL) { /* project position gradient */ - pg[0] = DOT(gradient, uv[0]); - pg[1] = DOT(gradient, uv[1]); + if (pg != NULL) { /* tangential position gradient/PI */ + pg[0] = DOT(gradient, uv[0]) / PI; + pg[1] = DOT(gradient, uv[1]) / PI; } } @@ -466,20 +467,23 @@ static void ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2]) { struct s_ambsamp *ap; + double dgsum[2]; int n; FVECT vd; double gfact; - dg[0] = dg[1] = 0; + dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */ for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) { /* use vector for azimuth + 90deg */ VSUB(vd, ap->p, hp->rp->rop); - /* brightness with tangent factor */ - gfact = ap->v[CIEY] / DOT(hp->rp->ron, vd); - /* sine = proj_radius/vd_length */ - dg[0] -= DOT(uv[1], vd) * gfact; - dg[1] += DOT(uv[0], vd) * gfact; + /* brightness over cosine factor */ + gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd); + /* -sine = -proj_radius/vd_length */ + dgsum[0] += DOT(uv[1], vd) * gfact; + dgsum[1] -= DOT(uv[0], vd) * gfact; } + dg[0] = dgsum[0] / (hp->ns*hp->ns); + dg[1] = dgsum[1] / (hp->ns*hp->ns); } @@ -524,29 +528,36 @@ doambient( /* compute ambient component */ free(hp); return(0); /* no valid samples */ } - d = 1.0 / cnt; /* final indirect irradiance/PI */ - acol[0] *= d; acol[1] *= d; acol[2] *= d; - copycolor(rcol, acol); + copycolor(rcol, acol); /* final indirect irradiance/PI */ if (cnt < hp->ns*hp->ns || /* incomplete sampling? */ (ra == NULL) & (pg == NULL) & (dg == NULL)) { free(hp); return(-1); /* no radius or gradient calc. */ } - d = 0.01 * bright(rcol); /* add in 1% before Hessian comp. */ - if (d < FTINY) d = FTINY; - ap = hp->sa; /* using Y channel from here on... */ + multcolor(acol, hp->acoef); /* normalize Y values */ + if ((d = bright(acol)) > FTINY) + d = 1.0/d; + else + d = 0.0; + ap = hp->sa; /* relative Y channel from here on... */ for (i = hp->ns*hp->ns; i--; ap++) - colval(ap->v,CIEY) = bright(ap->v) + d; + colval(ap->v,CIEY) = bright(ap->v)*d + 0.0314; if (uv == NULL) /* make sure we have axis pointers */ uv = my_uv; /* compute radii & pos. gradient */ ambHessian(hp, uv, ra, pg); + if (dg != NULL) /* compute direction gradient */ ambdirgrad(hp, uv, dg); + if (ra != NULL) { /* scale/clamp radii */ - d = sqrt(sqrt((4.0/PI)*bright(rcol)/wt)); - ra[0] *= d; + if (ra[0] < minarad) { + ra[0] = minarad; + if (ra[1] < minarad) + ra[1] = minarad; + } + ra[0] *= d = 1.0/sqrt(sqrt(wt)); if ((ra[1] *= d) > 2.0*ra[0]) ra[1] = 2.0*ra[0]; if (ra[1] > maxarad) {