--- ray/src/rt/ambcomp.c 2005/05/28 22:27:54 2.15 +++ ray/src/rt/ambcomp.c 2014/05/07 16:02:26 2.50 @@ -1,44 +1,899 @@ #ifndef lint -static const char RCSid[] = "$Id: ambcomp.c,v 2.15 2005/05/28 22:27:54 greg Exp $"; +static const char RCSid[] = "$Id: ambcomp.c,v 2.50 2014/05/07 16:02:26 greg Exp $"; #endif /* * Routines to compute "ambient" values using Monte Carlo * + * Hessian calculations based on "Practical Hessian-Based Error Control + * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz + * from ACM SIGGRAPH Asia 2012 conference proceedings. + * + * Added book-keeping optimization to avoid calculations that would + * cancel due to traversal both directions on edges that are adjacent + * to same-valued triangles. This cuts about half of Hessian math. + * * Declarations of external symbols in ambient.h */ #include "copyright.h" #include "ray.h" - #include "ambient.h" - #include "random.h" +#ifdef NEWAMB +extern void SDsquare2disk(double ds[2], double seedx, double seedy); + + /* vertex direction bit positions */ +#define VDB_xy 0 +#define VDB_y 01 +#define VDB_x 02 +#define VDB_Xy 03 +#define VDB_xY 04 +#define VDB_X 05 +#define VDB_Y 06 +#define VDB_XY 07 + /* get opposite vertex direction bit */ +#define VDB_OPP(f) (~(f) & 07) + /* adjacent triangle vertex flags */ +static const int adjacent_trifl[8] = { + 0, /* forbidden diagonal */ + 1<ns + (j)) +#define ambsam(h,i,j) (h)->sa[ambndx(h,i,j)] + +typedef struct { + FVECT r_i, r_i1, e_i, rcp, rI2_eJ2; + double I1, I2; + int valid; +} FFTRI; /* vectors and coefficients for Hessian calculation */ + + +/* Get index for adjacent vertex */ +static int +adjacent_verti(AMBHEMI *hp, int i, int j, int dbit) +{ + int i0 = i*hp->ns + j; + + switch (dbit) { + case VDB_y: return(i0 - hp->ns); + case VDB_x: return(i0 - 1); + case VDB_Xy: return(i0 - hp->ns + 1); + case VDB_xY: return(i0 + hp->ns - 1); + case VDB_X: return(i0 + 1); + case VDB_Y: return(i0 + hp->ns); + /* the following should never occur */ + case VDB_xy: return(i0 - hp->ns - 1); + case VDB_XY: return(i0 + hp->ns + 1); + } + return(-1); +} + + +/* Get vertex direction bit for the opposite edge to complete triangle */ +static int +vdb_edge(int db1, int db2) +{ + switch (db1) { + case VDB_x: return(db2==VDB_y ? VDB_Xy : VDB_Y); + case VDB_y: return(db2==VDB_x ? VDB_xY : VDB_X); + case VDB_X: return(db2==VDB_Xy ? VDB_y : VDB_xY); + case VDB_Y: return(db2==VDB_xY ? VDB_x : VDB_Xy); + case VDB_xY: return(db2==VDB_x ? VDB_y : VDB_X); + case VDB_Xy: return(db2==VDB_y ? VDB_x : VDB_Y); + } + error(INTERNAL, "forbidden diagonal in vdb_edge()"); + return(-1); +} + + +static AMBHEMI * +inithemi( /* initialize sampling hemisphere */ + COLOR ac, + RAY *r, + double wt +) +{ + AMBHEMI *hp; + double d; + int n, i; + /* set number of divisions */ + if (ambacc <= FTINY && + wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight))) + wt = d; /* avoid ray termination */ + n = sqrt(ambdiv * wt) + 0.5; + i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */ + if (n < i) + n = i; + /* allocate sampling array */ + hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); + if (hp == NULL) + return(NULL); + hp->rp = r; + hp->ns = n; + /* assign coefficient */ + copycolor(hp->acoef, ac); + d = 1.0/(n*n); + scalecolor(hp->acoef, d); + /* make tangent plane axes */ + hp->uy[0] = 0.5 - frandom(); + hp->uy[1] = 0.5 - frandom(); + hp->uy[2] = 0.5 - frandom(); + for (i = 3; i--; ) + if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6)) + break; + if (i < 0) + error(CONSISTENCY, "bad ray direction in inithemi"); + hp->uy[i] = 1.0; + VCROSS(hp->ux, hp->uy, r->ron); + normalize(hp->ux); + VCROSS(hp->uy, r->ron, hp->ux); + /* we're ready to sample */ + return(hp); +} + + +/* Sample ambient division and apply weighting coefficient */ +static int +getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n) +{ + int hlist[3], ii; + double spt[2], zd; + /* ambient coefficient for weight */ + if (ambacc > FTINY) + setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL); + else + copycolor(arp->rcoef, hp->acoef); + if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0) + return(0); + if (ambacc > FTINY) { + multcolor(arp->rcoef, hp->acoef); + scalecolor(arp->rcoef, 1./AVGREFL); + } + hlist[0] = hp->rp->rno; + hlist[1] = j; + hlist[2] = i; + multisamp(spt, 2, urand(ilhash(hlist,3)+n)); + if (!n) { /* avoid border samples for n==0 */ + if ((spt[0] < 0.1) | (spt[0] >= 0.9)) + spt[0] = 0.1 + 0.8*frandom(); + if ((spt[1] < 0.1) | (spt[1] >= 0.9)) + spt[1] = 0.1 + 0.8*frandom(); + } + SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns); + zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); + for (ii = 3; ii--; ) + arp->rdir[ii] = spt[0]*hp->ux[ii] + + spt[1]*hp->uy[ii] + + zd*hp->rp->ron[ii]; + checknorm(arp->rdir); + dimlist[ndims++] = ambndx(hp,i,j) + 90171; + rayvalue(arp); /* evaluate ray */ + ndims--; /* apply coefficient */ + multcolor(arp->rcol, arp->rcoef); + return(1); +} + + +static AMBSAMP * +ambsample( /* initial ambient division sample */ + AMBHEMI *hp, + int i, + int j +) +{ + AMBSAMP *ap = &ambsam(hp,i,j); + RAY ar; + /* generate hemispherical sample */ + if (!getambsamp(&ar, hp, i, j, 0) || ar.rt <= FTINY) { + memset(ap, 0, sizeof(AMBSAMP)); + return(NULL); + } + ap->d = 1.0/ar.rt; /* limit vertex distance */ + if (ar.rt > 10.0*thescene.cusize) + ar.rt = 10.0*thescene.cusize; + VSUM(ap->p, ar.rorg, ar.rdir, ar.rt); + copycolor(ap->v, ar.rcol); + return(ap); +} + + +/* Estimate errors based on ambient division differences */ +static float * +getambdiffs(AMBHEMI *hp) +{ + float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float)); + float *ep; + AMBSAMP *ap; + double b, d2; + int i, j; + + if (earr == NULL) /* out of memory? */ + return(NULL); + /* compute squared neighbor diffs */ + for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++) + for (j = 0; j < hp->ns; j++, ap++, ep++) { + b = bright(ap[0].v); + if (i) { /* from above */ + d2 = b - bright(ap[-hp->ns].v); + d2 *= d2; + ep[0] += d2; + ep[-hp->ns] += d2; + } + if (j) { /* from behind */ + d2 = b - bright(ap[-1].v); + d2 *= d2; + ep[0] += d2; + ep[-1] += d2; + } + } + /* correct for number of neighbors */ + earr[0] *= 2.f; + earr[hp->ns-1] *= 2.f; + earr[(hp->ns-1)*hp->ns] *= 2.f; + earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f; + for (i = 1; i < hp->ns-1; i++) { + earr[i*hp->ns] *= 4./3.; + earr[i*hp->ns + hp->ns-1] *= 4./3.; + } + for (j = 1; j < hp->ns-1; j++) { + earr[j] *= 4./3.; + earr[(hp->ns-1)*hp->ns + j] *= 4./3.; + } + return(earr); +} + + +/* Perform super-sampling on hemisphere (introduces bias) */ +static void +ambsupersamp(double acol[3], AMBHEMI *hp, int cnt) +{ + float *earr = getambdiffs(hp); + double e2sum = 0.0; + AMBSAMP *ap; + RAY ar; + double asum[3]; + float *ep; + int i, j, n; + + if (earr == NULL) /* just skip calc. if no memory */ + return; + /* add up estimated variances */ + for (ep = earr + hp->ns*hp->ns; ep-- > earr; ) + e2sum += *ep; + ep = earr; /* perform super-sampling */ + for (ap = hp->sa, i = 0; i < hp->ns; i++) + for (j = 0; j < hp->ns; j++, ap++) { + int nss = *ep/e2sum*cnt + frandom(); + asum[0] = asum[1] = asum[2] = 0.0; + for (n = 1; n <= nss; n++) { + if (!getambsamp(&ar, hp, i, j, n)) { + nss = n-1; + break; + } + addcolor(asum, ar.rcol); + } + if (nss) { /* update returned ambient value */ + const double ssf = 1./(nss + 1); + for (n = 3; n--; ) + acol[n] += ssf*asum[n] + + (ssf - 1.)*colval(ap->v,n); + } + e2sum -= *ep++; /* update remainders */ + cnt -= nss; + } + free(earr); +} + + +/* Compute vertex flags, indicating farthest in each direction */ +static uby8 * +vertex_flags(AMBHEMI *hp) +{ + uby8 *vflags = (uby8 *)calloc(hp->ns*hp->ns, sizeof(uby8)); + uby8 *vf; + AMBSAMP *ap; + int i, j; + + if (vflags == NULL) + error(SYSTEM, "out of memory in vertex_flags()"); + vf = vflags; + ap = hp->sa; /* compute farthest along first row */ + for (j = 0; j < hp->ns-1; j++, vf++, ap++) + if (ap[0].d <= ap[1].d) + vf[0] |= 1<ns; i++) { + for (j = 0; j < hp->ns-1; j++, vf++, ap++) { + if (ap[0].d <= ap[-hp->ns].d) /* row before */ + vf[0] |= 1<ns] |= 1<ns].d) /* diagonal we care about */ + vf[0] |= 1<ns] |= 1<ns].d) /* final column edge */ + vf[0] |= 1<ns] |= 1<sa[v0].v,CIEY)); + v1 = adjacent_verti(hp, i, j, dbit1); + if (vflags[v0] & 1<v2 */ + return(colval(hp->sa[v1].v,CIEY)); + v2 = adjacent_verti(hp, i, j, dbit2); + if (vflags[v0] & 1<v1 */ + return(colval(hp->sa[v2].v,CIEY)); + /* else check if v1>v2 */ + if (vflags[v1] & 1<sa[v1].v,CIEY)); + return(colval(hp->sa[v2].v,CIEY)); +} + + +/* Compute vectors and coefficients for Hessian/gradient calcs */ +static void +comp_fftri(FFTRI *ftp, AMBHEMI *hp, int i, int j, int dbit, const uby8 *vflags) +{ + const int i0 = ambndx(hp,i,j); + double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2; + int i1, ii; + + ftp->valid = 0; /* check if we can skip this edge */ + ii = adjacent_trifl[dbit]; + if ((vflags[i0] & ii) == ii) /* cancels if vertex used as value */ + return; + i1 = adjacent_verti(hp, i, j, dbit); + ii = adjacent_trifl[VDB_OPP(dbit)]; + if ((vflags[i1] & ii) == ii) /* on either end (for both triangles) */ + return; + /* else go ahead with calculation */ + VSUB(ftp->r_i, hp->sa[i0].p, hp->rp->rop); + VSUB(ftp->r_i1, hp->sa[i1].p, hp->rp->rop); + VSUB(ftp->e_i, hp->sa[i1].p, hp->sa[i0].p); + VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1); + rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp); + dot_e = DOT(ftp->e_i,ftp->e_i); + dot_er = DOT(ftp->e_i, ftp->r_i); + rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i); + rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1); + ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) * + sqrt( rdot_cp ); + ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r + + dot_e*ftp->I1 )*0.5*rdot_cp; + J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e; + for (ii = 3; ii--; ) + ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii]; + ftp->valid++; +} + + +/* Compose 3x3 matrix from two vectors */ +static void +compose_matrix(FVECT mat[3], FVECT va, FVECT vb) +{ + mat[0][0] = 2.0*va[0]*vb[0]; + mat[1][1] = 2.0*va[1]*vb[1]; + mat[2][2] = 2.0*va[2]*vb[2]; + mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0]; + mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0]; + mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1]; +} + + +/* Compute partial 3x3 Hessian matrix for edge */ +static void +comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm) +{ + FVECT ncp; + FVECT m1[3], m2[3], m3[3], m4[3]; + double d1, d2, d3, d4; + double I3, J3, K3; + int i, j; + + if (!ftp->valid) { /* preemptive test */ + memset(hess, 0, sizeof(FVECT)*3); + return; + } + /* compute intermediate coefficients */ + d1 = 1.0/DOT(ftp->r_i,ftp->r_i); + d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1); + d3 = 1.0/DOT(ftp->e_i,ftp->e_i); + d4 = DOT(ftp->e_i, ftp->r_i); + I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 ) + / ( 4.0*DOT(ftp->rcp,ftp->rcp) ); + J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3; + K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3); + /* intermediate matrices */ + VCROSS(ncp, nrm, ftp->e_i); + compose_matrix(m1, ncp, ftp->rI2_eJ2); + compose_matrix(m2, ftp->r_i, ftp->r_i); + compose_matrix(m3, ftp->e_i, ftp->e_i); + compose_matrix(m4, ftp->r_i, ftp->e_i); + d1 = DOT(nrm, ftp->rcp); + d2 = -d1*ftp->I2; + d1 *= 2.0; + for (i = 3; i--; ) /* final matrix sum */ + for (j = 3; j--; ) { + hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] + + 2.0*J3*m4[i][j] ); + hess[i][j] += d2*(i==j); + hess[i][j] *= -1.0/PI; + } +} + + +/* Reverse hessian calculation result for edge in other direction */ +static void +rev_hessian(FVECT hess[3]) +{ + int i; + + for (i = 3; i--; ) { + hess[i][0] = -hess[i][0]; + hess[i][1] = -hess[i][1]; + hess[i][2] = -hess[i][2]; + } +} + + +/* Add to radiometric Hessian from the given triangle */ +static void +add2hessian(FVECT hess[3], FVECT ehess1[3], + FVECT ehess2[3], FVECT ehess3[3], double v) +{ + int i, j; + + for (i = 3; i--; ) + for (j = 3; j--; ) + hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] ); +} + + +/* Compute partial displacement form factor gradient for edge */ +static void +comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm) +{ + FVECT ncp; + double f1; + int i; + + if (!ftp->valid) { /* preemptive test */ + memset(grad, 0, sizeof(FVECT)); + return; + } + f1 = 2.0*DOT(nrm, ftp->rcp); + VCROSS(ncp, nrm, ftp->e_i); + for (i = 3; i--; ) + grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] ); +} + + +/* Reverse gradient calculation result for edge in other direction */ +static void +rev_gradient(FVECT grad) +{ + grad[0] = -grad[0]; + grad[1] = -grad[1]; + grad[2] = -grad[2]; +} + + +/* Add to displacement gradient from the given triangle */ +static void +add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v) +{ + int i; + + for (i = 3; i--; ) + grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] ); +} + + +/* Compute anisotropic radii and eigenvector directions */ +static int +eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3]) +{ + double hess2[2][2]; + FVECT a, b; + double evalue[2], slope1, xmag1; + int i; + /* project Hessian to sample plane */ + for (i = 3; i--; ) { + a[i] = DOT(hessian[i], uv[0]); + b[i] = DOT(hessian[i], uv[1]); + } + hess2[0][0] = DOT(uv[0], a); + hess2[0][1] = DOT(uv[0], b); + hess2[1][0] = DOT(uv[1], a); + hess2[1][1] = DOT(uv[1], b); + /* compute eigenvalue(s) */ + i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1], + hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]); + if (i == 1) /* double-root (circle) */ + evalue[1] = evalue[0]; + if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) | + ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) + error(INTERNAL, "bad eigenvalue calculation"); + + if (evalue[0] > evalue[1]) { + ra[0] = sqrt(sqrt(4.0/evalue[0])); + ra[1] = sqrt(sqrt(4.0/evalue[1])); + slope1 = evalue[1]; + } else { + ra[0] = sqrt(sqrt(4.0/evalue[1])); + ra[1] = sqrt(sqrt(4.0/evalue[0])); + slope1 = evalue[0]; + } + /* compute unit eigenvectors */ + if (fabs(hess2[0][1]) <= FTINY) + return; /* uv OK as is */ + slope1 = (slope1 - hess2[0][0]) / hess2[0][1]; + xmag1 = sqrt(1.0/(1.0 + slope1*slope1)); + for (i = 3; i--; ) { + b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i]; + a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i]; + } + VCOPY(uv[0], a); + VCOPY(uv[1], b); +} + + +static void +ambHessian( /* anisotropic radii & pos. gradient */ + AMBHEMI *hp, + FVECT uv[2], /* returned */ + float ra[2], /* returned (optional) */ + float pg[2] /* returned (optional) */ +) +{ + static char memerrmsg[] = "out of memory in ambHessian()"; + FVECT (*hessrow)[3] = NULL; + FVECT *gradrow = NULL; + uby8 *vflags; + FVECT hessian[3]; + FVECT gradient; + FFTRI fftr; + int i, j; + /* be sure to assign unit vectors */ + VCOPY(uv[0], hp->ux); + VCOPY(uv[1], hp->uy); + /* clock-wise vertex traversal from sample POV */ + if (ra != NULL) { /* initialize Hessian row buffer */ + hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1)); + if (hessrow == NULL) + error(SYSTEM, memerrmsg); + memset(hessian, 0, sizeof(hessian)); + } else if (pg == NULL) /* bogus call? */ + return; + if (pg != NULL) { /* initialize form factor row buffer */ + gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1)); + if (gradrow == NULL) + error(SYSTEM, memerrmsg); + memset(gradient, 0, sizeof(gradient)); + } + /* get vertex position flags */ + vflags = vertex_flags(hp); + /* compute first row of edges */ + for (j = 0; j < hp->ns-1; j++) { + comp_fftri(&fftr, hp, 0, j, VDB_X, vflags); + if (hessrow != NULL) + comp_hessian(hessrow[j], &fftr, hp->rp->ron); + if (gradrow != NULL) + comp_gradient(gradrow[j], &fftr, hp->rp->ron); + } + /* sum each row of triangles */ + for (i = 0; i < hp->ns-1; i++) { + FVECT hesscol[3]; /* compute first vertical edge */ + FVECT gradcol; + comp_fftri(&fftr, hp, i, 0, VDB_Y, vflags); + if (hessrow != NULL) + comp_hessian(hesscol, &fftr, hp->rp->ron); + if (gradrow != NULL) + comp_gradient(gradcol, &fftr, hp->rp->ron); + for (j = 0; j < hp->ns-1; j++) { + FVECT hessdia[3]; /* compute triangle contributions */ + FVECT graddia; + double backg; + backg = back_ambval(hp, i, j, VDB_X, VDB_Y, vflags); + /* diagonal (inner) edge */ + comp_fftri(&fftr, hp, i, j+1, VDB_xY, vflags); + if (hessrow != NULL) { + comp_hessian(hessdia, &fftr, hp->rp->ron); + rev_hessian(hesscol); + add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); + } + if (gradrow != NULL) { + comp_gradient(graddia, &fftr, hp->rp->ron); + rev_gradient(gradcol); + add2gradient(gradient, gradrow[j], graddia, gradcol, backg); + } + /* initialize edge in next row */ + comp_fftri(&fftr, hp, i+1, j+1, VDB_x, vflags); + if (hessrow != NULL) + comp_hessian(hessrow[j], &fftr, hp->rp->ron); + if (gradrow != NULL) + comp_gradient(gradrow[j], &fftr, hp->rp->ron); + /* new column edge & paired triangle */ + backg = back_ambval(hp, i+1, j+1, VDB_x, VDB_y, vflags); + comp_fftri(&fftr, hp, i, j+1, VDB_Y, vflags); + if (hessrow != NULL) { + comp_hessian(hesscol, &fftr, hp->rp->ron); + rev_hessian(hessdia); + add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); + if (i < hp->ns-2) + rev_hessian(hessrow[j]); + } + if (gradrow != NULL) { + comp_gradient(gradcol, &fftr, hp->rp->ron); + rev_gradient(graddia); + add2gradient(gradient, gradrow[j], graddia, gradcol, backg); + if (i < hp->ns-2) + rev_gradient(gradrow[j]); + } + } + } + /* release row buffers */ + if (hessrow != NULL) free(hessrow); + if (gradrow != NULL) free(gradrow); + free(vflags); + + if (ra != NULL) /* extract eigenvectors & radii */ + eigenvectors(uv, ra, hessian); + if (pg != NULL) { /* tangential position gradient */ + pg[0] = DOT(gradient, uv[0]); + pg[1] = DOT(gradient, uv[1]); + } +} + + +/* Compute direction gradient from a hemispherical sampling */ +static void +ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2]) +{ + AMBSAMP *ap; + double dgsum[2]; + int n; + FVECT vd; + double gfact; + + dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */ + for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) { + /* use vector for azimuth + 90deg */ + VSUB(vd, ap->p, hp->rp->rop); + /* brightness over cosine factor */ + gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd); + /* sine = proj_radius/vd_length */ + dgsum[0] -= DOT(uv[1], vd) * gfact; + dgsum[1] += DOT(uv[0], vd) * gfact; + } + dg[0] = dgsum[0] / (hp->ns*hp->ns); + dg[1] = dgsum[1] / (hp->ns*hp->ns); +} + + +/* Compute potential light leak direction flags for cache value */ +static uint32 +ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1) +{ + const double max_d = 1.0/(minarad*ambacc + 0.001); + const double ang_res = 0.5*PI/(hp->ns-1); + const double ang_step = ang_res/((int)(16/PI*ang_res) + (1+FTINY)); + uint32 flgs = 0; + int i, j; + /* circle around perimeter */ + for (i = 0; i < hp->ns; i++) + for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) { + AMBSAMP *ap = &ambsam(hp,i,j); + FVECT vec; + double u, v; + double ang, a1; + int abp; + if ((ap->d <= FTINY) | (ap->d >= max_d)) + continue; /* too far or too near */ + VSUB(vec, ap->p, hp->rp->rop); + u = DOT(vec, uv[0]) * ap->d; + v = DOT(vec, uv[1]) * ap->d; + if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= 1.0) + continue; /* occluder outside ellipse */ + ang = atan2a(v, u); /* else set direction flags */ + for (a1 = ang-.5*ang_res; a1 <= ang+.5*ang_res; a1 += ang_step) + flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0))); + } + return(flgs); +} + + +int +doambient( /* compute ambient component */ + COLOR rcol, /* input/output color */ + RAY *r, + double wt, + FVECT uv[2], /* returned (optional) */ + float ra[2], /* returned (optional) */ + float pg[2], /* returned (optional) */ + float dg[2], /* returned (optional) */ + uint32 *crlp /* returned (optional) */ +) +{ + AMBHEMI *hp = inithemi(rcol, r, wt); + int cnt; + FVECT my_uv[2]; + double d, K, acol[3]; + AMBSAMP *ap; + int i, j; + /* check/initialize */ + if (hp == NULL) + return(0); + if (uv != NULL) + memset(uv, 0, sizeof(FVECT)*2); + if (ra != NULL) + ra[0] = ra[1] = 0.0; + if (pg != NULL) + pg[0] = pg[1] = 0.0; + if (dg != NULL) + dg[0] = dg[1] = 0.0; + if (crlp != NULL) + *crlp = 0; + /* sample the hemisphere */ + acol[0] = acol[1] = acol[2] = 0.0; + cnt = 0; + for (i = hp->ns; i--; ) + for (j = hp->ns; j--; ) + if ((ap = ambsample(hp, i, j)) != NULL) { + addcolor(acol, ap->v); + ++cnt; + } + if (!cnt) { + setcolor(rcol, 0.0, 0.0, 0.0); + free(hp); + return(0); /* no valid samples */ + } + if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */ + copycolor(rcol, acol); + free(hp); + return(-1); /* return value w/o Hessian */ + } + cnt = ambssamp*wt + 0.5; /* perform super-sampling? */ + if (cnt > 8) + ambsupersamp(acol, hp, cnt); + copycolor(rcol, acol); /* final indirect irradiance/PI */ + if ((ra == NULL) & (pg == NULL) & (dg == NULL)) { + free(hp); + return(-1); /* no radius or gradient calc. */ + } + if ((d = bright(acol)) > FTINY) { /* normalize Y values */ + d = 0.99*(hp->ns*hp->ns)/d; + K = 0.01; + } else { /* or fall back on geometric Hessian */ + K = 1.0; + pg = NULL; + dg = NULL; + } + ap = hp->sa; /* relative Y channel from here on... */ + for (i = hp->ns*hp->ns; i--; ap++) + colval(ap->v,CIEY) = bright(ap->v)*d + K; + + if (uv == NULL) /* make sure we have axis pointers */ + uv = my_uv; + /* compute radii & pos. gradient */ + ambHessian(hp, uv, ra, pg); + + if (dg != NULL) /* compute direction gradient */ + ambdirgrad(hp, uv, dg); + + if (ra != NULL) { /* scale/clamp radii */ + if (pg != NULL) { + if (ra[0]*(d = fabs(pg[0])) > 1.0) + ra[0] = 1.0/d; + if (ra[1]*(d = fabs(pg[1])) > 1.0) + ra[1] = 1.0/d; + if (ra[0] > ra[1]) + ra[0] = ra[1]; + } + if (ra[0] < minarad) { + ra[0] = minarad; + if (ra[1] < minarad) + ra[1] = minarad; + } + ra[0] *= d = 1.0/sqrt(sqrt(wt)); + if ((ra[1] *= d) > 2.0*ra[0]) + ra[1] = 2.0*ra[0]; + if (ra[1] > maxarad) { + ra[1] = maxarad; + if (ra[0] > maxarad) + ra[0] = maxarad; + } + if (crlp != NULL) /* flag encroached directions */ + *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc); + if (pg != NULL) { /* cap gradient if necessary */ + d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1]; + if (d > 1.0) { + d = 1.0/sqrt(d); + pg[0] *= d; + pg[1] *= d; + } + } + } + free(hp); /* clean up and return */ + return(1); +} + + +#else /* ! NEWAMB */ + + void inithemi( /* initialize sampling hemisphere */ - register AMBHEMI *hp, + AMBHEMI *hp, + COLOR ac, RAY *r, - COLOR ac, double wt ) { - register int i; + double d; + int i; /* set number of divisions */ - hp->nt = sqrt(ambdiv * wt * (1./PI/AVGREFL)) + 0.5; + if (ambacc <= FTINY && + wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight))) + wt = d; /* avoid ray termination */ + hp->nt = sqrt(ambdiv * wt / PI) + 0.5; i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */ if (hp->nt < i) hp->nt = i; hp->np = PI * hp->nt + 0.5; /* set number of super-samples */ hp->ns = ambssamp * wt + 0.5; - /* assign coefficients */ + /* assign coefficient */ copycolor(hp->acoef, ac); - if (wt >= r->rweight) - hp->drc = 1.; - else - hp->drc = wt / r->rweight; + d = 1.0/(hp->nt*hp->np); + scalecolor(hp->acoef, d); /* make axes */ VCOPY(hp->uz, r->ron); hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0; @@ -56,7 +911,7 @@ inithemi( /* initialize sampling hemisphere */ int divsample( /* sample a division */ - register AMBSAMP *dp, + AMBSAMP *dp, AMBHEMI *h, RAY *r ) @@ -67,14 +922,18 @@ divsample( /* sample a division */ double xd, yd, zd; double b2; double phi; - register int i; + int i; /* ambient coefficient for weight */ - setcolor(ar.rcoef, h->drc, h->drc, h->drc); + if (ambacc > FTINY) + setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); + else + copycolor(ar.rcoef, h->acoef); if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0) return(-1); - copycolor(ar.rcoef, h->acoef); /* correct coefficient for trace */ - b2 = 1.0/(h->nt*h->np + h->ns); /* XXX not uniform if ns > 0 */ - scalecolor(ar.rcoef, b2); + if (ambacc > FTINY) { + multcolor(ar.rcoef, h->acoef); + scalecolor(ar.rcoef, 1./AVGREFL); + } hlist[0] = r->rno; hlist[1] = dp->t; hlist[2] = dp->p; @@ -88,9 +947,11 @@ divsample( /* sample a division */ ar.rdir[i] = xd*h->ux[i] + yd*h->uy[i] + zd*h->uz[i]; + checknorm(ar.rdir); dimlist[ndims++] = dp->t*h->np + dp->p + 90171; rayvalue(&ar); ndims--; + multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ addcolor(dp->v, ar.rcol); /* use rt to improve gradient calc */ if (ar.rt > FTINY && ar.rt < FHUGE) @@ -131,7 +992,7 @@ ambnorm( /* standard order */ { const AMBSAMP *d1 = (const AMBSAMP *)p1; const AMBSAMP *d2 = (const AMBSAMP *)p2; - register int c; + int c; if ( (c = d1->t - d2->t) ) return(c); @@ -141,67 +1002,86 @@ ambnorm( /* standard order */ double doambient( /* compute ambient component */ - COLOR acol, + COLOR rcol, RAY *r, - COLOR ac, double wt, FVECT pg, FVECT dg ) { - double b, d; + double b, d=0; AMBHEMI hemi; AMBSAMP *div; AMBSAMP dnew; - register AMBSAMP *dp; + double acol[3]; + AMBSAMP *dp; double arad; - int ndivs; - register int i, j; - /* initialize color */ - setcolor(acol, 0.0, 0.0, 0.0); + int divcnt; + int i, j; /* initialize hemisphere */ - inithemi(&hemi, r, ac, wt); - ndivs = hemi.nt * hemi.np; - if (ndivs == 0) + inithemi(&hemi, rcol, r, wt); + divcnt = hemi.nt * hemi.np; + /* initialize */ + if (pg != NULL) + pg[0] = pg[1] = pg[2] = 0.0; + if (dg != NULL) + dg[0] = dg[1] = dg[2] = 0.0; + setcolor(rcol, 0.0, 0.0, 0.0); + if (divcnt == 0) return(0.0); /* allocate super-samples */ if (hemi.ns > 0 || pg != NULL || dg != NULL) { - div = (AMBSAMP *)malloc(ndivs*sizeof(AMBSAMP)); + div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP)); if (div == NULL) error(SYSTEM, "out of memory in doambient"); } else div = NULL; /* sample the divisions */ arad = 0.0; + acol[0] = acol[1] = acol[2] = 0.0; if ((dp = div) == NULL) dp = &dnew; + divcnt = 0; for (i = 0; i < hemi.nt; i++) for (j = 0; j < hemi.np; j++) { dp->t = i; dp->p = j; setcolor(dp->v, 0.0, 0.0, 0.0); dp->r = 0.0; dp->n = 0; - if (divsample(dp, &hemi, r) < 0) - goto oopsy; + if (divsample(dp, &hemi, r) < 0) { + if (div != NULL) + dp++; + continue; + } arad += dp->r; + divcnt++; if (div != NULL) dp++; else addcolor(acol, dp->v); } - if (hemi.ns > 0 && arad > FTINY && ndivs/arad < minarad) + if (!divcnt) { + if (div != NULL) + free((void *)div); + return(0.0); /* no samples taken */ + } + if (divcnt < hemi.nt*hemi.np) { + pg = dg = NULL; /* incomplete sampling */ + hemi.ns = 0; + } else if (arad > FTINY && divcnt/arad < minarad) { hemi.ns = 0; /* close enough */ - else if (hemi.ns > 0) { /* else perform super-sampling */ + } else if (hemi.ns > 0) { /* else perform super-sampling? */ comperrs(div, &hemi); /* compute errors */ - qsort(div, ndivs, sizeof(AMBSAMP), ambcmp); /* sort divs */ + qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */ /* super-sample */ for (i = hemi.ns; i > 0; i--) { dnew = *div; - if (divsample(&dnew, &hemi, r) < 0) - goto oopsy; - /* reinsert */ - dp = div; - j = ndivs < i ? ndivs : i; + if (divsample(&dnew, &hemi, r) < 0) { + dp++; + continue; + } + dp = div; /* reinsert */ + j = divcnt < i ? divcnt : i; while (--j > 0 && dnew.k < dp[1].k) { *dp = *(dp+1); dp++; @@ -209,12 +1089,12 @@ doambient( /* compute ambient component */ *dp = dnew; } if (pg != NULL || dg != NULL) /* restore order */ - qsort(div, ndivs, sizeof(AMBSAMP), ambnorm); + qsort(div, divcnt, sizeof(AMBSAMP), ambnorm); } /* compute returned values */ if (div != NULL) { - arad = 0.0; - for (i = ndivs, dp = div; i-- > 0; dp++) { + arad = 0.0; /* note: divcnt may be < nt*np */ + for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) { arad += dp->r; if (dp->n > 1) { b = 1.0/dp->n; @@ -226,7 +1106,7 @@ doambient( /* compute ambient component */ } b = bright(acol); if (b > FTINY) { - b = ndivs/b; + b = 1.0/b; /* compute & normalize gradient(s) */ if (pg != NULL) { posgradient(pg, div, &hemi); for (i = 0; i < 3; i++) @@ -237,22 +1117,14 @@ doambient( /* compute ambient component */ for (i = 0; i < 3; i++) dg[i] *= b; } - } else { - if (pg != NULL) - for (i = 0; i < 3; i++) - pg[i] = 0.0; - if (dg != NULL) - for (i = 0; i < 3; i++) - dg[i] = 0.0; } free((void *)div); } - b = 1.0/ndivs; - scalecolor(acol, b); + copycolor(rcol, acol); if (arad <= FTINY) arad = maxarad; else - arad = (ndivs+hemi.ns)/arad; + arad = (divcnt+hemi.ns)/arad; if (pg != NULL) { /* reduce radius if gradient large */ d = DOT(pg,pg); if (d*arad*arad > 1.0) @@ -269,22 +1141,18 @@ doambient( /* compute ambient component */ if ((arad /= sqrt(wt)) > maxarad) arad = maxarad; return(arad); -oopsy: - if (div != NULL) - free((void *)div); - return(0.0); } void comperrs( /* compute initial error estimates */ AMBSAMP *da, /* assumes standard ordering */ - register AMBHEMI *hp + AMBHEMI *hp ) { double b, b2; int i, j; - register AMBSAMP *dp; + AMBSAMP *dp; /* sum differences from neighbors */ dp = da; for (i = 0; i < hp->nt; i++) @@ -332,14 +1200,14 @@ void posgradient( /* compute position gradient */ FVECT gv, AMBSAMP *da, /* assumes standard ordering */ - register AMBHEMI *hp + AMBHEMI *hp ) { - register int i, j; + int i, j; double nextsine, lastsine, b, d; double mag0, mag1; double phi, cosp, sinp, xd, yd; - register AMBSAMP *dp; + AMBSAMP *dp; xd = yd = 0.0; for (j = 0; j < hp->np; j++) { @@ -382,7 +1250,7 @@ posgradient( /* compute position gradient */ yd += mag0*sinp + mag1*cosp; } for (i = 0; i < 3; i++) - gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])/PI; + gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI; } @@ -390,13 +1258,13 @@ void dirgradient( /* compute direction gradient */ FVECT gv, AMBSAMP *da, /* assumes standard ordering */ - register AMBHEMI *hp + AMBHEMI *hp ) { - register int i, j; + int i, j; double mag; double phi, xd, yd; - register AMBSAMP *dp; + AMBSAMP *dp; xd = yd = 0.0; for (j = 0; j < hp->np; j++) { @@ -417,5 +1285,7 @@ dirgradient( /* compute direction gradient */ yd += mag * tsin(phi); } for (i = 0; i < 3; i++) - gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])/(hp->nt*hp->np); + gv[i] = xd*hp->ux[i] + yd*hp->uy[i]; } + +#endif /* ! NEWAMB */