--- ray/src/rt/ambcomp.c 1991/06/07 10:03:52 1.1 +++ ray/src/rt/ambcomp.c 2005/06/06 19:14:28 2.18 @@ -1,91 +1,107 @@ -/* Copyright (c) 1991 Regents of the University of California */ - #ifndef lint -static char SCCSid[] = "$SunId$ LBL"; +static const char RCSid[] = "$Id: ambcomp.c,v 2.18 2005/06/06 19:14:28 greg Exp $"; #endif - /* * Routines to compute "ambient" values using Monte Carlo + * + * Declarations of external symbols in ambient.h */ +#include "copyright.h" + #include "ray.h" #include "ambient.h" #include "random.h" -typedef struct { - short t, p; /* theta, phi indices */ - COLOR v; /* value sum */ - float k; /* error contribution for this division */ - int n; /* number of subsamples */ -} AMBSAMP; /* ambient division sample */ -typedef struct { - FVECT ux, uy, uz; /* x, y and z axis directions */ - short nt, np; /* number of theta and phi directions */ -} AMBHEMI; /* ambient sample hemisphere */ - -extern double sin(), cos(), sqrt(); - - -static int -ambcmp(d1, d2) /* decreasing order */ -AMBSAMP *d1, *d2; +void +inithemi( /* initialize sampling hemisphere */ + register AMBHEMI *hp, + COLOR ac, + RAY *r, + double wt +) { - if (d1->k < d2->k) - return(1); - if (d1->k > d2->k) - return(-1); - return(0); + double d; + register int i; + /* set number of divisions */ + if (ambacc <= FTINY && + wt > (d = 0.8*bright(ac)*r->rweight/(ambdiv*minweight))) + wt = d; /* avoid ray termination */ + hp->nt = sqrt(ambdiv * wt / PI) + 0.5; + i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */ + if (hp->nt < i) + hp->nt = i; + hp->np = PI * hp->nt + 0.5; + /* set number of super-samples */ + hp->ns = ambssamp * wt + 0.5; + /* assign coefficient */ + copycolor(hp->acoef, ac); + d = 1.0/(hp->nt*hp->np); + scalecolor(hp->acoef, d); + /* make axes */ + VCOPY(hp->uz, r->ron); + hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0; + for (i = 0; i < 3; i++) + if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6) + break; + if (i >= 3) + error(CONSISTENCY, "bad ray direction in inithemi"); + hp->uy[i] = 1.0; + fcross(hp->ux, hp->uy, hp->uz); + normalize(hp->ux); + fcross(hp->uy, hp->uz, hp->ux); } -static int -ambnorm(d1, d2) /* standard order */ -AMBSAMP *d1, *d2; +int +divsample( /* sample a division */ + register AMBSAMP *dp, + AMBHEMI *h, + RAY *r +) { - register int c; - - if (c = d1->t - d2->t) - return(c); - return(d1->p - d2->p); -} - - -static double -divsample(dp, h, r) /* sample a division */ -register AMBSAMP *dp; -AMBHEMI *h; -RAY *r; -{ RAY ar; - int hlist[4]; + int hlist[3]; + double spt[2]; double xd, yd, zd; double b2; double phi; - register int k; - - if (rayorigin(&ar, r, AMBIENT, 0.5) < 0) - return(0.0); + register int i; + /* ambient coefficient for weight */ + if (ambacc > FTINY) + setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); + else + copycolor(ar.rcoef, h->acoef); + if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0) + return(-1); + if (ambacc > FTINY) { + multcolor(ar.rcoef, h->acoef); + scalecolor(ar.rcoef, 1./AVGREFL); + } hlist[0] = r->rno; hlist[1] = dp->t; hlist[2] = dp->p; - hlist[3] = 0; - zd = sqrt((dp->t+urand(ilhash(hlist,4)+dp->n))/h->nt); - hlist[3] = 1; - phi = 2.0*PI * (dp->p+urand(ilhash(hlist,4)+dp->n))/h->np; - xd = cos(phi) * zd; - yd = sin(phi) * zd; + multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n)); + zd = sqrt((dp->t + spt[0])/h->nt); + phi = 2.0*PI * (dp->p + spt[1])/h->np; + xd = tcos(phi) * zd; + yd = tsin(phi) * zd; zd = sqrt(1.0 - zd*zd); - for (k = 0; k < 3; k++) - ar.rdir[k] = xd*h->ux[k] + - yd*h->uy[k] + - zd*h->uz[k]; - dimlist[ndims++] = dp->t*h->np + dp->p + 38813; + for (i = 0; i < 3; i++) + ar.rdir[i] = xd*h->ux[i] + + yd*h->uy[i] + + zd*h->uz[i]; + dimlist[ndims++] = dp->t*h->np + dp->p + 90171; rayvalue(&ar); ndims--; + multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ addcolor(dp->v, ar.rcol); + /* use rt to improve gradient calc */ + if (ar.rt > FTINY && ar.rt < FHUGE) + dp->r += 1.0/ar.rt; /* (re)initialize error */ if (dp->n++) { b2 = bright(dp->v)/dp->n - bright(ar.rcol); @@ -93,15 +109,51 @@ RAY *r; dp->k = b2/(dp->n*dp->n); } else dp->k = 0.0; - return(ar.rot); + return(0); } +static int +ambcmp( /* decreasing order */ + const void *p1, + const void *p2 +) +{ + const AMBSAMP *d1 = (const AMBSAMP *)p1; + const AMBSAMP *d2 = (const AMBSAMP *)p2; + + if (d1->k < d2->k) + return(1); + if (d1->k > d2->k) + return(-1); + return(0); +} + + +static int +ambnorm( /* standard order */ + const void *p1, + const void *p2 +) +{ + const AMBSAMP *d1 = (const AMBSAMP *)p1; + const AMBSAMP *d2 = (const AMBSAMP *)p2; + register int c; + + if ( (c = d1->t - d2->t) ) + return(c); + return(d1->p - d2->p); +} + + double -doambient(acol, r, pg, dg) /* compute ambient component */ -COLOR acol; -RAY *r; -FVECT pg, dg; +doambient( /* compute ambient component */ + COLOR acol, + RAY *r, + double wt, + FVECT pg, + FVECT dg +) { double b, d; AMBHEMI hemi; @@ -109,18 +161,21 @@ FVECT pg, dg; AMBSAMP dnew; register AMBSAMP *dp; double arad; - int ndivs, ns; + int ndivs; register int i, j; - /* initialize color */ - setcolor(acol, 0.0, 0.0, 0.0); /* initialize hemisphere */ - inithemi(&hemi, r); + inithemi(&hemi, acol, r, wt); ndivs = hemi.nt * hemi.np; + /* initialize */ + if (pg != NULL) + pg[0] = pg[1] = pg[2] = 0.0; + if (dg != NULL) + dg[0] = dg[1] = dg[2] = 0.0; + setcolor(acol, 0.0, 0.0, 0.0); if (ndivs == 0) return(0.0); - /* set number of super-samples */ - ns = ambssamp * r->rweight + 0.5; - if (ns > 0 || pg != NULL || dg != NULL) { + /* allocate super-samples */ + if (hemi.ns > 0 || pg != NULL || dg != NULL) { div = (AMBSAMP *)malloc(ndivs*sizeof(AMBSAMP)); if (div == NULL) error(SYSTEM, "out of memory in doambient"); @@ -134,106 +189,102 @@ FVECT pg, dg; for (j = 0; j < hemi.np; j++) { dp->t = i; dp->p = j; setcolor(dp->v, 0.0, 0.0, 0.0); + dp->r = 0.0; dp->n = 0; - if ((d = divsample(dp, &hemi, r)) == 0.0) - goto oopsy; - if (d < FHUGE) - arad += 1.0 / d; + if (divsample(dp, &hemi, r) < 0) { + if (div == NULL) continue; + dp++; + hemi.ns = 0; /* incomplete sampling */ + pg = dg = NULL; + continue; + } + arad += dp->r; if (div != NULL) dp++; else addcolor(acol, dp->v); } - if (ns > 0) { /* perform super-sampling */ - comperrs(div, hemi); /* compute errors */ + if (hemi.ns > 0 && arad > FTINY && ndivs/arad < minarad) + hemi.ns = 0; /* close enough */ + else if (hemi.ns > 0) { /* else perform super-sampling */ + comperrs(div, &hemi); /* compute errors */ qsort(div, ndivs, sizeof(AMBSAMP), ambcmp); /* sort divs */ - dp = div + ndivs; /* skim excess */ - for (i = ndivs; i > ns; i--) { - dp--; - addcolor(acol, dp->v); - } /* super-sample */ - for (i = ns; i > 0; i--) { - copystruct(&dnew, div); - if ((d = divsample(&dnew, &hemi)) == 0.0) - goto oopsy; - if (d < FHUGE) - arad += 1.0 / d; - /* reinsert */ - dp = div; + for (i = hemi.ns; i > 0; i--) { + dnew = *div; + if (divsample(&dnew, &hemi, r) < 0) { + dp++; + continue; + } + dp = div; /* reinsert */ j = ndivs < i ? ndivs : i; while (--j > 0 && dnew.k < dp[1].k) { - copystruct(dp, dp+1); + *dp = *(dp+1); dp++; } - copystruct(dp, &dnew); - /* extract darkest */ - if (i <= ndivs) { - dp = div + i-1; - if (dp->n > 1) { - b = 1.0/dp->n; - scalecolor(dp->v, b); - dp->n = 1; - } - addcolor(acol, dp->v); - } + *dp = dnew; } - if (pg != NULL || dg != NULL) /* reorder */ + if (pg != NULL || dg != NULL) /* restore order */ qsort(div, ndivs, sizeof(AMBSAMP), ambnorm); } /* compute returned values */ - if (pg != NULL) - posgradient(pg, div, &hemi); - if (dg != NULL) - dirgradient(dg, div, &hemi); - if (div != NULL) - free((char *)div); - b = 1.0/ndivs; - scalecolor(acol, b); + if (div != NULL) { + arad = 0.0; + for (i = ndivs, dp = div; i-- > 0; dp++) { + arad += dp->r; + if (dp->n > 1) { + b = 1.0/dp->n; + scalecolor(dp->v, b); + dp->r *= b; + dp->n = 1; + } + addcolor(acol, dp->v); + } + b = bright(acol); + if (b > FTINY) { + b = 1.0/b; /* compute & normalize gradient(s) */ + if (pg != NULL) { + posgradient(pg, div, &hemi); + for (i = 0; i < 3; i++) + pg[i] *= b; + } + if (dg != NULL) { + dirgradient(dg, div, &hemi); + for (i = 0; i < 3; i++) + dg[i] *= b; + } + } + free((void *)div); + } if (arad <= FTINY) - arad = FHUGE; - else - arad = (ndivs+ns)/arad; - if (arad > maxarad) arad = maxarad; - else if (arad < minarad) + else + arad = (ndivs+hemi.ns)/arad; + if (pg != NULL) { /* reduce radius if gradient large */ + d = DOT(pg,pg); + if (d*arad*arad > 1.0) + arad = 1.0/sqrt(d); + } + if (arad < minarad) { arad = minarad; - arad /= sqrt(r->rweight); + if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */ + d = 1.0/arad/sqrt(d); + for (i = 0; i < 3; i++) + pg[i] *= d; + } + } + if ((arad /= sqrt(wt)) > maxarad) + arad = maxarad; return(arad); -oopsy: - if (div != NULL) - free((char *)div); - return(0.0); } -inithemi(hp, r) /* initialize sampling hemisphere */ -register AMBHEMI *hp; -RAY *r; +void +comperrs( /* compute initial error estimates */ + AMBSAMP *da, /* assumes standard ordering */ + register AMBHEMI *hp +) { - register int k; - /* set number of divisions */ - hp->nt = sqrt(ambdiv * r->rweight * 0.5) + 0.5; - hp->np = 2 * hp->nt; - /* make axes */ - VCOPY(hp->uz, r->ron); - hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0; - for (k = 0; k < 3; k++) - if (hp->uz[k] < 0.6 && hp->uz[k] > -0.6) - break; - if (k >= 3) - error(CONSISTENCY, "bad ray direction in inithemi"); - hp->uy[k] = 1.0; - fcross(hp->ux, hp->uz, hp->uy); - normalize(hp->ux); - fcross(hp->uy, hp->ux, hp->uz); -} - - -comperrs(da, hp) /* compute initial error estimates */ -AMBSAMP *da; -register AMBHEMI *hp; -{ double b, b2; int i, j; register AMBSAMP *dp; @@ -241,6 +292,11 @@ register AMBHEMI *hp; dp = da; for (i = 0; i < hp->nt; i++) for (j = 0; j < hp->np; j++) { +#ifdef DEBUG + if (dp->t != i || dp->p != j) + error(CONSISTENCY, + "division order in comperrs"); +#endif b = bright(dp[0].v); if (i > 0) { /* from above */ b2 = bright(dp[-hp->np].v) - b; @@ -253,12 +309,11 @@ register AMBHEMI *hp; b2 *= b2 * 0.25; dp[0].k += b2; dp[-1].k += b2; - } - if (j == hp->np-1) { /* around */ - b2 = bright(dp[-(hp->np-1)].v) - b; + } else { /* around */ + b2 = bright(dp[hp->np-1].v) - b; b2 *= b2 * 0.25; dp[0].k += b2; - dp[-(hp->np-1)].k += b2; + dp[hp->np-1].k += b2; } dp++; } @@ -276,19 +331,94 @@ register AMBHEMI *hp; } -posgradient(gv, da, hp) /* compute position gradient */ -FVECT gv; -AMBSAMP *da; -AMBHEMI *hp; +void +posgradient( /* compute position gradient */ + FVECT gv, + AMBSAMP *da, /* assumes standard ordering */ + register AMBHEMI *hp +) { - gv[0] = 0.0; gv[1] = 0.0; gv[2] = 0.0; + register int i, j; + double nextsine, lastsine, b, d; + double mag0, mag1; + double phi, cosp, sinp, xd, yd; + register AMBSAMP *dp; + + xd = yd = 0.0; + for (j = 0; j < hp->np; j++) { + dp = da + j; + mag0 = mag1 = 0.0; + lastsine = 0.0; + for (i = 0; i < hp->nt; i++) { +#ifdef DEBUG + if (dp->t != i || dp->p != j) + error(CONSISTENCY, + "division order in posgradient"); +#endif + b = bright(dp->v); + if (i > 0) { + d = dp[-hp->np].r; + if (dp[0].r > d) d = dp[0].r; + /* sin(t)*cos(t)^2 */ + d *= lastsine * (1.0 - (double)i/hp->nt); + mag0 += d*(b - bright(dp[-hp->np].v)); + } + nextsine = sqrt((double)(i+1)/hp->nt); + if (j > 0) { + d = dp[-1].r; + if (dp[0].r > d) d = dp[0].r; + mag1 += d * (nextsine - lastsine) * + (b - bright(dp[-1].v)); + } else { + d = dp[hp->np-1].r; + if (dp[0].r > d) d = dp[0].r; + mag1 += d * (nextsine - lastsine) * + (b - bright(dp[hp->np-1].v)); + } + dp += hp->np; + lastsine = nextsine; + } + mag0 *= 2.0*PI / hp->np; + phi = 2.0*PI * (double)j/hp->np; + cosp = tcos(phi); sinp = tsin(phi); + xd += mag0*cosp - mag1*sinp; + yd += mag0*sinp + mag1*cosp; + } + for (i = 0; i < 3; i++) + gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI; } -dirgradient(gv, da, hp) /* compute direction gradient */ -FVECT gv; -AMBSAMP *da; -AMBHEMI *hp; +void +dirgradient( /* compute direction gradient */ + FVECT gv, + AMBSAMP *da, /* assumes standard ordering */ + register AMBHEMI *hp +) { - gv[0] = 0.0; gv[1] = 0.0; gv[2] = 0.0; + register int i, j; + double mag; + double phi, xd, yd; + register AMBSAMP *dp; + + xd = yd = 0.0; + for (j = 0; j < hp->np; j++) { + dp = da + j; + mag = 0.0; + for (i = 0; i < hp->nt; i++) { +#ifdef DEBUG + if (dp->t != i || dp->p != j) + error(CONSISTENCY, + "division order in dirgradient"); +#endif + /* tan(t) */ + mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0); + dp += hp->np; + } + phi = 2.0*PI * (j+.5)/hp->np + PI/2.0; + xd += mag * tcos(phi); + yd += mag * tsin(phi); + } + for (i = 0; i < 3; i++) + gv[i] = xd*hp->ux[i] + yd*hp->uy[i]; }