ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.99
Committed: Sun Apr 27 20:20:01 2025 UTC (9 days, 20 hours ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.98: +99 -11 lines
Log Message:
perf(rvu,rpict,rtrace,rcontrib): Reduced (eliminated?) bias due to ambient collision avoidance

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.98 2025/04/24 01:43:58 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Added book-keeping optimization to avoid calculations that would
12 * cancel due to traversal both directions on edges that are adjacent
13 * to same-valued triangles. This cuts about half of Hessian math.
14 *
15 * Declarations of external symbols in ambient.h
16 */
17
18 #include "copyright.h"
19
20 #include "ray.h"
21 #include "ambient.h"
22 #include "random.h"
23
24 #ifndef MINADIV
25 #define MINADIV 7 /* minimum # divisions in each dimension */
26 #endif
27 #ifndef MINSDIST
28 #define MINSDIST 0.25 /* def. min. spacing = 1/4th division */
29 #endif
30
31 typedef struct {
32 FVECT p; /* intersection point */
33 float d; /* reciprocal distance */
34 SCOLOR v; /* hemisphere sample value */
35 } AMBSAMP; /* sample value */
36
37 typedef struct {
38 RAY *rp; /* originating ray sample */
39 int ns; /* number of samples per axis */
40 int sampOK; /* acquired full sample set? */
41 int atyp; /* RAMBIENT or TAMBIENT */
42 SCOLOR acoef; /* division contribution coefficient */
43 SCOLOR acol; /* accumulated color */
44 FVECT onrm; /* oriented unperturbed surface normal */
45 FVECT ux, uy; /* tangent axis unit vectors */
46 AMBSAMP sa[1]; /* sample array (extends struct) */
47 } AMBHEMI; /* ambient sample hemisphere */
48
49 #define AI(h,i,j) ((i)*(h)->ns + (j))
50 #define ambsam(h,i,j) (h)->sa[AI(h,i,j)]
51
52 typedef struct {
53 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
54 double I1, I2;
55 } FFTRI; /* vectors and coefficients for Hessian calculation */
56
57
58 static int
59 ambcollision( /* proposed direciton collides? */
60 AMBHEMI *hp,
61 int i,
62 int j,
63 FVECT dv
64 )
65 {
66 double cos_thresh;
67 int ii, jj;
68
69 cos_thresh = (PI*MINSDIST)/(double)hp->ns;
70 cos_thresh = 1. - .5*cos_thresh*cos_thresh;
71 /* check existing neighbors */
72 for (ii = i-1; ii <= i+1; ii++) {
73 if (ii < 0) continue;
74 if (ii >= hp->ns) break;
75 for (jj = j-1; jj <= j+1; jj++) {
76 AMBSAMP *ap;
77 FVECT avec;
78 double dprod;
79 if (jj < 0) continue;
80 if (jj >= hp->ns) break;
81 if ((ii==i) & (jj==j)) continue;
82 ap = &ambsam(hp,ii,jj);
83 if (ap->d <= .5/FHUGE)
84 continue; /* no one home */
85 VSUB(avec, ap->p, hp->rp->rop);
86 dprod = DOT(avec, dv);
87 if (dprod >= cos_thresh*VLEN(avec))
88 return(1); /* collision */
89 }
90 }
91 return(0); /* nothing to worry about */
92 }
93
94
95 #define XLOTSIZ 251 /* size of used car lot */
96 #define CFIRST 0 /* first corner */
97 #define COTHER (CFIRST+4) /* non-corner sample */
98 #define CMAXTARGET (int)(XLOTSIZ*MINSDIST/(1-MINSDIST))
99 #define CXCOPY(d,s) (excharr[d][0]=excharr[s][0], excharr[d][1]=excharr[s][1])
100
101 static int
102 psample_class(double ss[2]) /* classify patch sample */
103 {
104 if (ss[0] < MINSDIST) {
105 if (ss[1] < MINSDIST)
106 return(CFIRST);
107 if (ss[1] > 1.-MINSDIST)
108 return(CFIRST+2);
109 } else if (ss[0] > 1.-MINSDIST) {
110 if (ss[1] < MINSDIST)
111 return(CFIRST+1);
112 if (ss[1] > 1.-MINSDIST)
113 return(CFIRST+3);
114 }
115 return(COTHER); /* not in a corner */
116 }
117
118 static void
119 trade_patchsamp(double ss[2]) /* trade in problem patch position */
120 {
121 static float excharr[XLOTSIZ][2];
122 static short gterm[COTHER+1];
123 double srep[2];
124 int sclass, rclass;
125 int x;
126 /* reset on corner overload */
127 if (gterm[COTHER-1] >= (CMAXTARGET+XLOTSIZ)/2)
128 memset(gterm, 0, sizeof(gterm));
129 /* (re-)initialize? */
130 while (gterm[COTHER] < XLOTSIZ) {
131 excharr[gterm[COTHER]][0] = frandom();
132 excharr[gterm[COTHER]][1] = frandom();
133 ++gterm[COTHER];
134 } /* get trade-in candidate... */
135 sclass = psample_class(ss); /* submitted corner or not? */
136 switch (sclass) {
137 case COTHER: /* trade mid-edge with corner/any */
138 x = irandom( gterm[COTHER-1] > CMAXTARGET
139 ? gterm[COTHER-1] : XLOTSIZ );
140 break;
141 case CFIRST: /* kick out of first corner */
142 x = gterm[CFIRST] + irandom(XLOTSIZ - gterm[CFIRST]);
143 break;
144 default: /* kick out of 2nd-4th corner */
145 x = irandom(XLOTSIZ - (gterm[sclass] - gterm[sclass-1]));
146 x += (x >= gterm[sclass-1])*(gterm[sclass] - gterm[sclass-1]);
147 break;
148 }
149 srep[0] = excharr[x][0]; /* save selected trade output */
150 srep[1] = excharr[x][1];
151 /* adjust our lot groups */
152 for (rclass = CFIRST; rclass < COTHER; rclass++)
153 if (x < gterm[rclass])
154 break;
155 if (sclass < rclass) { /* submitted group before replacement? */
156 CXCOPY(x, gterm[rclass-1]);
157 while (--rclass > sclass) {
158 CXCOPY(gterm[rclass], gterm[rclass-1]);
159 ++gterm[rclass];
160 }
161 x = gterm[sclass]++;
162 } else if (sclass > rclass) { /* submitted group after replacement? */
163 --gterm[rclass];
164 CXCOPY(x, gterm[rclass]);
165 while (++rclass < sclass) {
166 --gterm[rclass];
167 CXCOPY(gterm[rclass-1], gterm[rclass]);
168 }
169 x = gterm[sclass-1];
170 }
171 excharr[x][0] = ss[0]; /* complete the transaction */
172 excharr[x][1] = ss[1];
173 ss[0] = srep[0];
174 ss[1] = srep[1];
175 }
176
177 #undef CXCOPY
178 #undef XLOTSIZ
179 #undef COTHER
180 #undef CFIRST
181
182
183 static int
184 ambsample( /* initial ambient division sample */
185 AMBHEMI *hp,
186 int i,
187 int j,
188 int n
189 )
190 {
191 AMBSAMP *ap = &ambsam(hp,i,j);
192 RAY ar;
193 int hlist[3], ii;
194 double ss[2];
195 RREAL spt[2];
196 double zd;
197 /* generate hemispherical sample */
198 /* ambient coefficient for weight */
199 if (ambacc > FTINY)
200 setscolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
201 else
202 copyscolor(ar.rcoef, hp->acoef);
203 if (rayorigin(&ar, hp->atyp, hp->rp, ar.rcoef) < 0)
204 return(0);
205 if (ambacc > FTINY) {
206 smultscolor(ar.rcoef, hp->acoef);
207 scalescolor(ar.rcoef, 1./AVGREFL);
208 }
209 hlist[0] = hp->rp->rno;
210 hlist[1] = AI(hp,i,j);
211 hlist[2] = samplendx;
212 multisamp(ss, 2, urand(ilhash(hlist,3)+n));
213 patch_redo:
214 square2disk(spt, (j+ss[1])/hp->ns, (i+ss[0])/hp->ns);
215 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
216 for (ii = 3; ii--; )
217 ar.rdir[ii] = spt[0]*hp->ux[ii] +
218 spt[1]*hp->uy[ii] +
219 zd*hp->onrm[ii];
220 checknorm(ar.rdir);
221 /* avoid coincident samples */
222 if (!n & (hp->ns >= 4) && ambcollision(hp, i, j, ar.rdir)) {
223 trade_patchsamp(ss);
224 goto patch_redo;
225 }
226 dimlist[ndims++] = AI(hp,i,j) + 90171;
227 rayvalue(&ar); /* evaluate ray */
228 ndims--;
229 zd = raydistance(&ar);
230 if (zd <= FTINY)
231 return(0); /* should never happen */
232 smultscolor(ar.rcol, ar.rcoef); /* apply coefficient */
233 if (zd*ap->d < 1.0) /* new/closer distance? */
234 ap->d = 1.0/zd;
235 if (!n) { /* record first vertex & value */
236 if (zd > 10.0*thescene.cusize + 1000.)
237 zd = 10.0*thescene.cusize + 1000.;
238 VSUM(ap->p, ar.rorg, ar.rdir, zd);
239 copyscolor(ap->v, ar.rcol);
240 } else { /* else update recorded value */
241 sopscolor(hp->acol, -=, ap->v);
242 zd = 1.0/(double)(n+1);
243 scalescolor(ar.rcol, zd);
244 zd *= (double)n;
245 scalescolor(ap->v, zd);
246 saddscolor(ap->v, ar.rcol);
247 }
248 saddscolor(hp->acol, ap->v); /* add to our sum */
249 return(1);
250 }
251
252
253 /* Estimate variance based on ambient division differences */
254 static float *
255 getambdiffs(AMBHEMI *hp)
256 {
257 const double normf = 1./(pbright(hp->acoef) + FTINY);
258 float *earr = (float *)calloc(2*hp->ns*hp->ns, sizeof(float));
259 float *ep;
260 AMBSAMP *ap;
261 double b, b1, d2;
262 int i, j;
263
264 if (earr == NULL) /* out of memory? */
265 return(NULL);
266 /* sum squared neighbor diffs */
267 ap = hp->sa;
268 ep = earr + hp->ns*hp->ns; /* original estimates to scratch */
269 for (i = 0; i < hp->ns; i++)
270 for (j = 0; j < hp->ns; j++, ap++, ep++) {
271 b = pbright(ap[0].v);
272 if (i) { /* from above */
273 b1 = pbright(ap[-hp->ns].v);
274 d2 = b - b1;
275 d2 *= d2*normf/(b + b1 + FTINY);
276 ep[0] += d2;
277 ep[-hp->ns] += d2;
278 }
279 if (!j) continue;
280 /* from behind */
281 b1 = pbright(ap[-1].v);
282 d2 = b - b1;
283 d2 *= d2*normf/(b + b1 + FTINY);
284 ep[0] += d2;
285 ep[-1] += d2;
286 if (!i) continue;
287 /* diagonal */
288 b1 = pbright(ap[-hp->ns-1].v);
289 d2 = b - b1;
290 d2 *= d2*normf/(b + b1 + FTINY);
291 ep[0] += d2;
292 ep[-hp->ns-1] += d2;
293 }
294 /* correct for number of neighbors */
295 ep = earr + hp->ns*hp->ns;
296 ep[0] *= 6./3.;
297 ep[hp->ns-1] *= 6./3.;
298 ep[(hp->ns-1)*hp->ns] *= 6./3.;
299 ep[(hp->ns-1)*hp->ns + hp->ns-1] *= 6./3.;
300 for (i = 1; i < hp->ns-1; i++) {
301 ep[i*hp->ns] *= 6./5.;
302 ep[i*hp->ns + hp->ns-1] *= 6./5.;
303 }
304 for (j = 1; j < hp->ns-1; j++) {
305 ep[j] *= 6./5.;
306 ep[(hp->ns-1)*hp->ns + j] *= 6./5.;
307 }
308 /* blur final map to reduce bias */
309 for (i = 0; i < hp->ns-1; i++) {
310 float *ep2;
311 ep = earr + i*hp->ns;
312 ep2 = ep + hp->ns*hp->ns;
313 for (j = 0; j < hp->ns-1; j++, ep++, ep2++) {
314 ep[0] += .5*ep2[0] + .125*(ep2[1] + ep2[hp->ns]);
315 ep[1] += .125*ep2[0];
316 ep[hp->ns] += .125*ep2[0];
317 }
318 }
319 return(earr);
320 }
321
322
323 /* Perform super-sampling on hemisphere (introduces bias) */
324 static void
325 ambsupersamp(AMBHEMI *hp, int cnt)
326 {
327 float *earr = getambdiffs(hp);
328 double e2rem = 0;
329 float *ep;
330 int i, j, n, nss;
331
332 if (earr == NULL) /* just skip calc. if no memory */
333 return;
334 /* accumulate estimated variances */
335 for (ep = earr + hp->ns*hp->ns; ep > earr; )
336 e2rem += *--ep;
337 ep = earr; /* perform super-sampling */
338 for (i = 0; i < hp->ns; i++)
339 for (j = 0; j < hp->ns; j++) {
340 if (e2rem <= FTINY)
341 goto done; /* nothing left to do */
342 nss = *ep/e2rem*cnt + frandom();
343 for (n = 1; n <= nss && ambsample(hp,i,j,n); n++)
344 if (!--cnt) goto done;
345 e2rem -= *ep++; /* update remainder */
346 }
347 done:
348 free(earr);
349 }
350
351
352 static AMBHEMI *
353 samp_hemi( /* sample indirect hemisphere */
354 SCOLOR rcol,
355 RAY *r,
356 double wt
357 )
358 {
359 int backside = (wt < 0);
360 AMBHEMI *hp;
361 double d;
362 int n, i, j;
363 /* insignificance check */
364 d = sintens(rcol);
365 if (d <= FTINY)
366 return(NULL);
367 /* set number of divisions */
368 if (backside) wt = -wt;
369 if (ambacc <= FTINY &&
370 wt > (d *= 0.8*r->rweight/(ambdiv*minweight + 1e-20)))
371 wt = d; /* avoid ray termination */
372 n = sqrt(ambdiv * wt) + 0.5;
373 i = 1 + (MINADIV-1)*(ambacc > FTINY);
374 if (n < i) /* use minimum number of samples? */
375 n = i;
376 /* allocate sampling array */
377 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
378 if (hp == NULL)
379 error(SYSTEM, "out of memory in samp_hemi");
380
381 if (backside) {
382 hp->atyp = TAMBIENT;
383 hp->onrm[0] = -r->ron[0];
384 hp->onrm[1] = -r->ron[1];
385 hp->onrm[2] = -r->ron[2];
386 } else {
387 hp->atyp = RAMBIENT;
388 VCOPY(hp->onrm, r->ron);
389 }
390 hp->rp = r;
391 hp->ns = n;
392 scolorblack(hp->acol);
393 memset(hp->sa, 0, sizeof(AMBSAMP)*n*n);
394 hp->sampOK = 0;
395 /* assign coefficient */
396 copyscolor(hp->acoef, rcol);
397 d = 1.0/(n*n);
398 scalescolor(hp->acoef, d);
399 /* make tangent plane axes */
400 if (!getperpendicular(hp->ux, hp->onrm, 1))
401 error(CONSISTENCY, "bad ray direction in samp_hemi");
402 VCROSS(hp->uy, hp->onrm, hp->ux);
403 /* sample divisions */
404 for (i = hp->ns; i--; )
405 for (j = hp->ns; j--; )
406 hp->sampOK += ambsample(hp, i, j, 0);
407 copyscolor(rcol, hp->acol);
408 if (!hp->sampOK) { /* utter failure? */
409 free(hp);
410 return(NULL);
411 }
412 if (hp->sampOK < hp->ns*hp->ns) {
413 hp->sampOK *= -1; /* soft failure */
414 return(hp);
415 }
416 if (hp->sampOK <= MINADIV*MINADIV)
417 return(hp); /* don't bother super-sampling */
418 n = ambssamp*wt + 0.5;
419 if (n >= 4*hp->ns) { /* perform super-sampling? */
420 ambsupersamp(hp, n);
421 copyscolor(rcol, hp->acol);
422 }
423 return(hp); /* all is well */
424 }
425
426
427 /* Return brightness of farthest ambient sample */
428 static double
429 back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3)
430 {
431 if (hp->sa[n1].d <= hp->sa[n2].d) {
432 if (hp->sa[n1].d <= hp->sa[n3].d)
433 return(hp->sa[n1].v[0]);
434 return(hp->sa[n3].v[0]);
435 }
436 if (hp->sa[n2].d <= hp->sa[n3].d)
437 return(hp->sa[n2].v[0]);
438 return(hp->sa[n3].v[0]);
439 }
440
441
442 /* Compute vectors and coefficients for Hessian/gradient calcs */
443 static void
444 comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1)
445 {
446 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
447 int ii;
448
449 VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop);
450 VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop);
451 VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p);
452 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
453 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
454 dot_e = DOT(ftp->e_i,ftp->e_i);
455 dot_er = DOT(ftp->e_i, ftp->r_i);
456 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
457 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
458 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
459 sqrt( rdot_cp );
460 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
461 dot_e*ftp->I1 )*0.5*rdot_cp;
462 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
463 for (ii = 3; ii--; )
464 ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
465 }
466
467
468 /* Compose 3x3 matrix from two vectors */
469 static void
470 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
471 {
472 mat[0][0] = 2.0*va[0]*vb[0];
473 mat[1][1] = 2.0*va[1]*vb[1];
474 mat[2][2] = 2.0*va[2]*vb[2];
475 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
476 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
477 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
478 }
479
480
481 /* Compute partial 3x3 Hessian matrix for edge */
482 static void
483 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
484 {
485 FVECT ncp;
486 FVECT m1[3], m2[3], m3[3], m4[3];
487 double d1, d2, d3, d4;
488 double I3, J3, K3;
489 int i, j;
490 /* compute intermediate coefficients */
491 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
492 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
493 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
494 d4 = DOT(ftp->e_i, ftp->r_i);
495 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
496 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
497 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
498 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
499 /* intermediate matrices */
500 VCROSS(ncp, nrm, ftp->e_i);
501 compose_matrix(m1, ncp, ftp->rI2_eJ2);
502 compose_matrix(m2, ftp->r_i, ftp->r_i);
503 compose_matrix(m3, ftp->e_i, ftp->e_i);
504 compose_matrix(m4, ftp->r_i, ftp->e_i);
505 d1 = DOT(nrm, ftp->rcp);
506 d2 = -d1*ftp->I2;
507 d1 *= 2.0;
508 for (i = 3; i--; ) /* final matrix sum */
509 for (j = 3; j--; ) {
510 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
511 2.0*J3*m4[i][j] );
512 hess[i][j] += d2*(i==j);
513 hess[i][j] *= -1.0/PI;
514 }
515 }
516
517
518 /* Reverse hessian calculation result for edge in other direction */
519 static void
520 rev_hessian(FVECT hess[3])
521 {
522 int i;
523
524 for (i = 3; i--; ) {
525 hess[i][0] = -hess[i][0];
526 hess[i][1] = -hess[i][1];
527 hess[i][2] = -hess[i][2];
528 }
529 }
530
531
532 /* Add to radiometric Hessian from the given triangle */
533 static void
534 add2hessian(FVECT hess[3], FVECT ehess1[3],
535 FVECT ehess2[3], FVECT ehess3[3], double v)
536 {
537 int i, j;
538
539 for (i = 3; i--; )
540 for (j = 3; j--; )
541 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
542 }
543
544
545 /* Compute partial displacement form factor gradient for edge */
546 static void
547 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
548 {
549 FVECT ncp;
550 double f1;
551 int i;
552
553 f1 = 2.0*DOT(nrm, ftp->rcp);
554 VCROSS(ncp, nrm, ftp->e_i);
555 for (i = 3; i--; )
556 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
557 }
558
559
560 /* Reverse gradient calculation result for edge in other direction */
561 static void
562 rev_gradient(FVECT grad)
563 {
564 grad[0] = -grad[0];
565 grad[1] = -grad[1];
566 grad[2] = -grad[2];
567 }
568
569
570 /* Add to displacement gradient from the given triangle */
571 static void
572 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
573 {
574 int i;
575
576 for (i = 3; i--; )
577 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
578 }
579
580
581 /* Compute anisotropic radii and eigenvector directions */
582 static void
583 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
584 {
585 double hess2[2][2];
586 FVECT a, b;
587 double evalue[2], slope1, xmag1;
588 int i;
589 /* project Hessian to sample plane */
590 for (i = 3; i--; ) {
591 a[i] = DOT(hessian[i], uv[0]);
592 b[i] = DOT(hessian[i], uv[1]);
593 }
594 hess2[0][0] = DOT(uv[0], a);
595 hess2[0][1] = DOT(uv[0], b);
596 hess2[1][0] = DOT(uv[1], a);
597 hess2[1][1] = DOT(uv[1], b);
598 /* compute eigenvalue(s) */
599 i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
600 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
601 if (i == 1) /* double-root (circle) */
602 evalue[1] = evalue[0];
603 if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
604 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
605 ra[0] = ra[1] = maxarad;
606 return;
607 }
608 if (evalue[0] > evalue[1]) {
609 ra[0] = sqrt(sqrt(4.0/evalue[0]));
610 ra[1] = sqrt(sqrt(4.0/evalue[1]));
611 slope1 = evalue[1];
612 } else {
613 ra[0] = sqrt(sqrt(4.0/evalue[1]));
614 ra[1] = sqrt(sqrt(4.0/evalue[0]));
615 slope1 = evalue[0];
616 }
617 /* compute unit eigenvectors */
618 if (fabs(hess2[0][1]) <= FTINY)
619 return; /* uv OK as is */
620 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
621 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
622 for (i = 3; i--; ) {
623 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
624 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
625 }
626 VCOPY(uv[0], a);
627 VCOPY(uv[1], b);
628 }
629
630
631 static void
632 ambHessian( /* anisotropic radii & pos. gradient */
633 AMBHEMI *hp,
634 FVECT uv[2], /* returned */
635 float ra[2], /* returned (optional) */
636 float pg[2] /* returned (optional) */
637 )
638 {
639 static char memerrmsg[] = "out of memory in ambHessian()";
640 FVECT (*hessrow)[3] = NULL;
641 FVECT *gradrow = NULL;
642 FVECT hessian[3];
643 FVECT gradient;
644 FFTRI fftr;
645 int i, j;
646 /* be sure to assign unit vectors */
647 VCOPY(uv[0], hp->ux);
648 VCOPY(uv[1], hp->uy);
649 /* clock-wise vertex traversal from sample POV */
650 if (ra != NULL) { /* initialize Hessian row buffer */
651 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
652 if (hessrow == NULL)
653 error(SYSTEM, memerrmsg);
654 memset(hessian, 0, sizeof(hessian));
655 } else if (pg == NULL) /* bogus call? */
656 return;
657 if (pg != NULL) { /* initialize form factor row buffer */
658 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
659 if (gradrow == NULL)
660 error(SYSTEM, memerrmsg);
661 memset(gradient, 0, sizeof(gradient));
662 }
663 /* compute first row of edges */
664 for (j = 0; j < hp->ns-1; j++) {
665 comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
666 if (hessrow != NULL)
667 comp_hessian(hessrow[j], &fftr, hp->onrm);
668 if (gradrow != NULL)
669 comp_gradient(gradrow[j], &fftr, hp->onrm);
670 }
671 /* sum each row of triangles */
672 for (i = 0; i < hp->ns-1; i++) {
673 FVECT hesscol[3]; /* compute first vertical edge */
674 FVECT gradcol;
675 comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
676 if (hessrow != NULL)
677 comp_hessian(hesscol, &fftr, hp->onrm);
678 if (gradrow != NULL)
679 comp_gradient(gradcol, &fftr, hp->onrm);
680 for (j = 0; j < hp->ns-1; j++) {
681 FVECT hessdia[3]; /* compute triangle contributions */
682 FVECT graddia;
683 double backg;
684 backg = back_ambval(hp, AI(hp,i,j),
685 AI(hp,i,j+1), AI(hp,i+1,j));
686 /* diagonal (inner) edge */
687 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
688 if (hessrow != NULL) {
689 comp_hessian(hessdia, &fftr, hp->onrm);
690 rev_hessian(hesscol);
691 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
692 }
693 if (gradrow != NULL) {
694 comp_gradient(graddia, &fftr, hp->onrm);
695 rev_gradient(gradcol);
696 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
697 }
698 /* initialize edge in next row */
699 comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
700 if (hessrow != NULL)
701 comp_hessian(hessrow[j], &fftr, hp->onrm);
702 if (gradrow != NULL)
703 comp_gradient(gradrow[j], &fftr, hp->onrm);
704 /* new column edge & paired triangle */
705 backg = back_ambval(hp, AI(hp,i+1,j+1),
706 AI(hp,i+1,j), AI(hp,i,j+1));
707 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
708 if (hessrow != NULL) {
709 comp_hessian(hesscol, &fftr, hp->onrm);
710 rev_hessian(hessdia);
711 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
712 if (i < hp->ns-2)
713 rev_hessian(hessrow[j]);
714 }
715 if (gradrow != NULL) {
716 comp_gradient(gradcol, &fftr, hp->onrm);
717 rev_gradient(graddia);
718 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
719 if (i < hp->ns-2)
720 rev_gradient(gradrow[j]);
721 }
722 }
723 }
724 /* release row buffers */
725 if (hessrow != NULL) free(hessrow);
726 if (gradrow != NULL) free(gradrow);
727
728 if (ra != NULL) /* extract eigenvectors & radii */
729 eigenvectors(uv, ra, hessian);
730 if (pg != NULL) { /* tangential position gradient */
731 pg[0] = DOT(gradient, uv[0]);
732 pg[1] = DOT(gradient, uv[1]);
733 }
734 }
735
736
737 /* Compute direction gradient from a hemispherical sampling */
738 static void
739 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
740 {
741 AMBSAMP *ap;
742 double dgsum[2];
743 int n;
744 FVECT vd;
745 double gfact;
746
747 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
748 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
749 /* use vector for azimuth + 90deg */
750 VSUB(vd, ap->p, hp->rp->rop);
751 /* brightness over cosine factor */
752 gfact = ap->v[0] / DOT(hp->onrm, vd);
753 /* sine = proj_radius/vd_length */
754 dgsum[0] -= DOT(uv[1], vd) * gfact;
755 dgsum[1] += DOT(uv[0], vd) * gfact;
756 }
757 dg[0] = dgsum[0] / (hp->ns*hp->ns);
758 dg[1] = dgsum[1] / (hp->ns*hp->ns);
759 }
760
761
762 /* Compute potential light leak direction flags for cache value */
763 static uint32
764 ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
765 {
766 const double max_d = 1.0/(minarad*ambacc + 0.001);
767 const double ang_res = 0.5*PI/hp->ns;
768 const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01);
769 double avg_d = 0;
770 uint32 flgs = 0;
771 FVECT vec;
772 double u, v;
773 double ang, a1;
774 int i, j;
775 /* don't bother for a few samples */
776 if (hp->ns < 8)
777 return(0);
778 /* check distances overhead */
779 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
780 for (j = hp->ns*3/4; j-- > hp->ns>>2; )
781 avg_d += ambsam(hp,i,j).d;
782 avg_d *= 4.0/(hp->ns*hp->ns);
783 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
784 return(0);
785 if (avg_d >= max_d) /* insurance */
786 return(0);
787 /* else circle around perimeter */
788 for (i = 0; i < hp->ns; i++)
789 for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
790 AMBSAMP *ap = &ambsam(hp,i,j);
791 if ((ap->d <= FTINY) | (ap->d >= max_d))
792 continue; /* too far or too near */
793 VSUB(vec, ap->p, hp->rp->rop);
794 u = DOT(vec, uv[0]);
795 v = DOT(vec, uv[1]);
796 if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v)
797 continue; /* occluder outside ellipse */
798 ang = atan2a(v, u); /* else set direction flags */
799 for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step)
800 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
801 }
802 return(flgs);
803 }
804
805
806 int
807 doambient( /* compute ambient component */
808 SCOLOR rcol, /* input/output color */
809 RAY *r,
810 double wt, /* negative for back side */
811 FVECT uv[2], /* returned (optional) */
812 float ra[2], /* returned (optional) */
813 float pg[2], /* returned (optional) */
814 float dg[2], /* returned (optional) */
815 uint32 *crlp /* returned (optional) */
816 )
817 {
818 AMBHEMI *hp = samp_hemi(rcol, r, wt);
819 FVECT my_uv[2];
820 double d, K;
821 AMBSAMP *ap;
822 int i;
823 /* clear return values */
824 if (uv != NULL)
825 memset(uv, 0, sizeof(FVECT)*2);
826 if (ra != NULL)
827 ra[0] = ra[1] = 0.0;
828 if (pg != NULL)
829 pg[0] = pg[1] = 0.0;
830 if (dg != NULL)
831 dg[0] = dg[1] = 0.0;
832 if (crlp != NULL)
833 *crlp = 0;
834 if (hp == NULL) /* sampling falure? */
835 return(0);
836
837 if ((ra == NULL) & (pg == NULL) & (dg == NULL) ||
838 (hp->sampOK < 0) | (hp->ns < MINADIV)) {
839 free(hp); /* Hessian not requested/possible */
840 return(-1); /* value-only return value */
841 }
842 if ((d = scolor_mean(rcol)) > FTINY) {
843 d = 0.99*(hp->ns*hp->ns)/d; /* normalize avg. values */
844 K = 0.01;
845 } else { /* or fall back on geometric Hessian */
846 K = 1.0;
847 pg = NULL;
848 dg = NULL;
849 crlp = NULL;
850 }
851 ap = hp->sa; /* single channel from here on... */
852 for (i = hp->ns*hp->ns; i--; ap++)
853 ap->v[0] = scolor_mean(ap->v)*d + K;
854
855 if (uv == NULL) /* make sure we have axis pointers */
856 uv = my_uv;
857 /* compute radii & pos. gradient */
858 ambHessian(hp, uv, ra, pg);
859
860 if (dg != NULL) /* compute direction gradient */
861 ambdirgrad(hp, uv, dg);
862
863 if (ra != NULL) { /* scale/clamp radii */
864 if (pg != NULL) {
865 if (ra[0]*(d = fabs(pg[0])) > 1.0)
866 ra[0] = 1.0/d;
867 if (ra[1]*(d = fabs(pg[1])) > 1.0)
868 ra[1] = 1.0/d;
869 if (ra[0] > ra[1])
870 ra[0] = ra[1];
871 }
872 if (ra[0] < minarad) {
873 ra[0] = minarad;
874 if (ra[1] < minarad)
875 ra[1] = minarad;
876 }
877 ra[0] *= d = 1.0/sqrt(fabs(wt));
878 if ((ra[1] *= d) > 2.0*ra[0])
879 ra[1] = 2.0*ra[0];
880 if (ra[1] > maxarad) {
881 ra[1] = maxarad;
882 if (ra[0] > maxarad)
883 ra[0] = maxarad;
884 }
885 /* flag encroached directions */
886 if (crlp != NULL) /* XXX doesn't update with changes to ambacc */
887 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
888 if (pg != NULL) { /* cap gradient if necessary */
889 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
890 if (d > 1.0) {
891 d = 1.0/sqrt(d);
892 pg[0] *= d;
893 pg[1] *= d;
894 }
895 }
896 }
897 free(hp); /* clean up and return */
898 return(1);
899 }