ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/Development/ray/src/rt/ambcomp.c
Revision: 2.105
Committed: Thu Aug 21 20:38:41 2025 UTC (5 weeks, 2 days ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: HEAD
Changes since 2.104: +8 -4 lines
Log Message:
fix: Was getting trapped in a corner and dumping core(!) if -ad set too high

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.104 2025/06/20 18:05:30 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Added book-keeping optimization to avoid calculations that would
12 * cancel due to traversal both directions on edges that are adjacent
13 * to same-valued triangles. This cuts about half of Hessian math.
14 *
15 * Declarations of external symbols in ambient.h
16 */
17
18 #include "copyright.h"
19
20 #include "ray.h"
21 #include "ambient.h"
22 #include "random.h"
23
24 #ifndef MINADIV
25 #define MINADIV 7 /* minimum # divisions in each dimension */
26 #endif
27 #ifndef MINSDIST
28 #define MINSDIST 0.2 /* def. min. spacing = 1/5th division */
29 #endif
30
31 typedef struct {
32 FVECT p; /* intersection point */
33 float d; /* reciprocal distance */
34 SCOLOR v; /* hemisphere sample value */
35 } AMBSAMP; /* sample value */
36
37 typedef struct {
38 RAY *rp; /* originating ray sample */
39 int ns; /* number of samples per axis */
40 int sampOK; /* acquired full sample set? */
41 int atyp; /* RAMBIENT or TAMBIENT */
42 SCOLOR acoef; /* division contribution coefficient */
43 SCOLOR acol; /* accumulated color */
44 FVECT onrm; /* oriented unperturbed surface normal */
45 FVECT ux, uy; /* tangent axis unit vectors */
46 AMBSAMP sa[1]; /* sample array (extends struct) */
47 } AMBHEMI; /* ambient sample hemisphere */
48
49 #define AI(h,i,j) ((i)*(h)->ns + (j))
50 #define ambsam(h,i,j) (h)->sa[AI(h,i,j)]
51
52 typedef struct {
53 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
54 double I1, I2;
55 } FFTRI; /* vectors and coefficients for Hessian calculation */
56
57
58 #define XLOTSIZ 512 /* size of used car lot */
59 #define CFIRST 0 /* first corner */
60 #define COTHER (CFIRST+4) /* non-corner sample */
61 #define CMAXTARGET (int)(XLOTSIZ*MINSDIST/(1-MINSDIST))
62
63 static int
64 psample_class(double ss[2]) /* classify patch sample */
65 {
66 if (ss[0] < MINSDIST) {
67 if (ss[1] < MINSDIST)
68 return(CFIRST);
69 if (ss[1] > 1.-MINSDIST)
70 return(CFIRST+2);
71 } else if (ss[0] > 1.-MINSDIST) {
72 if (ss[1] < MINSDIST)
73 return(CFIRST+1);
74 if (ss[1] > 1.-MINSDIST)
75 return(CFIRST+3);
76 }
77 return(COTHER); /* not in a corner */
78 }
79
80 static void
81 trade_patchsamp(double ss[2]) /* trade in problem patch position */
82 {
83 static float tradelot[XLOTSIZ][2];
84 static int gterm[COTHER+1];
85 double repl[2];
86 int sclass, rclass;
87 int x;
88 re_initialize: /* initialize lot? */
89 while (gterm[COTHER] < XLOTSIZ) {
90 tradelot[gterm[COTHER]][0] = frandom();
91 tradelot[gterm[COTHER]][1] = frandom();
92 ++gterm[COTHER];
93 }
94 /* get trade-in candidate... */
95 sclass = psample_class(ss); /* submitted corner or not? */
96 switch (sclass) {
97 case COTHER: /* trade mid-edge with corner/any */
98 x = irandom( gterm[COTHER-1] > CMAXTARGET
99 ? gterm[COTHER-1] : XLOTSIZ );
100 break;
101 case CFIRST: /* kick out of first corner */
102 x = gterm[CFIRST] + irandom(XLOTSIZ - gterm[CFIRST]);
103 break;
104 default: /* kick out of 2nd-4th corner */
105 x = irandom(XLOTSIZ - (gterm[sclass] - gterm[sclass-1]));
106 x += (x >= gterm[sclass-1])*(gterm[sclass] - gterm[sclass-1]);
107 break;
108 }
109 if (x >= XLOTSIZ) { /* uh-oh... trapped in a corner! */
110 memset(gterm, 0, sizeof(gterm));
111 goto re_initialize;
112 }
113 repl[0] = tradelot[x][0]; /* save selected replacement (result) */
114 repl[1] = tradelot[x][1];
115 /* identify replacement class */
116 for (rclass = CFIRST; rclass < COTHER; rclass++)
117 if (x < gterm[rclass])
118 break; /* repark to keep classes grouped */
119 while (rclass > sclass) { /* replacement group after submitted? */
120 tradelot[x][0] = tradelot[gterm[rclass-1]][0];
121 tradelot[x][1] = tradelot[gterm[rclass-1]][1];
122 x = gterm[--rclass]++;
123 }
124 while (rclass < sclass) { /* replacement group before submitted? */
125 tradelot[x][0] = tradelot[--gterm[rclass]][0];
126 tradelot[x][1] = tradelot[gterm[rclass]][1];
127 x = gterm[rclass++];
128 }
129 tradelot[x][0] = ss[0]; /* complete the trade-in */
130 tradelot[x][1] = ss[1];
131 ss[0] = repl[0];
132 ss[1] = repl[1];
133 }
134
135 #undef XLOTSIZ
136 #undef COTHER
137 #undef CFIRST
138
139
140 static int
141 ambcollision( /* proposed direction collides? */
142 AMBHEMI *hp,
143 int i,
144 int j,
145 RREAL spt[2]
146 )
147 {
148 int ii, jj;
149 /* check existing neighbors */
150 for (ii = i-1; ii <= i+1; ii++) {
151 if (ii < 0) continue;
152 if (ii >= hp->ns) break;
153 for (jj = j-1; jj <= j+1; jj++) {
154 AMBSAMP *ap;
155 FVECT avec;
156 double dx, dy;
157 if (jj < 0) continue;
158 if (jj >= hp->ns) break;
159 if ((ii==i) & (jj==j)) continue;
160 ap = &ambsam(hp,ii,jj);
161 if (ap->d <= .5/FHUGE)
162 continue; /* no one home */
163 VSUB(avec, ap->p, hp->rp->rop);
164 normalize(avec); /* use diskworld distance */
165 dx = DOT(avec, hp->ux) - spt[0];
166 dy = DOT(avec, hp->uy) - spt[1];
167 if ((dx*dx + dy*dy)*(hp->ns*hp->ns) <
168 PI*MINSDIST*MINSDIST)
169 return(1); /* too close */
170 }
171 }
172 return(0); /* nothing to worry about */
173 }
174
175
176 static int
177 ambsample( /* initial ambient division sample */
178 AMBHEMI *hp,
179 int i,
180 int j,
181 int n
182 )
183 {
184 int trade_ok = (!n & (hp->ns >= 4))*21;
185 AMBSAMP *ap = &ambsam(hp,i,j);
186 RAY ar;
187 int hlist[3], ii;
188 double ss[2];
189 RREAL spt[2];
190 double zd;
191 /* generate hemispherical sample */
192 /* ambient coefficient for weight */
193 if (ambacc > FTINY)
194 setscolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
195 else
196 copyscolor(ar.rcoef, hp->acoef);
197 if (rayorigin(&ar, hp->atyp, hp->rp, ar.rcoef) < 0)
198 return(0);
199 if (ambacc > FTINY) {
200 smultscolor(ar.rcoef, hp->acoef);
201 scalescolor(ar.rcoef, 1./AVGREFL);
202 }
203 hlist[0] = hp->rp->rno;
204 hlist[1] = AI(hp,i,j);
205 hlist[2] = samplendx;
206 multisamp(ss, 2, urand(ilhash(hlist,3)+n));
207 square2disk(spt, (j+ss[1])/hp->ns, (i+ss[0])/hp->ns);
208 /* avoid coincident samples? */
209 while (trade_ok-- && ambcollision(hp, i, j, spt)) {
210 if (trade_ok) {
211 trade_patchsamp(ss);
212 } else { /* punting... */
213 ss[0] = MINSDIST + (1-2*MINSDIST)*frandom();
214 ss[1] = MINSDIST + (1-2*MINSDIST)*frandom();
215 }
216 square2disk(spt, (j+ss[1])/hp->ns, (i+ss[0])/hp->ns);
217 }
218 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
219 for (ii = 3; ii--; )
220 ar.rdir[ii] = spt[0]*hp->ux[ii] +
221 spt[1]*hp->uy[ii] +
222 zd*hp->onrm[ii];
223 checknorm(ar.rdir);
224 dimlist[ndims_inc()] = AI(hp,i,j) + 90171;
225 rayvalue(&ar); /* evaluate ray */
226 dec_ndims();
227 zd = raydistance(&ar);
228 if (zd <= FTINY)
229 return(0); /* should never happen */
230 smultscolor(ar.rcol, ar.rcoef); /* apply coefficient */
231 if (zd*ap->d < 1.0) /* new/closer distance? */
232 ap->d = 1.0/zd;
233 if (!n) { /* record first vertex & value */
234 if (zd > 10.0*thescene.cusize + 1000.)
235 zd = 10.0*thescene.cusize + 1000.;
236 VSUM(ap->p, ar.rorg, ar.rdir, zd);
237 copyscolor(ap->v, ar.rcol);
238 } else { /* else update recorded value */
239 sopscolor(hp->acol, -=, ap->v);
240 zd = 1.0/(double)(n+1);
241 scalescolor(ar.rcol, zd);
242 zd *= (double)n;
243 scalescolor(ap->v, zd);
244 saddscolor(ap->v, ar.rcol);
245 }
246 saddscolor(hp->acol, ap->v); /* add to our sum */
247 return(1);
248 }
249
250
251 /* Estimate variance based on ambient division differences */
252 static float *
253 getambdiffs(AMBHEMI *hp)
254 {
255 const double normf = 1./(pbright(hp->acoef) + FTINY);
256 float *earr = (float *)calloc(2*hp->ns*hp->ns, sizeof(float));
257 float *ep;
258 AMBSAMP *ap;
259 double b, b1, d2;
260 int i, j;
261
262 if (earr == NULL) /* out of memory? */
263 return(NULL);
264 /* sum squared neighbor diffs */
265 ap = hp->sa;
266 ep = earr + hp->ns*hp->ns; /* original estimates to scratch */
267 for (i = 0; i < hp->ns; i++)
268 for (j = 0; j < hp->ns; j++, ap++, ep++) {
269 b = pbright(ap[0].v);
270 if (i) { /* from above */
271 b1 = pbright(ap[-hp->ns].v);
272 d2 = b - b1;
273 d2 *= d2*normf/(b + b1 + FTINY);
274 ep[0] += d2;
275 ep[-hp->ns] += d2;
276 }
277 if (!j) continue;
278 /* from behind */
279 b1 = pbright(ap[-1].v);
280 d2 = b - b1;
281 d2 *= d2*normf/(b + b1 + FTINY);
282 ep[0] += d2;
283 ep[-1] += d2;
284 if (!i) continue;
285 /* diagonal */
286 b1 = pbright(ap[-hp->ns-1].v);
287 d2 = b - b1;
288 d2 *= d2*normf/(b + b1 + FTINY);
289 ep[0] += d2;
290 ep[-hp->ns-1] += d2;
291 }
292 /* correct for number of neighbors */
293 ep = earr + hp->ns*hp->ns;
294 ep[0] *= 6./3.;
295 ep[hp->ns-1] *= 6./3.;
296 ep[(hp->ns-1)*hp->ns] *= 6./3.;
297 ep[(hp->ns-1)*hp->ns + hp->ns-1] *= 6./3.;
298 for (i = 1; i < hp->ns-1; i++) {
299 ep[i*hp->ns] *= 6./5.;
300 ep[i*hp->ns + hp->ns-1] *= 6./5.;
301 }
302 for (j = 1; j < hp->ns-1; j++) {
303 ep[j] *= 6./5.;
304 ep[(hp->ns-1)*hp->ns + j] *= 6./5.;
305 }
306 /* blur final map to reduce bias */
307 for (i = 0; i < hp->ns-1; i++) {
308 float *ep2;
309 ep = earr + i*hp->ns;
310 ep2 = ep + hp->ns*hp->ns;
311 for (j = 0; j < hp->ns-1; j++, ep++, ep2++) {
312 ep[0] += .5*ep2[0] + .125*(ep2[1] + ep2[hp->ns]);
313 ep[1] += .125*ep2[0];
314 ep[hp->ns] += .125*ep2[0];
315 }
316 }
317 return(earr);
318 }
319
320
321 /* Perform super-sampling on hemisphere (introduces bias) */
322 static void
323 ambsupersamp(AMBHEMI *hp, int cnt)
324 {
325 float *earr = getambdiffs(hp);
326 double e2rem = 0;
327 float *ep;
328 int i, j, n, nss;
329
330 if (earr == NULL) /* just skip calc. if no memory */
331 return;
332 /* accumulate estimated variances */
333 for (ep = earr + hp->ns*hp->ns; ep > earr; )
334 e2rem += *--ep;
335 ep = earr; /* perform super-sampling */
336 for (i = 0; i < hp->ns; i++)
337 for (j = 0; j < hp->ns; j++) {
338 if (e2rem <= FTINY)
339 goto done; /* nothing left to do */
340 nss = *ep/e2rem*cnt + frandom();
341 for (n = 1; n <= nss && ambsample(hp,i,j,n); n++)
342 if (!--cnt) goto done;
343 e2rem -= *ep++; /* update remainder */
344 }
345 done:
346 free(earr);
347 }
348
349
350 static AMBHEMI *
351 samp_hemi( /* sample indirect hemisphere */
352 SCOLOR rcol,
353 RAY *r,
354 double wt
355 )
356 {
357 int backside = (wt < 0);
358 AMBHEMI *hp;
359 double d;
360 int n, i, j;
361 /* insignificance check */
362 d = sintens(rcol);
363 if (d <= FTINY)
364 return(NULL);
365 /* set number of divisions */
366 if (backside) wt = -wt;
367 if (ambacc <= FTINY &&
368 wt > (d *= 0.8*r->rweight/(ambdiv*minweight + 1e-20)))
369 wt = d; /* avoid ray termination */
370 n = sqrt(ambdiv * wt) + 0.5;
371 i = 1 + (MINADIV-1)*(ambacc > FTINY);
372 if (n < i) /* use minimum number of samples? */
373 n = i;
374 /* allocate sampling array */
375 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
376 if (hp == NULL)
377 error(SYSTEM, "out of memory in samp_hemi");
378
379 if (backside) {
380 hp->atyp = TAMBIENT;
381 hp->onrm[0] = -r->ron[0];
382 hp->onrm[1] = -r->ron[1];
383 hp->onrm[2] = -r->ron[2];
384 } else {
385 hp->atyp = RAMBIENT;
386 VCOPY(hp->onrm, r->ron);
387 }
388 hp->rp = r;
389 hp->ns = n;
390 scolorblack(hp->acol);
391 memset(hp->sa, 0, sizeof(AMBSAMP)*n*n);
392 hp->sampOK = 0;
393 /* assign coefficient */
394 copyscolor(hp->acoef, rcol);
395 d = 1.0/(n*n);
396 scalescolor(hp->acoef, d);
397 /* make tangent plane axes */
398 if (!getperpendicular(hp->ux, hp->onrm, 1))
399 error(CONSISTENCY, "bad ray direction in samp_hemi");
400 VCROSS(hp->uy, hp->onrm, hp->ux);
401 /* sample divisions */
402 for (i = hp->ns; i--; )
403 for (j = hp->ns; j--; )
404 hp->sampOK += ambsample(hp, i, j, 0);
405 copyscolor(rcol, hp->acol);
406 if (!hp->sampOK) { /* utter failure? */
407 free(hp);
408 return(NULL);
409 }
410 if (hp->sampOK < hp->ns*hp->ns) {
411 hp->sampOK *= -1; /* soft failure */
412 return(hp);
413 }
414 if (hp->sampOK <= MINADIV*MINADIV)
415 return(hp); /* don't bother super-sampling */
416 n = ambssamp*wt + 0.5;
417 if (n >= 4*hp->ns) { /* perform super-sampling? */
418 ambsupersamp(hp, n);
419 copyscolor(rcol, hp->acol);
420 }
421 return(hp); /* all is well */
422 }
423
424
425 /* Return brightness of farthest ambient sample */
426 static double
427 back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3)
428 {
429 if (hp->sa[n1].d <= hp->sa[n2].d) {
430 if (hp->sa[n1].d <= hp->sa[n3].d)
431 return(hp->sa[n1].v[0]);
432 return(hp->sa[n3].v[0]);
433 }
434 if (hp->sa[n2].d <= hp->sa[n3].d)
435 return(hp->sa[n2].v[0]);
436 return(hp->sa[n3].v[0]);
437 }
438
439
440 /* Compute vectors and coefficients for Hessian/gradient calcs */
441 static void
442 comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1)
443 {
444 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
445 int ii;
446
447 VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop);
448 VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop);
449 VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p);
450 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
451 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
452 dot_e = DOT(ftp->e_i,ftp->e_i);
453 dot_er = DOT(ftp->e_i, ftp->r_i);
454 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
455 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
456 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
457 sqrt( rdot_cp );
458 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
459 dot_e*ftp->I1 )*0.5*rdot_cp;
460 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
461 for (ii = 3; ii--; )
462 ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
463 }
464
465
466 /* Compose 3x3 matrix from two vectors */
467 static void
468 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
469 {
470 mat[0][0] = 2.0*va[0]*vb[0];
471 mat[1][1] = 2.0*va[1]*vb[1];
472 mat[2][2] = 2.0*va[2]*vb[2];
473 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
474 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
475 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
476 }
477
478
479 /* Compute partial 3x3 Hessian matrix for edge */
480 static void
481 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
482 {
483 FVECT ncp;
484 FVECT m1[3], m2[3], m3[3], m4[3];
485 double d1, d2, d3, d4;
486 double I3, J3, K3;
487 int i, j;
488 /* compute intermediate coefficients */
489 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
490 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
491 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
492 d4 = DOT(ftp->e_i, ftp->r_i);
493 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
494 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
495 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
496 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
497 /* intermediate matrices */
498 VCROSS(ncp, nrm, ftp->e_i);
499 compose_matrix(m1, ncp, ftp->rI2_eJ2);
500 compose_matrix(m2, ftp->r_i, ftp->r_i);
501 compose_matrix(m3, ftp->e_i, ftp->e_i);
502 compose_matrix(m4, ftp->r_i, ftp->e_i);
503 d1 = DOT(nrm, ftp->rcp);
504 d2 = -d1*ftp->I2;
505 d1 *= 2.0;
506 for (i = 3; i--; ) /* final matrix sum */
507 for (j = 3; j--; ) {
508 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
509 2.0*J3*m4[i][j] );
510 hess[i][j] += d2*(i==j);
511 hess[i][j] *= -1.0/PI;
512 }
513 }
514
515
516 /* Reverse hessian calculation result for edge in other direction */
517 static void
518 rev_hessian(FVECT hess[3])
519 {
520 int i;
521
522 for (i = 3; i--; ) {
523 hess[i][0] = -hess[i][0];
524 hess[i][1] = -hess[i][1];
525 hess[i][2] = -hess[i][2];
526 }
527 }
528
529
530 /* Add to radiometric Hessian from the given triangle */
531 static void
532 add2hessian(FVECT hess[3], FVECT ehess1[3],
533 FVECT ehess2[3], FVECT ehess3[3], double v)
534 {
535 int i, j;
536
537 for (i = 3; i--; )
538 for (j = 3; j--; )
539 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
540 }
541
542
543 /* Compute partial displacement form factor gradient for edge */
544 static void
545 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
546 {
547 FVECT ncp;
548 double f1;
549 int i;
550
551 f1 = 2.0*DOT(nrm, ftp->rcp);
552 VCROSS(ncp, nrm, ftp->e_i);
553 for (i = 3; i--; )
554 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
555 }
556
557
558 /* Reverse gradient calculation result for edge in other direction */
559 static void
560 rev_gradient(FVECT grad)
561 {
562 grad[0] = -grad[0];
563 grad[1] = -grad[1];
564 grad[2] = -grad[2];
565 }
566
567
568 /* Add to displacement gradient from the given triangle */
569 static void
570 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
571 {
572 int i;
573
574 for (i = 3; i--; )
575 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
576 }
577
578
579 /* Compute anisotropic radii and eigenvector directions */
580 static void
581 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
582 {
583 double hess2[2][2];
584 FVECT a, b;
585 double evalue[2], slope1, xmag1;
586 int i;
587 /* project Hessian to sample plane */
588 for (i = 3; i--; ) {
589 a[i] = DOT(hessian[i], uv[0]);
590 b[i] = DOT(hessian[i], uv[1]);
591 }
592 hess2[0][0] = DOT(uv[0], a);
593 hess2[0][1] = DOT(uv[0], b);
594 hess2[1][0] = DOT(uv[1], a);
595 hess2[1][1] = DOT(uv[1], b);
596 /* compute eigenvalue(s) */
597 i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
598 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
599 if (i == 1) /* double-root (circle) */
600 evalue[1] = evalue[0];
601 if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
602 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
603 ra[0] = ra[1] = maxarad;
604 return;
605 }
606 if (evalue[0] > evalue[1]) {
607 ra[0] = sqrt(sqrt(4.0/evalue[0]));
608 ra[1] = sqrt(sqrt(4.0/evalue[1]));
609 slope1 = evalue[1];
610 } else {
611 ra[0] = sqrt(sqrt(4.0/evalue[1]));
612 ra[1] = sqrt(sqrt(4.0/evalue[0]));
613 slope1 = evalue[0];
614 }
615 /* compute unit eigenvectors */
616 if (fabs(hess2[0][1]) <= FTINY)
617 return; /* uv OK as is */
618 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
619 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
620 for (i = 3; i--; ) {
621 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
622 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
623 }
624 VCOPY(uv[0], a);
625 VCOPY(uv[1], b);
626 }
627
628
629 static void
630 ambHessian( /* anisotropic radii & pos. gradient */
631 AMBHEMI *hp,
632 FVECT uv[2], /* returned */
633 float ra[2], /* returned (optional) */
634 float pg[2] /* returned (optional) */
635 )
636 {
637 static char memerrmsg[] = "out of memory in ambHessian()";
638 FVECT (*hessrow)[3] = NULL;
639 FVECT *gradrow = NULL;
640 FVECT hessian[3];
641 FVECT gradient;
642 FFTRI fftr;
643 int i, j;
644 /* be sure to assign unit vectors */
645 VCOPY(uv[0], hp->ux);
646 VCOPY(uv[1], hp->uy);
647 /* clock-wise vertex traversal from sample POV */
648 if (ra != NULL) { /* initialize Hessian row buffer */
649 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
650 if (hessrow == NULL)
651 error(SYSTEM, memerrmsg);
652 memset(hessian, 0, sizeof(hessian));
653 } else if (pg == NULL) /* bogus call? */
654 return;
655 if (pg != NULL) { /* initialize form factor row buffer */
656 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
657 if (gradrow == NULL)
658 error(SYSTEM, memerrmsg);
659 memset(gradient, 0, sizeof(gradient));
660 }
661 /* compute first row of edges */
662 for (j = 0; j < hp->ns-1; j++) {
663 comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
664 if (hessrow != NULL)
665 comp_hessian(hessrow[j], &fftr, hp->onrm);
666 if (gradrow != NULL)
667 comp_gradient(gradrow[j], &fftr, hp->onrm);
668 }
669 /* sum each row of triangles */
670 for (i = 0; i < hp->ns-1; i++) {
671 FVECT hesscol[3]; /* compute first vertical edge */
672 FVECT gradcol;
673 comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
674 if (hessrow != NULL)
675 comp_hessian(hesscol, &fftr, hp->onrm);
676 if (gradrow != NULL)
677 comp_gradient(gradcol, &fftr, hp->onrm);
678 for (j = 0; j < hp->ns-1; j++) {
679 FVECT hessdia[3]; /* compute triangle contributions */
680 FVECT graddia;
681 double backg;
682 backg = back_ambval(hp, AI(hp,i,j),
683 AI(hp,i,j+1), AI(hp,i+1,j));
684 /* diagonal (inner) edge */
685 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
686 if (hessrow != NULL) {
687 comp_hessian(hessdia, &fftr, hp->onrm);
688 rev_hessian(hesscol);
689 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
690 }
691 if (gradrow != NULL) {
692 comp_gradient(graddia, &fftr, hp->onrm);
693 rev_gradient(gradcol);
694 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
695 }
696 /* initialize edge in next row */
697 comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
698 if (hessrow != NULL)
699 comp_hessian(hessrow[j], &fftr, hp->onrm);
700 if (gradrow != NULL)
701 comp_gradient(gradrow[j], &fftr, hp->onrm);
702 /* new column edge & paired triangle */
703 backg = back_ambval(hp, AI(hp,i+1,j+1),
704 AI(hp,i+1,j), AI(hp,i,j+1));
705 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
706 if (hessrow != NULL) {
707 comp_hessian(hesscol, &fftr, hp->onrm);
708 rev_hessian(hessdia);
709 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
710 if (i < hp->ns-2)
711 rev_hessian(hessrow[j]);
712 }
713 if (gradrow != NULL) {
714 comp_gradient(gradcol, &fftr, hp->onrm);
715 rev_gradient(graddia);
716 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
717 if (i < hp->ns-2)
718 rev_gradient(gradrow[j]);
719 }
720 }
721 }
722 /* release row buffers */
723 if (hessrow != NULL) free(hessrow);
724 if (gradrow != NULL) free(gradrow);
725
726 if (ra != NULL) /* extract eigenvectors & radii */
727 eigenvectors(uv, ra, hessian);
728 if (pg != NULL) { /* tangential position gradient */
729 pg[0] = DOT(gradient, uv[0]);
730 pg[1] = DOT(gradient, uv[1]);
731 }
732 }
733
734
735 /* Compute direction gradient from a hemispherical sampling */
736 static void
737 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
738 {
739 AMBSAMP *ap;
740 double dgsum[2];
741 int n;
742 FVECT vd;
743 double gfact;
744
745 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
746 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
747 /* use vector for azimuth + 90deg */
748 VSUB(vd, ap->p, hp->rp->rop);
749 /* brightness over cosine factor */
750 gfact = ap->v[0] / DOT(hp->onrm, vd);
751 /* sine = proj_radius/vd_length */
752 dgsum[0] -= DOT(uv[1], vd) * gfact;
753 dgsum[1] += DOT(uv[0], vd) * gfact;
754 }
755 dg[0] = dgsum[0] / (hp->ns*hp->ns);
756 dg[1] = dgsum[1] / (hp->ns*hp->ns);
757 }
758
759
760 /* Compute potential light leak direction flags for cache value */
761 static uint32
762 ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
763 {
764 const double max_d = 1.0/(minarad*ambacc + 0.001);
765 const double ang_res = 0.5*PI/hp->ns;
766 const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01);
767 double avg_d = 0;
768 uint32 flgs = 0;
769 FVECT vec;
770 double u, v;
771 double ang, a1;
772 int i, j;
773 /* don't bother for a few samples */
774 if (hp->ns < 8)
775 return(0);
776 /* check distances overhead */
777 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
778 for (j = hp->ns*3/4; j-- > hp->ns>>2; )
779 avg_d += ambsam(hp,i,j).d;
780 avg_d *= 4.0/(hp->ns*hp->ns);
781 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
782 return(0);
783 if (avg_d >= max_d) /* insurance */
784 return(0);
785 /* else circle around perimeter */
786 for (i = 0; i < hp->ns; i++)
787 for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
788 AMBSAMP *ap = &ambsam(hp,i,j);
789 if ((ap->d <= FTINY) | (ap->d >= max_d))
790 continue; /* too far or too near */
791 VSUB(vec, ap->p, hp->rp->rop);
792 u = DOT(vec, uv[0]);
793 v = DOT(vec, uv[1]);
794 if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v)
795 continue; /* occluder outside ellipse */
796 ang = atan2a(v, u); /* else set direction flags */
797 for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step)
798 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
799 }
800 return(flgs);
801 }
802
803
804 int
805 doambient( /* compute ambient component */
806 SCOLOR rcol, /* input/output color */
807 RAY *r,
808 double wt, /* negative for back side */
809 FVECT uv[2], /* returned (optional) */
810 float ra[2], /* returned (optional) */
811 float pg[2], /* returned (optional) */
812 float dg[2], /* returned (optional) */
813 uint32 *crlp /* returned (optional) */
814 )
815 {
816 AMBHEMI *hp = samp_hemi(rcol, r, wt);
817 FVECT my_uv[2];
818 double d, K;
819 AMBSAMP *ap;
820 int i;
821 /* clear return values */
822 if (uv != NULL)
823 memset(uv, 0, sizeof(FVECT)*2);
824 if (ra != NULL)
825 ra[0] = ra[1] = 0.0;
826 if (pg != NULL)
827 pg[0] = pg[1] = 0.0;
828 if (dg != NULL)
829 dg[0] = dg[1] = 0.0;
830 if (crlp != NULL)
831 *crlp = 0;
832 if (hp == NULL) /* sampling falure? */
833 return(0);
834
835 if ((ra == NULL) & (pg == NULL) & (dg == NULL) ||
836 (hp->sampOK < 0) | (hp->ns < MINADIV)) {
837 free(hp); /* Hessian not requested/possible */
838 return(-1); /* value-only return value */
839 }
840 if ((d = scolor_mean(rcol)) > FTINY) {
841 d = 0.99*(hp->ns*hp->ns)/d; /* normalize avg. values */
842 K = 0.01;
843 } else { /* or fall back on geometric Hessian */
844 K = 1.0;
845 pg = NULL;
846 dg = NULL;
847 crlp = NULL;
848 }
849 ap = hp->sa; /* single channel from here on... */
850 for (i = hp->ns*hp->ns; i--; ap++)
851 ap->v[0] = scolor_mean(ap->v)*d + K;
852
853 if (uv == NULL) /* make sure we have axis pointers */
854 uv = my_uv;
855 /* compute radii & pos. gradient */
856 ambHessian(hp, uv, ra, pg);
857
858 if (dg != NULL) /* compute direction gradient */
859 ambdirgrad(hp, uv, dg);
860
861 if (ra != NULL) { /* scale/clamp radii */
862 if (pg != NULL) {
863 if (ra[0]*(d = fabs(pg[0])) > 1.0)
864 ra[0] = 1.0/d;
865 if (ra[1]*(d = fabs(pg[1])) > 1.0)
866 ra[1] = 1.0/d;
867 if (ra[0] > ra[1])
868 ra[0] = ra[1];
869 }
870 if (ra[0] < minarad) {
871 ra[0] = minarad;
872 if (ra[1] < minarad)
873 ra[1] = minarad;
874 }
875 ra[0] *= d = 1.0/sqrt(fabs(wt));
876 if ((ra[1] *= d) > 2.0*ra[0])
877 ra[1] = 2.0*ra[0];
878 if (ra[1] > maxarad) {
879 ra[1] = maxarad;
880 if (ra[0] > maxarad)
881 ra[0] = maxarad;
882 }
883 /* flag encroached directions */
884 if (crlp != NULL) /* XXX doesn't update with changes to ambacc */
885 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
886 if (pg != NULL) { /* cap gradient if necessary */
887 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
888 if (d > 1.0) {
889 d = 1.0/sqrt(d);
890 pg[0] *= d;
891 pg[1] *= d;
892 }
893 }
894 }
895 free(hp); /* clean up and return */
896 return(1);
897 }