ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.100
Committed: Mon Apr 28 19:30:01 2025 UTC (8 days, 20 hours ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.99: +10 -17 lines
Log Message:
refactor: Simplified new resampling code without changing results

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.99 2025/04/27 20:20:01 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Added book-keeping optimization to avoid calculations that would
12 * cancel due to traversal both directions on edges that are adjacent
13 * to same-valued triangles. This cuts about half of Hessian math.
14 *
15 * Declarations of external symbols in ambient.h
16 */
17
18 #include "copyright.h"
19
20 #include "ray.h"
21 #include "ambient.h"
22 #include "random.h"
23
24 #ifndef MINADIV
25 #define MINADIV 7 /* minimum # divisions in each dimension */
26 #endif
27 #ifndef MINSDIST
28 #define MINSDIST 0.25 /* def. min. spacing = 1/4th division */
29 #endif
30
31 typedef struct {
32 FVECT p; /* intersection point */
33 float d; /* reciprocal distance */
34 SCOLOR v; /* hemisphere sample value */
35 } AMBSAMP; /* sample value */
36
37 typedef struct {
38 RAY *rp; /* originating ray sample */
39 int ns; /* number of samples per axis */
40 int sampOK; /* acquired full sample set? */
41 int atyp; /* RAMBIENT or TAMBIENT */
42 SCOLOR acoef; /* division contribution coefficient */
43 SCOLOR acol; /* accumulated color */
44 FVECT onrm; /* oriented unperturbed surface normal */
45 FVECT ux, uy; /* tangent axis unit vectors */
46 AMBSAMP sa[1]; /* sample array (extends struct) */
47 } AMBHEMI; /* ambient sample hemisphere */
48
49 #define AI(h,i,j) ((i)*(h)->ns + (j))
50 #define ambsam(h,i,j) (h)->sa[AI(h,i,j)]
51
52 typedef struct {
53 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
54 double I1, I2;
55 } FFTRI; /* vectors and coefficients for Hessian calculation */
56
57
58 static int
59 ambcollision( /* proposed direciton collides? */
60 AMBHEMI *hp,
61 int i,
62 int j,
63 FVECT dv
64 )
65 {
66 double cos_thresh;
67 int ii, jj;
68
69 cos_thresh = (PI*MINSDIST)/(double)hp->ns;
70 cos_thresh = 1. - .5*cos_thresh*cos_thresh;
71 /* check existing neighbors */
72 for (ii = i-1; ii <= i+1; ii++) {
73 if (ii < 0) continue;
74 if (ii >= hp->ns) break;
75 for (jj = j-1; jj <= j+1; jj++) {
76 AMBSAMP *ap;
77 FVECT avec;
78 double dprod;
79 if (jj < 0) continue;
80 if (jj >= hp->ns) break;
81 if ((ii==i) & (jj==j)) continue;
82 ap = &ambsam(hp,ii,jj);
83 if (ap->d <= .5/FHUGE)
84 continue; /* no one home */
85 VSUB(avec, ap->p, hp->rp->rop);
86 dprod = DOT(avec, dv);
87 if (dprod >= cos_thresh*VLEN(avec))
88 return(1); /* collision */
89 }
90 }
91 return(0); /* nothing to worry about */
92 }
93
94
95 #define XLOTSIZ 251 /* size of used car lot */
96 #define CFIRST 0 /* first corner */
97 #define COTHER (CFIRST+4) /* non-corner sample */
98 #define CMAXTARGET (int)(XLOTSIZ*MINSDIST/(1-MINSDIST))
99 #define CXCOPY(d,s) (excharr[d][0]=excharr[s][0], excharr[d][1]=excharr[s][1])
100
101 static int
102 psample_class(double ss[2]) /* classify patch sample */
103 {
104 if (ss[0] < MINSDIST) {
105 if (ss[1] < MINSDIST)
106 return(CFIRST);
107 if (ss[1] > 1.-MINSDIST)
108 return(CFIRST+2);
109 } else if (ss[0] > 1.-MINSDIST) {
110 if (ss[1] < MINSDIST)
111 return(CFIRST+1);
112 if (ss[1] > 1.-MINSDIST)
113 return(CFIRST+3);
114 }
115 return(COTHER); /* not in a corner */
116 }
117
118 static void
119 trade_patchsamp(double ss[2]) /* trade in problem patch position */
120 {
121 static float excharr[XLOTSIZ][2];
122 static short gterm[COTHER+1];
123 double srep[2];
124 int sclass, rclass;
125 int x;
126 /* reset on corner overload */
127 if (gterm[COTHER-1] >= (CMAXTARGET+XLOTSIZ)/2)
128 memset(gterm, 0, sizeof(gterm));
129 /* (re-)initialize? */
130 while (gterm[COTHER] < XLOTSIZ) {
131 excharr[gterm[COTHER]][0] = frandom();
132 excharr[gterm[COTHER]][1] = frandom();
133 ++gterm[COTHER];
134 } /* get trade-in candidate... */
135 sclass = psample_class(ss); /* submitted corner or not? */
136 switch (sclass) {
137 case COTHER: /* trade mid-edge with corner/any */
138 x = irandom( gterm[COTHER-1] > CMAXTARGET
139 ? gterm[COTHER-1] : XLOTSIZ );
140 break;
141 case CFIRST: /* kick out of first corner */
142 x = gterm[CFIRST] + irandom(XLOTSIZ - gterm[CFIRST]);
143 break;
144 default: /* kick out of 2nd-4th corner */
145 x = irandom(XLOTSIZ - (gterm[sclass] - gterm[sclass-1]));
146 x += (x >= gterm[sclass-1])*(gterm[sclass] - gterm[sclass-1]);
147 break;
148 }
149 srep[0] = excharr[x][0]; /* save selected replacement (result) */
150 srep[1] = excharr[x][1];
151 /* identify replacement class */
152 for (rclass = CFIRST; rclass < COTHER; rclass++)
153 if (x < gterm[rclass])
154 break; /* repark to keep classes grouped */
155 while (rclass > sclass) { /* replacement group after submitted? */
156 CXCOPY(x, gterm[rclass-1]);
157 x = gterm[--rclass]++;
158 }
159 while (rclass < sclass) { /* replacement group before submitted? */
160 --gterm[rclass];
161 CXCOPY(x, gterm[rclass]);
162 x = gterm[rclass++];
163 }
164 excharr[x][0] = ss[0]; /* complete the trade-in */
165 excharr[x][1] = ss[1];
166 ss[0] = srep[0];
167 ss[1] = srep[1];
168 }
169
170 #undef CXCOPY
171 #undef XLOTSIZ
172 #undef COTHER
173 #undef CFIRST
174
175
176 static int
177 ambsample( /* initial ambient division sample */
178 AMBHEMI *hp,
179 int i,
180 int j,
181 int n
182 )
183 {
184 AMBSAMP *ap = &ambsam(hp,i,j);
185 RAY ar;
186 int hlist[3], ii;
187 double ss[2];
188 RREAL spt[2];
189 double zd;
190 /* generate hemispherical sample */
191 /* ambient coefficient for weight */
192 if (ambacc > FTINY)
193 setscolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
194 else
195 copyscolor(ar.rcoef, hp->acoef);
196 if (rayorigin(&ar, hp->atyp, hp->rp, ar.rcoef) < 0)
197 return(0);
198 if (ambacc > FTINY) {
199 smultscolor(ar.rcoef, hp->acoef);
200 scalescolor(ar.rcoef, 1./AVGREFL);
201 }
202 hlist[0] = hp->rp->rno;
203 hlist[1] = AI(hp,i,j);
204 hlist[2] = samplendx;
205 multisamp(ss, 2, urand(ilhash(hlist,3)+n));
206 patch_redo:
207 square2disk(spt, (j+ss[1])/hp->ns, (i+ss[0])/hp->ns);
208 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
209 for (ii = 3; ii--; )
210 ar.rdir[ii] = spt[0]*hp->ux[ii] +
211 spt[1]*hp->uy[ii] +
212 zd*hp->onrm[ii];
213 checknorm(ar.rdir);
214 /* avoid coincident samples */
215 if (!n & (hp->ns >= 4) && ambcollision(hp, i, j, ar.rdir)) {
216 trade_patchsamp(ss);
217 goto patch_redo;
218 }
219 dimlist[ndims++] = AI(hp,i,j) + 90171;
220 rayvalue(&ar); /* evaluate ray */
221 ndims--;
222 zd = raydistance(&ar);
223 if (zd <= FTINY)
224 return(0); /* should never happen */
225 smultscolor(ar.rcol, ar.rcoef); /* apply coefficient */
226 if (zd*ap->d < 1.0) /* new/closer distance? */
227 ap->d = 1.0/zd;
228 if (!n) { /* record first vertex & value */
229 if (zd > 10.0*thescene.cusize + 1000.)
230 zd = 10.0*thescene.cusize + 1000.;
231 VSUM(ap->p, ar.rorg, ar.rdir, zd);
232 copyscolor(ap->v, ar.rcol);
233 } else { /* else update recorded value */
234 sopscolor(hp->acol, -=, ap->v);
235 zd = 1.0/(double)(n+1);
236 scalescolor(ar.rcol, zd);
237 zd *= (double)n;
238 scalescolor(ap->v, zd);
239 saddscolor(ap->v, ar.rcol);
240 }
241 saddscolor(hp->acol, ap->v); /* add to our sum */
242 return(1);
243 }
244
245
246 /* Estimate variance based on ambient division differences */
247 static float *
248 getambdiffs(AMBHEMI *hp)
249 {
250 const double normf = 1./(pbright(hp->acoef) + FTINY);
251 float *earr = (float *)calloc(2*hp->ns*hp->ns, sizeof(float));
252 float *ep;
253 AMBSAMP *ap;
254 double b, b1, d2;
255 int i, j;
256
257 if (earr == NULL) /* out of memory? */
258 return(NULL);
259 /* sum squared neighbor diffs */
260 ap = hp->sa;
261 ep = earr + hp->ns*hp->ns; /* original estimates to scratch */
262 for (i = 0; i < hp->ns; i++)
263 for (j = 0; j < hp->ns; j++, ap++, ep++) {
264 b = pbright(ap[0].v);
265 if (i) { /* from above */
266 b1 = pbright(ap[-hp->ns].v);
267 d2 = b - b1;
268 d2 *= d2*normf/(b + b1 + FTINY);
269 ep[0] += d2;
270 ep[-hp->ns] += d2;
271 }
272 if (!j) continue;
273 /* from behind */
274 b1 = pbright(ap[-1].v);
275 d2 = b - b1;
276 d2 *= d2*normf/(b + b1 + FTINY);
277 ep[0] += d2;
278 ep[-1] += d2;
279 if (!i) continue;
280 /* diagonal */
281 b1 = pbright(ap[-hp->ns-1].v);
282 d2 = b - b1;
283 d2 *= d2*normf/(b + b1 + FTINY);
284 ep[0] += d2;
285 ep[-hp->ns-1] += d2;
286 }
287 /* correct for number of neighbors */
288 ep = earr + hp->ns*hp->ns;
289 ep[0] *= 6./3.;
290 ep[hp->ns-1] *= 6./3.;
291 ep[(hp->ns-1)*hp->ns] *= 6./3.;
292 ep[(hp->ns-1)*hp->ns + hp->ns-1] *= 6./3.;
293 for (i = 1; i < hp->ns-1; i++) {
294 ep[i*hp->ns] *= 6./5.;
295 ep[i*hp->ns + hp->ns-1] *= 6./5.;
296 }
297 for (j = 1; j < hp->ns-1; j++) {
298 ep[j] *= 6./5.;
299 ep[(hp->ns-1)*hp->ns + j] *= 6./5.;
300 }
301 /* blur final map to reduce bias */
302 for (i = 0; i < hp->ns-1; i++) {
303 float *ep2;
304 ep = earr + i*hp->ns;
305 ep2 = ep + hp->ns*hp->ns;
306 for (j = 0; j < hp->ns-1; j++, ep++, ep2++) {
307 ep[0] += .5*ep2[0] + .125*(ep2[1] + ep2[hp->ns]);
308 ep[1] += .125*ep2[0];
309 ep[hp->ns] += .125*ep2[0];
310 }
311 }
312 return(earr);
313 }
314
315
316 /* Perform super-sampling on hemisphere (introduces bias) */
317 static void
318 ambsupersamp(AMBHEMI *hp, int cnt)
319 {
320 float *earr = getambdiffs(hp);
321 double e2rem = 0;
322 float *ep;
323 int i, j, n, nss;
324
325 if (earr == NULL) /* just skip calc. if no memory */
326 return;
327 /* accumulate estimated variances */
328 for (ep = earr + hp->ns*hp->ns; ep > earr; )
329 e2rem += *--ep;
330 ep = earr; /* perform super-sampling */
331 for (i = 0; i < hp->ns; i++)
332 for (j = 0; j < hp->ns; j++) {
333 if (e2rem <= FTINY)
334 goto done; /* nothing left to do */
335 nss = *ep/e2rem*cnt + frandom();
336 for (n = 1; n <= nss && ambsample(hp,i,j,n); n++)
337 if (!--cnt) goto done;
338 e2rem -= *ep++; /* update remainder */
339 }
340 done:
341 free(earr);
342 }
343
344
345 static AMBHEMI *
346 samp_hemi( /* sample indirect hemisphere */
347 SCOLOR rcol,
348 RAY *r,
349 double wt
350 )
351 {
352 int backside = (wt < 0);
353 AMBHEMI *hp;
354 double d;
355 int n, i, j;
356 /* insignificance check */
357 d = sintens(rcol);
358 if (d <= FTINY)
359 return(NULL);
360 /* set number of divisions */
361 if (backside) wt = -wt;
362 if (ambacc <= FTINY &&
363 wt > (d *= 0.8*r->rweight/(ambdiv*minweight + 1e-20)))
364 wt = d; /* avoid ray termination */
365 n = sqrt(ambdiv * wt) + 0.5;
366 i = 1 + (MINADIV-1)*(ambacc > FTINY);
367 if (n < i) /* use minimum number of samples? */
368 n = i;
369 /* allocate sampling array */
370 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
371 if (hp == NULL)
372 error(SYSTEM, "out of memory in samp_hemi");
373
374 if (backside) {
375 hp->atyp = TAMBIENT;
376 hp->onrm[0] = -r->ron[0];
377 hp->onrm[1] = -r->ron[1];
378 hp->onrm[2] = -r->ron[2];
379 } else {
380 hp->atyp = RAMBIENT;
381 VCOPY(hp->onrm, r->ron);
382 }
383 hp->rp = r;
384 hp->ns = n;
385 scolorblack(hp->acol);
386 memset(hp->sa, 0, sizeof(AMBSAMP)*n*n);
387 hp->sampOK = 0;
388 /* assign coefficient */
389 copyscolor(hp->acoef, rcol);
390 d = 1.0/(n*n);
391 scalescolor(hp->acoef, d);
392 /* make tangent plane axes */
393 if (!getperpendicular(hp->ux, hp->onrm, 1))
394 error(CONSISTENCY, "bad ray direction in samp_hemi");
395 VCROSS(hp->uy, hp->onrm, hp->ux);
396 /* sample divisions */
397 for (i = hp->ns; i--; )
398 for (j = hp->ns; j--; )
399 hp->sampOK += ambsample(hp, i, j, 0);
400 copyscolor(rcol, hp->acol);
401 if (!hp->sampOK) { /* utter failure? */
402 free(hp);
403 return(NULL);
404 }
405 if (hp->sampOK < hp->ns*hp->ns) {
406 hp->sampOK *= -1; /* soft failure */
407 return(hp);
408 }
409 if (hp->sampOK <= MINADIV*MINADIV)
410 return(hp); /* don't bother super-sampling */
411 n = ambssamp*wt + 0.5;
412 if (n >= 4*hp->ns) { /* perform super-sampling? */
413 ambsupersamp(hp, n);
414 copyscolor(rcol, hp->acol);
415 }
416 return(hp); /* all is well */
417 }
418
419
420 /* Return brightness of farthest ambient sample */
421 static double
422 back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3)
423 {
424 if (hp->sa[n1].d <= hp->sa[n2].d) {
425 if (hp->sa[n1].d <= hp->sa[n3].d)
426 return(hp->sa[n1].v[0]);
427 return(hp->sa[n3].v[0]);
428 }
429 if (hp->sa[n2].d <= hp->sa[n3].d)
430 return(hp->sa[n2].v[0]);
431 return(hp->sa[n3].v[0]);
432 }
433
434
435 /* Compute vectors and coefficients for Hessian/gradient calcs */
436 static void
437 comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1)
438 {
439 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
440 int ii;
441
442 VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop);
443 VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop);
444 VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p);
445 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
446 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
447 dot_e = DOT(ftp->e_i,ftp->e_i);
448 dot_er = DOT(ftp->e_i, ftp->r_i);
449 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
450 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
451 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
452 sqrt( rdot_cp );
453 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
454 dot_e*ftp->I1 )*0.5*rdot_cp;
455 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
456 for (ii = 3; ii--; )
457 ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
458 }
459
460
461 /* Compose 3x3 matrix from two vectors */
462 static void
463 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
464 {
465 mat[0][0] = 2.0*va[0]*vb[0];
466 mat[1][1] = 2.0*va[1]*vb[1];
467 mat[2][2] = 2.0*va[2]*vb[2];
468 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
469 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
470 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
471 }
472
473
474 /* Compute partial 3x3 Hessian matrix for edge */
475 static void
476 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
477 {
478 FVECT ncp;
479 FVECT m1[3], m2[3], m3[3], m4[3];
480 double d1, d2, d3, d4;
481 double I3, J3, K3;
482 int i, j;
483 /* compute intermediate coefficients */
484 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
485 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
486 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
487 d4 = DOT(ftp->e_i, ftp->r_i);
488 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
489 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
490 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
491 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
492 /* intermediate matrices */
493 VCROSS(ncp, nrm, ftp->e_i);
494 compose_matrix(m1, ncp, ftp->rI2_eJ2);
495 compose_matrix(m2, ftp->r_i, ftp->r_i);
496 compose_matrix(m3, ftp->e_i, ftp->e_i);
497 compose_matrix(m4, ftp->r_i, ftp->e_i);
498 d1 = DOT(nrm, ftp->rcp);
499 d2 = -d1*ftp->I2;
500 d1 *= 2.0;
501 for (i = 3; i--; ) /* final matrix sum */
502 for (j = 3; j--; ) {
503 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
504 2.0*J3*m4[i][j] );
505 hess[i][j] += d2*(i==j);
506 hess[i][j] *= -1.0/PI;
507 }
508 }
509
510
511 /* Reverse hessian calculation result for edge in other direction */
512 static void
513 rev_hessian(FVECT hess[3])
514 {
515 int i;
516
517 for (i = 3; i--; ) {
518 hess[i][0] = -hess[i][0];
519 hess[i][1] = -hess[i][1];
520 hess[i][2] = -hess[i][2];
521 }
522 }
523
524
525 /* Add to radiometric Hessian from the given triangle */
526 static void
527 add2hessian(FVECT hess[3], FVECT ehess1[3],
528 FVECT ehess2[3], FVECT ehess3[3], double v)
529 {
530 int i, j;
531
532 for (i = 3; i--; )
533 for (j = 3; j--; )
534 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
535 }
536
537
538 /* Compute partial displacement form factor gradient for edge */
539 static void
540 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
541 {
542 FVECT ncp;
543 double f1;
544 int i;
545
546 f1 = 2.0*DOT(nrm, ftp->rcp);
547 VCROSS(ncp, nrm, ftp->e_i);
548 for (i = 3; i--; )
549 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
550 }
551
552
553 /* Reverse gradient calculation result for edge in other direction */
554 static void
555 rev_gradient(FVECT grad)
556 {
557 grad[0] = -grad[0];
558 grad[1] = -grad[1];
559 grad[2] = -grad[2];
560 }
561
562
563 /* Add to displacement gradient from the given triangle */
564 static void
565 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
566 {
567 int i;
568
569 for (i = 3; i--; )
570 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
571 }
572
573
574 /* Compute anisotropic radii and eigenvector directions */
575 static void
576 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
577 {
578 double hess2[2][2];
579 FVECT a, b;
580 double evalue[2], slope1, xmag1;
581 int i;
582 /* project Hessian to sample plane */
583 for (i = 3; i--; ) {
584 a[i] = DOT(hessian[i], uv[0]);
585 b[i] = DOT(hessian[i], uv[1]);
586 }
587 hess2[0][0] = DOT(uv[0], a);
588 hess2[0][1] = DOT(uv[0], b);
589 hess2[1][0] = DOT(uv[1], a);
590 hess2[1][1] = DOT(uv[1], b);
591 /* compute eigenvalue(s) */
592 i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
593 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
594 if (i == 1) /* double-root (circle) */
595 evalue[1] = evalue[0];
596 if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
597 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
598 ra[0] = ra[1] = maxarad;
599 return;
600 }
601 if (evalue[0] > evalue[1]) {
602 ra[0] = sqrt(sqrt(4.0/evalue[0]));
603 ra[1] = sqrt(sqrt(4.0/evalue[1]));
604 slope1 = evalue[1];
605 } else {
606 ra[0] = sqrt(sqrt(4.0/evalue[1]));
607 ra[1] = sqrt(sqrt(4.0/evalue[0]));
608 slope1 = evalue[0];
609 }
610 /* compute unit eigenvectors */
611 if (fabs(hess2[0][1]) <= FTINY)
612 return; /* uv OK as is */
613 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
614 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
615 for (i = 3; i--; ) {
616 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
617 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
618 }
619 VCOPY(uv[0], a);
620 VCOPY(uv[1], b);
621 }
622
623
624 static void
625 ambHessian( /* anisotropic radii & pos. gradient */
626 AMBHEMI *hp,
627 FVECT uv[2], /* returned */
628 float ra[2], /* returned (optional) */
629 float pg[2] /* returned (optional) */
630 )
631 {
632 static char memerrmsg[] = "out of memory in ambHessian()";
633 FVECT (*hessrow)[3] = NULL;
634 FVECT *gradrow = NULL;
635 FVECT hessian[3];
636 FVECT gradient;
637 FFTRI fftr;
638 int i, j;
639 /* be sure to assign unit vectors */
640 VCOPY(uv[0], hp->ux);
641 VCOPY(uv[1], hp->uy);
642 /* clock-wise vertex traversal from sample POV */
643 if (ra != NULL) { /* initialize Hessian row buffer */
644 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
645 if (hessrow == NULL)
646 error(SYSTEM, memerrmsg);
647 memset(hessian, 0, sizeof(hessian));
648 } else if (pg == NULL) /* bogus call? */
649 return;
650 if (pg != NULL) { /* initialize form factor row buffer */
651 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
652 if (gradrow == NULL)
653 error(SYSTEM, memerrmsg);
654 memset(gradient, 0, sizeof(gradient));
655 }
656 /* compute first row of edges */
657 for (j = 0; j < hp->ns-1; j++) {
658 comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
659 if (hessrow != NULL)
660 comp_hessian(hessrow[j], &fftr, hp->onrm);
661 if (gradrow != NULL)
662 comp_gradient(gradrow[j], &fftr, hp->onrm);
663 }
664 /* sum each row of triangles */
665 for (i = 0; i < hp->ns-1; i++) {
666 FVECT hesscol[3]; /* compute first vertical edge */
667 FVECT gradcol;
668 comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
669 if (hessrow != NULL)
670 comp_hessian(hesscol, &fftr, hp->onrm);
671 if (gradrow != NULL)
672 comp_gradient(gradcol, &fftr, hp->onrm);
673 for (j = 0; j < hp->ns-1; j++) {
674 FVECT hessdia[3]; /* compute triangle contributions */
675 FVECT graddia;
676 double backg;
677 backg = back_ambval(hp, AI(hp,i,j),
678 AI(hp,i,j+1), AI(hp,i+1,j));
679 /* diagonal (inner) edge */
680 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
681 if (hessrow != NULL) {
682 comp_hessian(hessdia, &fftr, hp->onrm);
683 rev_hessian(hesscol);
684 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
685 }
686 if (gradrow != NULL) {
687 comp_gradient(graddia, &fftr, hp->onrm);
688 rev_gradient(gradcol);
689 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
690 }
691 /* initialize edge in next row */
692 comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
693 if (hessrow != NULL)
694 comp_hessian(hessrow[j], &fftr, hp->onrm);
695 if (gradrow != NULL)
696 comp_gradient(gradrow[j], &fftr, hp->onrm);
697 /* new column edge & paired triangle */
698 backg = back_ambval(hp, AI(hp,i+1,j+1),
699 AI(hp,i+1,j), AI(hp,i,j+1));
700 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
701 if (hessrow != NULL) {
702 comp_hessian(hesscol, &fftr, hp->onrm);
703 rev_hessian(hessdia);
704 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
705 if (i < hp->ns-2)
706 rev_hessian(hessrow[j]);
707 }
708 if (gradrow != NULL) {
709 comp_gradient(gradcol, &fftr, hp->onrm);
710 rev_gradient(graddia);
711 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
712 if (i < hp->ns-2)
713 rev_gradient(gradrow[j]);
714 }
715 }
716 }
717 /* release row buffers */
718 if (hessrow != NULL) free(hessrow);
719 if (gradrow != NULL) free(gradrow);
720
721 if (ra != NULL) /* extract eigenvectors & radii */
722 eigenvectors(uv, ra, hessian);
723 if (pg != NULL) { /* tangential position gradient */
724 pg[0] = DOT(gradient, uv[0]);
725 pg[1] = DOT(gradient, uv[1]);
726 }
727 }
728
729
730 /* Compute direction gradient from a hemispherical sampling */
731 static void
732 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
733 {
734 AMBSAMP *ap;
735 double dgsum[2];
736 int n;
737 FVECT vd;
738 double gfact;
739
740 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
741 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
742 /* use vector for azimuth + 90deg */
743 VSUB(vd, ap->p, hp->rp->rop);
744 /* brightness over cosine factor */
745 gfact = ap->v[0] / DOT(hp->onrm, vd);
746 /* sine = proj_radius/vd_length */
747 dgsum[0] -= DOT(uv[1], vd) * gfact;
748 dgsum[1] += DOT(uv[0], vd) * gfact;
749 }
750 dg[0] = dgsum[0] / (hp->ns*hp->ns);
751 dg[1] = dgsum[1] / (hp->ns*hp->ns);
752 }
753
754
755 /* Compute potential light leak direction flags for cache value */
756 static uint32
757 ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
758 {
759 const double max_d = 1.0/(minarad*ambacc + 0.001);
760 const double ang_res = 0.5*PI/hp->ns;
761 const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01);
762 double avg_d = 0;
763 uint32 flgs = 0;
764 FVECT vec;
765 double u, v;
766 double ang, a1;
767 int i, j;
768 /* don't bother for a few samples */
769 if (hp->ns < 8)
770 return(0);
771 /* check distances overhead */
772 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
773 for (j = hp->ns*3/4; j-- > hp->ns>>2; )
774 avg_d += ambsam(hp,i,j).d;
775 avg_d *= 4.0/(hp->ns*hp->ns);
776 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
777 return(0);
778 if (avg_d >= max_d) /* insurance */
779 return(0);
780 /* else circle around perimeter */
781 for (i = 0; i < hp->ns; i++)
782 for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
783 AMBSAMP *ap = &ambsam(hp,i,j);
784 if ((ap->d <= FTINY) | (ap->d >= max_d))
785 continue; /* too far or too near */
786 VSUB(vec, ap->p, hp->rp->rop);
787 u = DOT(vec, uv[0]);
788 v = DOT(vec, uv[1]);
789 if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v)
790 continue; /* occluder outside ellipse */
791 ang = atan2a(v, u); /* else set direction flags */
792 for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step)
793 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
794 }
795 return(flgs);
796 }
797
798
799 int
800 doambient( /* compute ambient component */
801 SCOLOR rcol, /* input/output color */
802 RAY *r,
803 double wt, /* negative for back side */
804 FVECT uv[2], /* returned (optional) */
805 float ra[2], /* returned (optional) */
806 float pg[2], /* returned (optional) */
807 float dg[2], /* returned (optional) */
808 uint32 *crlp /* returned (optional) */
809 )
810 {
811 AMBHEMI *hp = samp_hemi(rcol, r, wt);
812 FVECT my_uv[2];
813 double d, K;
814 AMBSAMP *ap;
815 int i;
816 /* clear return values */
817 if (uv != NULL)
818 memset(uv, 0, sizeof(FVECT)*2);
819 if (ra != NULL)
820 ra[0] = ra[1] = 0.0;
821 if (pg != NULL)
822 pg[0] = pg[1] = 0.0;
823 if (dg != NULL)
824 dg[0] = dg[1] = 0.0;
825 if (crlp != NULL)
826 *crlp = 0;
827 if (hp == NULL) /* sampling falure? */
828 return(0);
829
830 if ((ra == NULL) & (pg == NULL) & (dg == NULL) ||
831 (hp->sampOK < 0) | (hp->ns < MINADIV)) {
832 free(hp); /* Hessian not requested/possible */
833 return(-1); /* value-only return value */
834 }
835 if ((d = scolor_mean(rcol)) > FTINY) {
836 d = 0.99*(hp->ns*hp->ns)/d; /* normalize avg. values */
837 K = 0.01;
838 } else { /* or fall back on geometric Hessian */
839 K = 1.0;
840 pg = NULL;
841 dg = NULL;
842 crlp = NULL;
843 }
844 ap = hp->sa; /* single channel from here on... */
845 for (i = hp->ns*hp->ns; i--; ap++)
846 ap->v[0] = scolor_mean(ap->v)*d + K;
847
848 if (uv == NULL) /* make sure we have axis pointers */
849 uv = my_uv;
850 /* compute radii & pos. gradient */
851 ambHessian(hp, uv, ra, pg);
852
853 if (dg != NULL) /* compute direction gradient */
854 ambdirgrad(hp, uv, dg);
855
856 if (ra != NULL) { /* scale/clamp radii */
857 if (pg != NULL) {
858 if (ra[0]*(d = fabs(pg[0])) > 1.0)
859 ra[0] = 1.0/d;
860 if (ra[1]*(d = fabs(pg[1])) > 1.0)
861 ra[1] = 1.0/d;
862 if (ra[0] > ra[1])
863 ra[0] = ra[1];
864 }
865 if (ra[0] < minarad) {
866 ra[0] = minarad;
867 if (ra[1] < minarad)
868 ra[1] = minarad;
869 }
870 ra[0] *= d = 1.0/sqrt(fabs(wt));
871 if ((ra[1] *= d) > 2.0*ra[0])
872 ra[1] = 2.0*ra[0];
873 if (ra[1] > maxarad) {
874 ra[1] = maxarad;
875 if (ra[0] > maxarad)
876 ra[0] = maxarad;
877 }
878 /* flag encroached directions */
879 if (crlp != NULL) /* XXX doesn't update with changes to ambacc */
880 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
881 if (pg != NULL) { /* cap gradient if necessary */
882 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
883 if (d > 1.0) {
884 d = 1.0/sqrt(d);
885 pg[0] *= d;
886 pg[1] *= d;
887 }
888 }
889 }
890 free(hp); /* clean up and return */
891 return(1);
892 }