26 |
|
#endif |
27 |
|
|
28 |
|
typedef struct { |
29 |
– |
COLOR v; /* hemisphere sample value */ |
30 |
– |
float d; /* reciprocal distance */ |
29 |
|
FVECT p; /* intersection point */ |
30 |
+ |
float d; /* reciprocal distance */ |
31 |
+ |
SCOLOR v; /* hemisphere sample value */ |
32 |
|
} AMBSAMP; /* sample value */ |
33 |
|
|
34 |
|
typedef struct { |
35 |
|
RAY *rp; /* originating ray sample */ |
36 |
|
int ns; /* number of samples per axis */ |
37 |
|
int sampOK; /* acquired full sample set? */ |
38 |
< |
COLOR acoef; /* division contribution coefficient */ |
39 |
< |
double acol[3]; /* accumulated color */ |
38 |
> |
int atyp; /* RAMBIENT or TAMBIENT */ |
39 |
> |
SCOLOR acoef; /* division contribution coefficient */ |
40 |
> |
SCOLOR acol; /* accumulated color */ |
41 |
> |
FVECT onrm; /* oriented unperturbed surface normal */ |
42 |
|
FVECT ux, uy; /* tangent axis unit vectors */ |
43 |
|
AMBSAMP sa[1]; /* sample array (extends struct) */ |
44 |
|
} AMBHEMI; /* ambient sample hemisphere */ |
100 |
|
AMBSAMP *ap = &ambsam(hp,i,j); |
101 |
|
RAY ar; |
102 |
|
int hlist[3], ii; |
103 |
+ |
double ss[2]; |
104 |
|
RREAL spt[2]; |
105 |
|
double zd; |
106 |
|
/* generate hemispherical sample */ |
107 |
|
/* ambient coefficient for weight */ |
108 |
|
if (ambacc > FTINY) |
109 |
< |
setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
109 |
> |
setscolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
110 |
|
else |
111 |
< |
copycolor(ar.rcoef, hp->acoef); |
112 |
< |
if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) |
111 |
> |
copyscolor(ar.rcoef, hp->acoef); |
112 |
> |
if (rayorigin(&ar, hp->atyp, hp->rp, ar.rcoef) < 0) |
113 |
|
return(0); |
114 |
|
if (ambacc > FTINY) { |
115 |
< |
multcolor(ar.rcoef, hp->acoef); |
116 |
< |
scalecolor(ar.rcoef, 1./AVGREFL); |
115 |
> |
smultscolor(ar.rcoef, hp->acoef); |
116 |
> |
scalescolor(ar.rcoef, 1./AVGREFL); |
117 |
|
} |
118 |
|
hlist[0] = hp->rp->rno; |
119 |
< |
hlist[1] = j; |
120 |
< |
hlist[2] = i; |
121 |
< |
multisamp(spt, 2, urand(ilhash(hlist,3)+n)); |
119 |
> |
hlist[1] = AI(hp,i,j); |
120 |
> |
hlist[2] = samplendx; |
121 |
> |
multisamp(ss, 2, urand(ilhash(hlist,3)+n)); |
122 |
|
resample: |
123 |
< |
square2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns); |
123 |
> |
square2disk(spt, (j+ss[1])/hp->ns, (i+ss[0])/hp->ns); |
124 |
|
zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); |
125 |
|
for (ii = 3; ii--; ) |
126 |
|
ar.rdir[ii] = spt[0]*hp->ux[ii] + |
127 |
|
spt[1]*hp->uy[ii] + |
128 |
< |
zd*hp->rp->ron[ii]; |
128 |
> |
zd*hp->onrm[ii]; |
129 |
|
checknorm(ar.rdir); |
130 |
|
/* avoid coincident samples */ |
131 |
< |
if (!n && ambcollision(hp, i, j, ar.rdir)) { |
132 |
< |
spt[0] = frandom(); spt[1] = frandom(); |
131 |
> |
if (!n && hp->ns >= 4 && ambcollision(hp, i, j, ar.rdir)) { |
132 |
> |
ss[0] = frandom(); ss[1] = frandom(); |
133 |
|
goto resample; /* reject this sample */ |
134 |
|
} |
135 |
|
dimlist[ndims++] = AI(hp,i,j) + 90171; |
138 |
|
zd = raydistance(&ar); |
139 |
|
if (zd <= FTINY) |
140 |
|
return(0); /* should never happen */ |
141 |
< |
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
141 |
> |
smultscolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
142 |
|
if (zd*ap->d < 1.0) /* new/closer distance? */ |
143 |
|
ap->d = 1.0/zd; |
144 |
|
if (!n) { /* record first vertex & value */ |
145 |
|
if (zd > 10.0*thescene.cusize + 1000.) |
146 |
|
zd = 10.0*thescene.cusize + 1000.; |
147 |
|
VSUM(ap->p, ar.rorg, ar.rdir, zd); |
148 |
< |
copycolor(ap->v, ar.rcol); |
148 |
> |
copyscolor(ap->v, ar.rcol); |
149 |
|
} else { /* else update recorded value */ |
150 |
< |
hp->acol[RED] -= colval(ap->v,RED); |
148 |
< |
hp->acol[GRN] -= colval(ap->v,GRN); |
149 |
< |
hp->acol[BLU] -= colval(ap->v,BLU); |
150 |
> |
sopscolor(hp->acol, -=, ap->v); |
151 |
|
zd = 1.0/(double)(n+1); |
152 |
< |
scalecolor(ar.rcol, zd); |
152 |
> |
scalescolor(ar.rcol, zd); |
153 |
|
zd *= (double)n; |
154 |
< |
scalecolor(ap->v, zd); |
155 |
< |
addcolor(ap->v, ar.rcol); |
154 |
> |
scalescolor(ap->v, zd); |
155 |
> |
saddscolor(ap->v, ar.rcol); |
156 |
|
} |
157 |
< |
addcolor(hp->acol, ap->v); /* add to our sum */ |
157 |
> |
saddscolor(hp->acol, ap->v); /* add to our sum */ |
158 |
|
return(1); |
159 |
|
} |
160 |
|
|
163 |
|
static float * |
164 |
|
getambdiffs(AMBHEMI *hp) |
165 |
|
{ |
166 |
< |
const double normf = 1./bright(hp->acoef); |
167 |
< |
float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float)); |
166 |
> |
const double normf = 1./(pbright(hp->acoef) + FTINY); |
167 |
> |
float *earr = (float *)calloc(2*hp->ns*hp->ns, sizeof(float)); |
168 |
|
float *ep; |
169 |
|
AMBSAMP *ap; |
170 |
|
double b, b1, d2; |
173 |
|
if (earr == NULL) /* out of memory? */ |
174 |
|
return(NULL); |
175 |
|
/* sum squared neighbor diffs */ |
176 |
< |
for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++) |
176 |
> |
ap = hp->sa; |
177 |
> |
ep = earr + hp->ns*hp->ns; /* original estimates to scratch */ |
178 |
> |
for (i = 0; i < hp->ns; i++) |
179 |
|
for (j = 0; j < hp->ns; j++, ap++, ep++) { |
180 |
< |
b = bright(ap[0].v); |
180 |
> |
b = pbright(ap[0].v); |
181 |
|
if (i) { /* from above */ |
182 |
< |
b1 = bright(ap[-hp->ns].v); |
182 |
> |
b1 = pbright(ap[-hp->ns].v); |
183 |
|
d2 = b - b1; |
184 |
|
d2 *= d2*normf/(b + b1 + FTINY); |
185 |
|
ep[0] += d2; |
187 |
|
} |
188 |
|
if (!j) continue; |
189 |
|
/* from behind */ |
190 |
< |
b1 = bright(ap[-1].v); |
190 |
> |
b1 = pbright(ap[-1].v); |
191 |
|
d2 = b - b1; |
192 |
|
d2 *= d2*normf/(b + b1 + FTINY); |
193 |
|
ep[0] += d2; |
194 |
|
ep[-1] += d2; |
195 |
|
if (!i) continue; |
196 |
|
/* diagonal */ |
197 |
< |
b1 = bright(ap[-hp->ns-1].v); |
197 |
> |
b1 = pbright(ap[-hp->ns-1].v); |
198 |
|
d2 = b - b1; |
199 |
|
d2 *= d2*normf/(b + b1 + FTINY); |
200 |
|
ep[0] += d2; |
201 |
|
ep[-hp->ns-1] += d2; |
202 |
|
} |
203 |
|
/* correct for number of neighbors */ |
204 |
< |
earr[0] *= 8./3.; |
205 |
< |
earr[hp->ns-1] *= 8./3.; |
206 |
< |
earr[(hp->ns-1)*hp->ns] *= 8./3.; |
207 |
< |
earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.; |
204 |
> |
ep = earr + hp->ns*hp->ns; |
205 |
> |
ep[0] *= 6./3.; |
206 |
> |
ep[hp->ns-1] *= 6./3.; |
207 |
> |
ep[(hp->ns-1)*hp->ns] *= 6./3.; |
208 |
> |
ep[(hp->ns-1)*hp->ns + hp->ns-1] *= 6./3.; |
209 |
|
for (i = 1; i < hp->ns-1; i++) { |
210 |
< |
earr[i*hp->ns] *= 8./5.; |
211 |
< |
earr[i*hp->ns + hp->ns-1] *= 8./5.; |
210 |
> |
ep[i*hp->ns] *= 6./5.; |
211 |
> |
ep[i*hp->ns + hp->ns-1] *= 6./5.; |
212 |
|
} |
213 |
|
for (j = 1; j < hp->ns-1; j++) { |
214 |
< |
earr[j] *= 8./5.; |
215 |
< |
earr[(hp->ns-1)*hp->ns + j] *= 8./5.; |
214 |
> |
ep[j] *= 6./5.; |
215 |
> |
ep[(hp->ns-1)*hp->ns + j] *= 6./5.; |
216 |
|
} |
217 |
+ |
/* blur final map to reduce bias */ |
218 |
+ |
for (i = 0; i < hp->ns-1; i++) { |
219 |
+ |
float *ep2; |
220 |
+ |
ep = earr + i*hp->ns; |
221 |
+ |
ep2 = ep + hp->ns*hp->ns; |
222 |
+ |
for (j = 0; j < hp->ns-1; j++, ep++, ep2++) { |
223 |
+ |
ep[0] += .5*ep2[0] + .125*(ep2[1] + ep2[hp->ns]); |
224 |
+ |
ep[1] += .125*ep2[0]; |
225 |
+ |
ep[hp->ns] += .125*ep2[0]; |
226 |
+ |
} |
227 |
+ |
} |
228 |
|
return(earr); |
229 |
|
} |
230 |
|
|
260 |
|
|
261 |
|
static AMBHEMI * |
262 |
|
samp_hemi( /* sample indirect hemisphere */ |
263 |
< |
COLOR rcol, |
263 |
> |
SCOLOR rcol, |
264 |
|
RAY *r, |
265 |
|
double wt |
266 |
|
) |
267 |
|
{ |
268 |
+ |
int backside = (wt < 0); |
269 |
|
AMBHEMI *hp; |
270 |
|
double d; |
271 |
|
int n, i, j; |
272 |
|
/* insignificance check */ |
273 |
< |
if (bright(rcol) <= FTINY) |
273 |
> |
d = sintens(rcol); |
274 |
> |
if (d <= FTINY) |
275 |
|
return(NULL); |
276 |
|
/* set number of divisions */ |
277 |
+ |
if (backside) wt = -wt; |
278 |
|
if (ambacc <= FTINY && |
279 |
< |
wt > (d = 0.8*intens(rcol)*r->rweight/(ambdiv*minweight))) |
279 |
> |
wt > (d *= 0.8*r->rweight/(ambdiv*minweight + 1e-20))) |
280 |
|
wt = d; /* avoid ray termination */ |
281 |
|
n = sqrt(ambdiv * wt) + 0.5; |
282 |
|
i = 1 + (MINADIV-1)*(ambacc > FTINY); |
286 |
|
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); |
287 |
|
if (hp == NULL) |
288 |
|
error(SYSTEM, "out of memory in samp_hemi"); |
289 |
+ |
|
290 |
+ |
if (backside) { |
291 |
+ |
hp->atyp = TAMBIENT; |
292 |
+ |
hp->onrm[0] = -r->ron[0]; |
293 |
+ |
hp->onrm[1] = -r->ron[1]; |
294 |
+ |
hp->onrm[2] = -r->ron[2]; |
295 |
+ |
} else { |
296 |
+ |
hp->atyp = RAMBIENT; |
297 |
+ |
VCOPY(hp->onrm, r->ron); |
298 |
+ |
} |
299 |
|
hp->rp = r; |
300 |
|
hp->ns = n; |
301 |
< |
hp->acol[RED] = hp->acol[GRN] = hp->acol[BLU] = 0.0; |
301 |
> |
scolorblack(hp->acol); |
302 |
|
memset(hp->sa, 0, sizeof(AMBSAMP)*n*n); |
303 |
|
hp->sampOK = 0; |
304 |
|
/* assign coefficient */ |
305 |
< |
copycolor(hp->acoef, rcol); |
305 |
> |
copyscolor(hp->acoef, rcol); |
306 |
|
d = 1.0/(n*n); |
307 |
< |
scalecolor(hp->acoef, d); |
307 |
> |
scalescolor(hp->acoef, d); |
308 |
|
/* make tangent plane axes */ |
309 |
< |
if (!getperpendicular(hp->ux, r->ron, 1)) |
309 |
> |
if (!getperpendicular(hp->ux, hp->onrm, 1)) |
310 |
|
error(CONSISTENCY, "bad ray direction in samp_hemi"); |
311 |
< |
VCROSS(hp->uy, r->ron, hp->ux); |
311 |
> |
VCROSS(hp->uy, hp->onrm, hp->ux); |
312 |
|
/* sample divisions */ |
313 |
|
for (i = hp->ns; i--; ) |
314 |
|
for (j = hp->ns; j--; ) |
315 |
|
hp->sampOK += ambsample(hp, i, j, 0); |
316 |
< |
copycolor(rcol, hp->acol); |
316 |
> |
copyscolor(rcol, hp->acol); |
317 |
|
if (!hp->sampOK) { /* utter failure? */ |
318 |
|
free(hp); |
319 |
|
return(NULL); |
325 |
|
if (hp->sampOK <= MINADIV*MINADIV) |
326 |
|
return(hp); /* don't bother super-sampling */ |
327 |
|
n = ambssamp*wt + 0.5; |
328 |
< |
if (n > 8) { /* perform super-sampling? */ |
328 |
> |
if (n >= 4*hp->ns) { /* perform super-sampling? */ |
329 |
|
ambsupersamp(hp, n); |
330 |
< |
copycolor(rcol, hp->acol); |
330 |
> |
copyscolor(rcol, hp->acol); |
331 |
|
} |
332 |
|
return(hp); /* all is well */ |
333 |
|
} |
339 |
|
{ |
340 |
|
if (hp->sa[n1].d <= hp->sa[n2].d) { |
341 |
|
if (hp->sa[n1].d <= hp->sa[n3].d) |
342 |
< |
return(colval(hp->sa[n1].v,CIEY)); |
343 |
< |
return(colval(hp->sa[n3].v,CIEY)); |
342 |
> |
return(hp->sa[n1].v[0]); |
343 |
> |
return(hp->sa[n3].v[0]); |
344 |
|
} |
345 |
|
if (hp->sa[n2].d <= hp->sa[n3].d) |
346 |
< |
return(colval(hp->sa[n2].v,CIEY)); |
347 |
< |
return(colval(hp->sa[n3].v,CIEY)); |
346 |
> |
return(hp->sa[n2].v[0]); |
347 |
> |
return(hp->sa[n3].v[0]); |
348 |
|
} |
349 |
|
|
350 |
|
|
573 |
|
for (j = 0; j < hp->ns-1; j++) { |
574 |
|
comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1)); |
575 |
|
if (hessrow != NULL) |
576 |
< |
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
576 |
> |
comp_hessian(hessrow[j], &fftr, hp->onrm); |
577 |
|
if (gradrow != NULL) |
578 |
< |
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
578 |
> |
comp_gradient(gradrow[j], &fftr, hp->onrm); |
579 |
|
} |
580 |
|
/* sum each row of triangles */ |
581 |
|
for (i = 0; i < hp->ns-1; i++) { |
583 |
|
FVECT gradcol; |
584 |
|
comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0)); |
585 |
|
if (hessrow != NULL) |
586 |
< |
comp_hessian(hesscol, &fftr, hp->rp->ron); |
586 |
> |
comp_hessian(hesscol, &fftr, hp->onrm); |
587 |
|
if (gradrow != NULL) |
588 |
< |
comp_gradient(gradcol, &fftr, hp->rp->ron); |
588 |
> |
comp_gradient(gradcol, &fftr, hp->onrm); |
589 |
|
for (j = 0; j < hp->ns-1; j++) { |
590 |
|
FVECT hessdia[3]; /* compute triangle contributions */ |
591 |
|
FVECT graddia; |
595 |
|
/* diagonal (inner) edge */ |
596 |
|
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j)); |
597 |
|
if (hessrow != NULL) { |
598 |
< |
comp_hessian(hessdia, &fftr, hp->rp->ron); |
598 |
> |
comp_hessian(hessdia, &fftr, hp->onrm); |
599 |
|
rev_hessian(hesscol); |
600 |
|
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
601 |
|
} |
602 |
|
if (gradrow != NULL) { |
603 |
< |
comp_gradient(graddia, &fftr, hp->rp->ron); |
603 |
> |
comp_gradient(graddia, &fftr, hp->onrm); |
604 |
|
rev_gradient(gradcol); |
605 |
|
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
606 |
|
} |
607 |
|
/* initialize edge in next row */ |
608 |
|
comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j)); |
609 |
|
if (hessrow != NULL) |
610 |
< |
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
610 |
> |
comp_hessian(hessrow[j], &fftr, hp->onrm); |
611 |
|
if (gradrow != NULL) |
612 |
< |
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
612 |
> |
comp_gradient(gradrow[j], &fftr, hp->onrm); |
613 |
|
/* new column edge & paired triangle */ |
614 |
|
backg = back_ambval(hp, AI(hp,i+1,j+1), |
615 |
|
AI(hp,i+1,j), AI(hp,i,j+1)); |
616 |
|
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1)); |
617 |
|
if (hessrow != NULL) { |
618 |
< |
comp_hessian(hesscol, &fftr, hp->rp->ron); |
618 |
> |
comp_hessian(hesscol, &fftr, hp->onrm); |
619 |
|
rev_hessian(hessdia); |
620 |
|
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
621 |
|
if (i < hp->ns-2) |
622 |
|
rev_hessian(hessrow[j]); |
623 |
|
} |
624 |
|
if (gradrow != NULL) { |
625 |
< |
comp_gradient(gradcol, &fftr, hp->rp->ron); |
625 |
> |
comp_gradient(gradcol, &fftr, hp->onrm); |
626 |
|
rev_gradient(graddia); |
627 |
|
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
628 |
|
if (i < hp->ns-2) |
658 |
|
/* use vector for azimuth + 90deg */ |
659 |
|
VSUB(vd, ap->p, hp->rp->rop); |
660 |
|
/* brightness over cosine factor */ |
661 |
< |
gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd); |
661 |
> |
gfact = ap->v[0] / DOT(hp->onrm, vd); |
662 |
|
/* sine = proj_radius/vd_length */ |
663 |
|
dgsum[0] -= DOT(uv[1], vd) * gfact; |
664 |
|
dgsum[1] += DOT(uv[0], vd) * gfact; |
714 |
|
|
715 |
|
int |
716 |
|
doambient( /* compute ambient component */ |
717 |
< |
COLOR rcol, /* input/output color */ |
717 |
> |
SCOLOR rcol, /* input/output color */ |
718 |
|
RAY *r, |
719 |
< |
double wt, |
719 |
> |
double wt, /* negative for back side */ |
720 |
|
FVECT uv[2], /* returned (optional) */ |
721 |
|
float ra[2], /* returned (optional) */ |
722 |
|
float pg[2], /* returned (optional) */ |
748 |
|
free(hp); /* Hessian not requested/possible */ |
749 |
|
return(-1); /* value-only return value */ |
750 |
|
} |
751 |
< |
if ((d = bright(rcol)) > FTINY) { /* normalize Y values */ |
752 |
< |
d = 0.99*(hp->ns*hp->ns)/d; |
751 |
> |
if ((d = scolor_mean(rcol)) > FTINY) { |
752 |
> |
d = 0.99*(hp->ns*hp->ns)/d; /* normalize avg. values */ |
753 |
|
K = 0.01; |
754 |
|
} else { /* or fall back on geometric Hessian */ |
755 |
|
K = 1.0; |
757 |
|
dg = NULL; |
758 |
|
crlp = NULL; |
759 |
|
} |
760 |
< |
ap = hp->sa; /* relative Y channel from here on... */ |
760 |
> |
ap = hp->sa; /* single channel from here on... */ |
761 |
|
for (i = hp->ns*hp->ns; i--; ap++) |
762 |
< |
colval(ap->v,CIEY) = bright(ap->v)*d + K; |
762 |
> |
ap->v[0] = scolor_mean(ap->v)*d + K; |
763 |
|
|
764 |
|
if (uv == NULL) /* make sure we have axis pointers */ |
765 |
|
uv = my_uv; |
783 |
|
if (ra[1] < minarad) |
784 |
|
ra[1] = minarad; |
785 |
|
} |
786 |
< |
ra[0] *= d = 1.0/sqrt(wt); |
786 |
> |
ra[0] *= d = 1.0/sqrt(fabs(wt)); |
787 |
|
if ((ra[1] *= d) > 2.0*ra[0]) |
788 |
|
ra[1] = 2.0*ra[0]; |
789 |
|
if (ra[1] > maxarad) { |