ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
(Generate patch)

Comparing ray/src/rt/ambcomp.c (file contents):
Revision 2.58 by greg, Sun May 11 19:03:37 2014 UTC vs.
Revision 2.83 by greg, Tue Nov 13 19:58:33 2018 UTC

# Line 21 | Line 21 | static const char      RCSid[] = "$Id$";
21   #include  "ambient.h"
22   #include  "random.h"
23  
24 < #ifdef NEWAMB
24 > #ifndef OLDAMB
25  
26   extern void             SDsquare2disk(double ds[2], double seedx, double seedy);
27  
28   typedef struct {
29          COLOR   v;              /* hemisphere sample value */
30 <        float   d;              /* reciprocal distance (1/rt) */
30 >        float   d;              /* reciprocal distance */
31          FVECT   p;              /* intersection point */
32   } AMBSAMP;              /* sample value */
33  
34   typedef struct {
35          RAY     *rp;            /* originating ray sample */
36        FVECT   ux, uy;         /* tangent axis unit vectors */
36          int     ns;             /* number of samples per axis */
37 +        int     sampOK;         /* acquired full sample set? */
38          COLOR   acoef;          /* division contribution coefficient */
39 +        double  acol[3];        /* accumulated color */
40 +        FVECT   ux, uy;         /* tangent axis unit vectors */
41          AMBSAMP sa[1];          /* sample array (extends struct) */
42   }  AMBHEMI;             /* ambient sample hemisphere */
43  
# Line 48 | Line 50 | typedef struct {
50   } FFTRI;                /* vectors and coefficients for Hessian calculation */
51  
52  
53 < static AMBHEMI *
54 < inithemi(                       /* initialize sampling hemisphere */
55 <        COLOR   ac,
56 <        RAY     *r,
57 <        double  wt
53 > static int
54 > ambcollision(                           /* proposed direciton collides? */
55 >        AMBHEMI *hp,
56 >        int     i,
57 >        int     j,
58 >        FVECT   dv
59   )
60   {
61 <        AMBHEMI *hp;
62 <        double  d;
63 <        int     n, i;
64 <                                        /* set number of divisions */
65 <        if (ambacc <= FTINY &&
66 <                        wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
67 <                wt = d;                 /* avoid ray termination */
68 <        n = sqrt(ambdiv * wt) + 0.5;
69 <        i = 1 + 5*(ambacc > FTINY);     /* minimum number of samples */
70 <        if (n < i)
71 <                n = i;
72 <                                        /* allocate sampling array */
73 <        hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
74 <        if (hp == NULL)
75 <                return(NULL);
76 <        hp->rp = r;
77 <        hp->ns = n;
78 <                                        /* assign coefficient */
79 <        copycolor(hp->acoef, ac);
80 <        d = 1.0/(n*n);
81 <        scalecolor(hp->acoef, d);
82 <                                        /* make tangent plane axes */
83 <        hp->uy[0] = 0.5 - frandom();
84 <        hp->uy[1] = 0.5 - frandom();
85 <        hp->uy[2] = 0.5 - frandom();
86 <        for (i = 3; i--; )
84 <                if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6))
85 <                        break;
86 <        if (i < 0)
87 <                error(CONSISTENCY, "bad ray direction in inithemi");
88 <        hp->uy[i] = 1.0;
89 <        VCROSS(hp->ux, hp->uy, r->ron);
90 <        normalize(hp->ux);
91 <        VCROSS(hp->uy, r->ron, hp->ux);
92 <                                        /* we're ready to sample */
93 <        return(hp);
61 >        double  cos_thresh;
62 >        int     ii, jj;
63 >                                        /* min. spacing = 1/4th division */
64 >        cos_thresh = (PI/4.)/(double)hp->ns;
65 >        cos_thresh = 1. - .5*cos_thresh*cos_thresh;
66 >                                        /* check existing neighbors */
67 >        for (ii = i-1; ii <= i+1; ii++) {
68 >                if (ii < 0) continue;
69 >                if (ii >= hp->ns) break;
70 >                for (jj = j-1; jj <= j+1; jj++) {
71 >                        AMBSAMP *ap;
72 >                        FVECT   avec;
73 >                        double  dprod;
74 >                        if (jj < 0) continue;
75 >                        if (jj >= hp->ns) break;
76 >                        if ((ii==i) & (jj==j)) continue;
77 >                        ap = &ambsam(hp,ii,jj);
78 >                        if (ap->d <= .5/FHUGE)
79 >                                continue;       /* no one home */
80 >                        VSUB(avec, ap->p, hp->rp->rop);
81 >                        dprod = DOT(avec, dv);
82 >                        if (dprod >= cos_thresh*VLEN(avec))
83 >                                return(1);      /* collision */
84 >                }
85 >        }
86 >        return(0);                      /* nothing to worry about */
87   }
88  
89  
97 /* Sample ambient division and apply weighting coefficient */
90   static int
91 < getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n)
91 > ambsample(                              /* initial ambient division sample */
92 >        AMBHEMI *hp,
93 >        int     i,
94 >        int     j,
95 >        int     n
96 > )
97   {
98 +        AMBSAMP *ap = &ambsam(hp,i,j);
99 +        RAY     ar;
100          int     hlist[3], ii;
101          double  spt[2], zd;
102 +                                        /* generate hemispherical sample */
103                                          /* ambient coefficient for weight */
104          if (ambacc > FTINY)
105 <                setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL);
105 >                setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
106          else
107 <                copycolor(arp->rcoef, hp->acoef);
108 <        if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0)
107 >                copycolor(ar.rcoef, hp->acoef);
108 >        if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0)
109                  return(0);
110          if (ambacc > FTINY) {
111 <                multcolor(arp->rcoef, hp->acoef);
112 <                scalecolor(arp->rcoef, 1./AVGREFL);
111 >                multcolor(ar.rcoef, hp->acoef);
112 >                scalecolor(ar.rcoef, 1./AVGREFL);
113          }
114          hlist[0] = hp->rp->rno;
115          hlist[1] = j;
116          hlist[2] = i;
117          multisamp(spt, 2, urand(ilhash(hlist,3)+n));
118 <        if (!n) {                       /* avoid border samples for n==0 */
119 <                if ((spt[0] < 0.1) | (spt[0] >= 0.9))
120 <                        spt[0] = 0.1 + 0.8*frandom();
121 <                if ((spt[1] < 0.1) | (spt[1] >= 0.9))
122 <                        spt[1] = 0.1 + 0.8*frandom();
123 <        }
118 > resample:
119          SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
120          zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
121          for (ii = 3; ii--; )
122 <                arp->rdir[ii] = spt[0]*hp->ux[ii] +
122 >                ar.rdir[ii] =   spt[0]*hp->ux[ii] +
123                                  spt[1]*hp->uy[ii] +
124                                  zd*hp->rp->ron[ii];
125 <        checknorm(arp->rdir);
125 >        checknorm(ar.rdir);
126 >                                        /* avoid coincident samples */
127 >        if (!n && ambcollision(hp, i, j, ar.rdir)) {
128 >                spt[0] = frandom(); spt[1] = frandom();
129 >                goto resample;          /* reject this sample */
130 >        }
131          dimlist[ndims++] = AI(hp,i,j) + 90171;
132 <        rayvalue(arp);                  /* evaluate ray */
133 <        ndims--;                        /* apply coefficient */
134 <        multcolor(arp->rcol, arp->rcoef);
132 >        rayvalue(&ar);                  /* evaluate ray */
133 >        ndims--;
134 >        zd = raydistance(&ar);
135 >        if (zd <= FTINY)
136 >                return(0);              /* should never happen */
137 >        multcolor(ar.rcol, ar.rcoef);   /* apply coefficient */
138 >        if (zd*ap->d < 1.0)             /* new/closer distance? */
139 >                ap->d = 1.0/zd;
140 >        if (!n) {                       /* record first vertex & value */
141 >                if (zd > 10.0*thescene.cusize + 1000.)
142 >                        zd = 10.0*thescene.cusize + 1000.;
143 >                VSUM(ap->p, ar.rorg, ar.rdir, zd);
144 >                copycolor(ap->v, ar.rcol);
145 >        } else {                        /* else update recorded value */
146 >                hp->acol[RED] -= colval(ap->v,RED);
147 >                hp->acol[GRN] -= colval(ap->v,GRN);
148 >                hp->acol[BLU] -= colval(ap->v,BLU);
149 >                zd = 1.0/(double)(n+1);
150 >                scalecolor(ar.rcol, zd);
151 >                zd *= (double)n;
152 >                scalecolor(ap->v, zd);
153 >                addcolor(ap->v, ar.rcol);
154 >        }
155 >        addcolor(hp->acol, ap->v);      /* add to our sum */
156          return(1);
157   }
158  
159  
160 < static AMBSAMP *
140 < ambsample(                              /* initial ambient division sample */
141 <        AMBHEMI *hp,
142 <        int     i,
143 <        int     j
144 < )
145 < {
146 <        AMBSAMP *ap = &ambsam(hp,i,j);
147 <        RAY     ar;
148 <                                        /* generate hemispherical sample */
149 <        if (!getambsamp(&ar, hp, i, j, 0) || ar.rt <= FTINY) {
150 <                memset(ap, 0, sizeof(AMBSAMP));
151 <                return(NULL);
152 <        }
153 <        ap->d = 1.0/ar.rt;              /* limit vertex distance */
154 <        if (ar.rt > 10.0*thescene.cusize)
155 <                ar.rt = 10.0*thescene.cusize;
156 <        VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
157 <        copycolor(ap->v, ar.rcol);
158 <        return(ap);
159 < }
160 <
161 <
162 < /* Estimate errors based on ambient division differences */
160 > /* Estimate variance based on ambient division differences */
161   static float *
162   getambdiffs(AMBHEMI *hp)
163   {
164 +        const double    normf = 1./bright(hp->acoef);
165          float   *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
166          float   *ep;
167          AMBSAMP *ap;
168 <        double  b, d2;
168 >        double  b, b1, d2;
169          int     i, j;
170  
171          if (earr == NULL)               /* out of memory? */
172                  return(NULL);
173 <                                        /* compute squared neighbor diffs */
173 >                                        /* sum squared neighbor diffs */
174          for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
175              for (j = 0; j < hp->ns; j++, ap++, ep++) {
176                  b = bright(ap[0].v);
177                  if (i) {                /* from above */
178 <                        d2 = b - bright(ap[-hp->ns].v);
179 <                        d2 *= d2;
178 >                        b1 = bright(ap[-hp->ns].v);
179 >                        d2 = b - b1;
180 >                        d2 *= d2*normf/(b + b1);
181                          ep[0] += d2;
182                          ep[-hp->ns] += d2;
183                  }
184                  if (!j) continue;
185                                          /* from behind */
186 <                d2 = b - bright(ap[-1].v);
187 <                d2 *= d2;
186 >                b1 = bright(ap[-1].v);
187 >                d2 = b - b1;
188 >                d2 *= d2*normf/(b + b1);
189                  ep[0] += d2;
190                  ep[-1] += d2;
191                  if (!i) continue;
192                                          /* diagonal */
193 <                d2 = b - bright(ap[-hp->ns-1].v);
194 <                d2 *= d2;
193 >                b1 = bright(ap[-hp->ns-1].v);
194 >                d2 = b - b1;
195 >                d2 *= d2*normf/(b + b1);
196                  ep[0] += d2;
197                  ep[-hp->ns-1] += d2;
198              }
# Line 213 | Line 215 | getambdiffs(AMBHEMI *hp)
215  
216   /* Perform super-sampling on hemisphere (introduces bias) */
217   static void
218 < ambsupersamp(double acol[3], AMBHEMI *hp, int cnt)
218 > ambsupersamp(AMBHEMI *hp, int cnt)
219   {
220          float   *earr = getambdiffs(hp);
221          double  e2rem = 0;
220        AMBSAMP *ap;
221        RAY     ar;
222        double  asum[3];
222          float   *ep;
223          int     i, j, n, nss;
224  
# Line 229 | Line 228 | ambsupersamp(double acol[3], AMBHEMI *hp, int cnt)
228          for (ep = earr + hp->ns*hp->ns; ep > earr; )
229                  e2rem += *--ep;
230          ep = earr;                      /* perform super-sampling */
231 <        for (ap = hp->sa, i = 0; i < hp->ns; i++)
232 <            for (j = 0; j < hp->ns; j++, ap++) {
231 >        for (i = 0; i < hp->ns; i++)
232 >            for (j = 0; j < hp->ns; j++) {
233                  if (e2rem <= FTINY)
234                          goto done;      /* nothing left to do */
235                  nss = *ep/e2rem*cnt + frandom();
236 <                asum[0] = asum[1] = asum[2] = 0.0;
237 <                for (n = 1; n <= nss; n++) {
238 <                        if (!getambsamp(&ar, hp, i, j, n)) {
240 <                                nss = n-1;
241 <                                break;
242 <                        }
243 <                        addcolor(asum, ar.rcol);
244 <                }
245 <                if (nss) {              /* update returned ambient value */
246 <                        const double    ssf = 1./(nss + 1.);
247 <                        for (n = 3; n--; )
248 <                                acol[n] += ssf*asum[n] +
249 <                                                (ssf - 1.)*colval(ap->v,n);
250 <                }
251 <                e2rem -= *ep++;         /* update remainders */
252 <                cnt -= nss;
236 >                for (n = 1; n <= nss && ambsample(hp,i,j,n); n++)
237 >                        if (!--cnt) goto done;
238 >                e2rem -= *ep++;         /* update remainder */
239          }
240   done:
241          free(earr);
242   }
243  
244  
245 + static AMBHEMI *
246 + samp_hemi(                              /* sample indirect hemisphere */
247 +        COLOR   rcol,
248 +        RAY     *r,
249 +        double  wt
250 + )
251 + {
252 +        AMBHEMI *hp;
253 +        double  d;
254 +        int     n, i, j;
255 +                                        /* insignificance check */
256 +        if (bright(rcol) <= FTINY)
257 +                return(NULL);
258 +                                        /* set number of divisions */
259 +        if (ambacc <= FTINY &&
260 +                        wt > (d = 0.8*intens(rcol)*r->rweight/(ambdiv*minweight)))
261 +                wt = d;                 /* avoid ray termination */
262 +        n = sqrt(ambdiv * wt) + 0.5;
263 +        i = 1 + 5*(ambacc > FTINY);     /* minimum number of samples */
264 +        if (n < i)
265 +                n = i;
266 +                                        /* allocate sampling array */
267 +        hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
268 +        if (hp == NULL)
269 +                error(SYSTEM, "out of memory in samp_hemi");
270 +        hp->rp = r;
271 +        hp->ns = n;
272 +        hp->acol[RED] = hp->acol[GRN] = hp->acol[BLU] = 0.0;
273 +        memset(hp->sa, 0, sizeof(AMBSAMP)*n*n);
274 +        hp->sampOK = 0;
275 +                                        /* assign coefficient */
276 +        copycolor(hp->acoef, rcol);
277 +        d = 1.0/(n*n);
278 +        scalecolor(hp->acoef, d);
279 +                                        /* make tangent plane axes */
280 +        if (!getperpendicular(hp->ux, r->ron, 1))
281 +                error(CONSISTENCY, "bad ray direction in samp_hemi");
282 +        VCROSS(hp->uy, r->ron, hp->ux);
283 +                                        /* sample divisions */
284 +        for (i = hp->ns; i--; )
285 +            for (j = hp->ns; j--; )
286 +                hp->sampOK += ambsample(hp, i, j, 0);
287 +        copycolor(rcol, hp->acol);
288 +        if (!hp->sampOK) {              /* utter failure? */
289 +                free(hp);
290 +                return(NULL);
291 +        }
292 +        if (hp->sampOK < hp->ns*hp->ns) {
293 +                hp->sampOK *= -1;       /* soft failure */
294 +                return(hp);
295 +        }
296 +        n = ambssamp*wt + 0.5;
297 +        if (n > 8) {                    /* perform super-sampling? */
298 +                ambsupersamp(hp, n);
299 +                copycolor(rcol, hp->acol);
300 +        }
301 +        return(hp);                     /* all is well */
302 + }
303 +
304 +
305   /* Return brightness of farthest ambient sample */
306   static double
307   back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3)
# Line 596 | Line 642 | static uint32
642   ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
643   {
644          const double    max_d = 1.0/(minarad*ambacc + 0.001);
645 <        const double    ang_res = 0.5*PI/(hp->ns-1);
646 <        const double    ang_step = ang_res/((int)(16/PI*ang_res) + (1+FTINY));
645 >        const double    ang_res = 0.5*PI/hp->ns;
646 >        const double    ang_step = ang_res/((int)(16/PI*ang_res) + 1.01);
647          double          avg_d = 0;
648          uint32          flgs = 0;
649          FVECT           vec;
# Line 605 | Line 651 | ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, c
651          double          ang, a1;
652          int             i, j;
653                                          /* don't bother for a few samples */
654 <        if (hp->ns < 12)
654 >        if (hp->ns < 8)
655                  return(0);
656                                          /* check distances overhead */
657          for (i = hp->ns*3/4; i-- > hp->ns>>2; )
# Line 623 | Line 669 | ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, c
669                  if ((ap->d <= FTINY) | (ap->d >= max_d))
670                          continue;       /* too far or too near */
671                  VSUB(vec, ap->p, hp->rp->rop);
672 <                u = DOT(vec, uv[0]) * ap->d;
673 <                v = DOT(vec, uv[1]) * ap->d;
674 <                if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= 1.0)
672 >                u = DOT(vec, uv[0]);
673 >                v = DOT(vec, uv[1]);
674 >                if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v)
675                          continue;       /* occluder outside ellipse */
676                  ang = atan2a(v, u);     /* else set direction flags */
677 <                for (a1 = ang-.5*ang_res; a1 <= ang+.5*ang_res; a1 += ang_step)
677 >                for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step)
678                          flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
679              }
634                                        /* add low-angle incident (< 20deg) */
635        if (fabs(hp->rp->rod) <= 0.342) {
636                u = -DOT(hp->rp->rdir, uv[0]);
637                v = -DOT(hp->rp->rdir, uv[1]);
638                if ((r0*r0*u*u + r1*r1*v*v) > hp->rp->rot*hp->rp->rot) {
639                        ang = atan2a(v, u);
640                        ang += 2.*PI*(ang < 0);
641                        ang *= 16/PI;
642                        if ((ang < .5) | (ang >= 31.5))
643                                flgs |= 0x80000001;
644                        else
645                                flgs |= 3L<<(int)(ang-.5);
646                }
647        }
680          return(flgs);
681   }
682  
# Line 661 | Line 693 | doambient(                             /* compute ambient component */
693          uint32  *crlp                   /* returned (optional) */
694   )
695   {
696 <        AMBHEMI *hp = inithemi(rcol, r, wt);
665 <        int     cnt;
696 >        AMBHEMI *hp = samp_hemi(rcol, r, wt);
697          FVECT   my_uv[2];
698 <        double  d, K, acol[3];
698 >        double  d, K;
699          AMBSAMP *ap;
700 <        int     i, j;
701 <                                        /* check/initialize */
671 <        if (hp == NULL)
672 <                return(0);
700 >        int     i;
701 >                                        /* clear return values */
702          if (uv != NULL)
703                  memset(uv, 0, sizeof(FVECT)*2);
704          if (ra != NULL)
# Line 680 | Line 709 | doambient(                             /* compute ambient component */
709                  dg[0] = dg[1] = 0.0;
710          if (crlp != NULL)
711                  *crlp = 0;
712 <                                        /* sample the hemisphere */
713 <        acol[0] = acol[1] = acol[2] = 0.0;
714 <        cnt = 0;
715 <        for (i = hp->ns; i--; )
716 <                for (j = hp->ns; j--; )
717 <                        if ((ap = ambsample(hp, i, j)) != NULL) {
718 <                                addcolor(acol, ap->v);
690 <                                ++cnt;
691 <                        }
692 <        if (!cnt) {
693 <                setcolor(rcol, 0.0, 0.0, 0.0);
694 <                free(hp);
695 <                return(0);              /* no valid samples */
712 >        if (hp == NULL)                 /* sampling falure? */
713 >                return(0);
714 >
715 >        if ((ra == NULL) & (pg == NULL) & (dg == NULL) ||
716 >                        (hp->sampOK < 0) | (hp->ns < 6)) {
717 >                free(hp);               /* Hessian not requested/possible */
718 >                return(-1);             /* value-only return value */
719          }
720 <        if (cnt < hp->ns*hp->ns) {      /* incomplete sampling? */
698 <                copycolor(rcol, acol);
699 <                free(hp);
700 <                return(-1);             /* return value w/o Hessian */
701 <        }
702 <        cnt = ambssamp*wt + 0.5;        /* perform super-sampling? */
703 <        if (cnt > 8)
704 <                ambsupersamp(acol, hp, cnt);
705 <        copycolor(rcol, acol);          /* final indirect irradiance/PI */
706 <        if ((ra == NULL) & (pg == NULL) & (dg == NULL)) {
707 <                free(hp);
708 <                return(-1);             /* no radius or gradient calc. */
709 <        }
710 <        if ((d = bright(acol)) > FTINY) {       /* normalize Y values */
720 >        if ((d = bright(rcol)) > FTINY) {       /* normalize Y values */
721                  d = 0.99*(hp->ns*hp->ns)/d;
722                  K = 0.01;
723          } else {                        /* or fall back on geometric Hessian */
# Line 742 | Line 752 | doambient(                             /* compute ambient component */
752                          if (ra[1] < minarad)
753                                  ra[1] = minarad;
754                  }
755 <                ra[0] *= d = 1.0/sqrt(sqrt(wt));
755 >                ra[0] *= d = 1.0/sqrt(wt);
756                  if ((ra[1] *= d) > 2.0*ra[0])
757                          ra[1] = 2.0*ra[0];
758                  if (ra[1] > maxarad) {
# Line 751 | Line 761 | doambient(                             /* compute ambient component */
761                                  ra[0] = maxarad;
762                  }
763                                          /* flag encroached directions */
764 <                if ((wt >= 0.89*AVGREFL) & (crlp != NULL))
764 >                if (crlp != NULL)
765                          *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
766                  if (pg != NULL) {       /* cap gradient if necessary */
767                          d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
# Line 854 | Line 864 | divsample(                             /* sample a division */
864          ndims--;
865          multcolor(ar.rcol, ar.rcoef);   /* apply coefficient */
866          addcolor(dp->v, ar.rcol);
867 <                                        /* use rt to improve gradient calc */
868 <        if (ar.rt > FTINY && ar.rt < FHUGE)
869 <                dp->r += 1.0/ar.rt;
867 >                                        /* use rxt to improve gradient calc */
868 >        if (ar.rxt > FTINY && ar.rxt < FHUGE)
869 >                dp->r += 1.0/ar.rxt;
870                                          /* (re)initialize error */
871          if (dp->n++) {
872                  b2 = bright(dp->v)/dp->n - bright(ar.rcol);

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines