ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
(Generate patch)

Comparing ray/src/rt/ambcomp.c (file contents):
Revision 2.34 by greg, Thu Apr 24 23:15:10 2014 UTC vs.
Revision 2.83 by greg, Tue Nov 13 19:58:33 2018 UTC

# Line 8 | Line 8 | static const char      RCSid[] = "$Id$";
8   *      for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9   *      from ACM SIGGRAPH Asia 2012 conference proceedings.
10   *
11 + *  Added book-keeping optimization to avoid calculations that would
12 + *      cancel due to traversal both directions on edges that are adjacent
13 + *      to same-valued triangles.  This cuts about half of Hessian math.
14 + *
15   *  Declarations of external symbols in ambient.h
16   */
17  
# Line 17 | Line 21 | static const char      RCSid[] = "$Id$";
21   #include  "ambient.h"
22   #include  "random.h"
23  
24 < #ifdef NEWAMB
24 > #ifndef OLDAMB
25  
26   extern void             SDsquare2disk(double ds[2], double seedx, double seedy);
27  
28   typedef struct {
29 +        COLOR   v;              /* hemisphere sample value */
30 +        float   d;              /* reciprocal distance */
31 +        FVECT   p;              /* intersection point */
32 + } AMBSAMP;              /* sample value */
33 +
34 + typedef struct {
35          RAY     *rp;            /* originating ray sample */
26        FVECT   ux, uy;         /* tangent axis unit vectors */
36          int     ns;             /* number of samples per axis */
37 +        int     sampOK;         /* acquired full sample set? */
38          COLOR   acoef;          /* division contribution coefficient */
39 <        struct s_ambsamp {
40 <                COLOR   v;              /* hemisphere sample value */
41 <                FVECT   p;              /* intersection point */
32 <        } sa[1];                /* sample array (extends struct) */
39 >        double  acol[3];        /* accumulated color */
40 >        FVECT   ux, uy;         /* tangent axis unit vectors */
41 >        AMBSAMP sa[1];          /* sample array (extends struct) */
42   }  AMBHEMI;             /* ambient sample hemisphere */
43  
44 < #define ambsamp(h,i,j)  (h)->sa[(i)*(h)->ns + (j)]
44 > #define AI(h,i,j)       ((i)*(h)->ns + (j))
45 > #define ambsam(h,i,j)   (h)->sa[AI(h,i,j)]
46  
47   typedef struct {
48 <        FVECT   r_i, r_i1, e_i, rI2_eJ2;
49 <        double  nf, I1, I2;
48 >        FVECT   r_i, r_i1, e_i, rcp, rI2_eJ2;
49 >        double  I1, I2;
50   } FFTRI;                /* vectors and coefficients for Hessian calculation */
51  
52  
53 < static AMBHEMI *
54 < inithemi(                       /* initialize sampling hemisphere */
55 <        COLOR   ac,
56 <        RAY     *r,
57 <        double  wt
53 > static int
54 > ambcollision(                           /* proposed direciton collides? */
55 >        AMBHEMI *hp,
56 >        int     i,
57 >        int     j,
58 >        FVECT   dv
59   )
60   {
61 <        AMBHEMI *hp;
62 <        double  d;
63 <        int     n, i;
64 <                                        /* set number of divisions */
65 <        if (ambacc <= FTINY &&
66 <                        wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
67 <                wt = d;                 /* avoid ray termination */
68 <        n = sqrt(ambdiv * wt) + 0.5;
69 <        i = 1 + 5*(ambacc > FTINY);     /* minimum number of samples */
70 <        if (n < i)
71 <                n = i;
72 <                                        /* allocate sampling array */
73 <        hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) +
74 <                                sizeof(struct s_ambsamp)*(n*n - 1));
75 <        if (hp == NULL)
76 <                return(NULL);
77 <        hp->rp = r;
78 <        hp->ns = n;
79 <                                        /* assign coefficient */
80 <        copycolor(hp->acoef, ac);
81 <        d = 1.0/(n*n);
82 <        scalecolor(hp->acoef, d);
83 <                                        /* make tangent plane axes */
84 <        hp->uy[0] = 0.1 - 0.2*frandom();
85 <        hp->uy[1] = 0.1 - 0.2*frandom();
86 <        hp->uy[2] = 0.1 - 0.2*frandom();
76 <        for (i = 0; i < 3; i++)
77 <                if (r->ron[i] < 0.6 && r->ron[i] > -0.6)
78 <                        break;
79 <        if (i >= 3)
80 <                error(CONSISTENCY, "bad ray direction in inithemi()");
81 <        hp->uy[i] = 1.0;
82 <        VCROSS(hp->ux, hp->uy, r->ron);
83 <        normalize(hp->ux);
84 <        VCROSS(hp->uy, r->ron, hp->ux);
85 <                                        /* we're ready to sample */
86 <        return(hp);
61 >        double  cos_thresh;
62 >        int     ii, jj;
63 >                                        /* min. spacing = 1/4th division */
64 >        cos_thresh = (PI/4.)/(double)hp->ns;
65 >        cos_thresh = 1. - .5*cos_thresh*cos_thresh;
66 >                                        /* check existing neighbors */
67 >        for (ii = i-1; ii <= i+1; ii++) {
68 >                if (ii < 0) continue;
69 >                if (ii >= hp->ns) break;
70 >                for (jj = j-1; jj <= j+1; jj++) {
71 >                        AMBSAMP *ap;
72 >                        FVECT   avec;
73 >                        double  dprod;
74 >                        if (jj < 0) continue;
75 >                        if (jj >= hp->ns) break;
76 >                        if ((ii==i) & (jj==j)) continue;
77 >                        ap = &ambsam(hp,ii,jj);
78 >                        if (ap->d <= .5/FHUGE)
79 >                                continue;       /* no one home */
80 >                        VSUB(avec, ap->p, hp->rp->rop);
81 >                        dprod = DOT(avec, dv);
82 >                        if (dprod >= cos_thresh*VLEN(avec))
83 >                                return(1);      /* collision */
84 >                }
85 >        }
86 >        return(0);                      /* nothing to worry about */
87   }
88  
89  
90 < static struct s_ambsamp *
91 < ambsample(                              /* sample an ambient direction */
90 > static int
91 > ambsample(                              /* initial ambient division sample */
92          AMBHEMI *hp,
93          int     i,
94 <        int     j
94 >        int     j,
95 >        int     n
96   )
97   {
98 <        struct s_ambsamp        *ap = &ambsamp(hp,i,j);
99 <        RAY                     ar;
100 <        double                  spt[2], zd;
101 <        int                     ii;
98 >        AMBSAMP *ap = &ambsam(hp,i,j);
99 >        RAY     ar;
100 >        int     hlist[3], ii;
101 >        double  spt[2], zd;
102 >                                        /* generate hemispherical sample */
103                                          /* ambient coefficient for weight */
104          if (ambacc > FTINY)
105                  setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
106          else
107                  copycolor(ar.rcoef, hp->acoef);
108          if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0)
109 <                goto badsample;
109 >                return(0);
110          if (ambacc > FTINY) {
111                  multcolor(ar.rcoef, hp->acoef);
112                  scalecolor(ar.rcoef, 1./AVGREFL);
113          }
114 <                                        /* generate hemispherical sample */
115 <        SDsquare2disk(spt,      (i+.1+.8*frandom())/hp->ns,
116 <                                (j+.1+.8*frandom())/hp->ns );
114 >        hlist[0] = hp->rp->rno;
115 >        hlist[1] = j;
116 >        hlist[2] = i;
117 >        multisamp(spt, 2, urand(ilhash(hlist,3)+n));
118 > resample:
119 >        SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
120          zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
121          for (ii = 3; ii--; )
122                  ar.rdir[ii] =   spt[0]*hp->ux[ii] +
123                                  spt[1]*hp->uy[ii] +
124                                  zd*hp->rp->ron[ii];
125          checknorm(ar.rdir);
126 <        dimlist[ndims++] = i*hp->ns + j + 90171;
126 >                                        /* avoid coincident samples */
127 >        if (!n && ambcollision(hp, i, j, ar.rdir)) {
128 >                spt[0] = frandom(); spt[1] = frandom();
129 >                goto resample;          /* reject this sample */
130 >        }
131 >        dimlist[ndims++] = AI(hp,i,j) + 90171;
132          rayvalue(&ar);                  /* evaluate ray */
133          ndims--;
134 <                                        /* limit vertex distance */
135 <        if (ar.rt > 10.0*thescene.cusize)
136 <                ar.rt = 10.0*thescene.cusize;
127 <        else if (ar.rt <= FTINY)        /* should never happen! */
128 <                goto badsample;
129 <        VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
134 >        zd = raydistance(&ar);
135 >        if (zd <= FTINY)
136 >                return(0);              /* should never happen */
137          multcolor(ar.rcol, ar.rcoef);   /* apply coefficient */
138 <        copycolor(ap->v, ar.rcol);
139 <        return(ap);
140 < badsample:
141 <        setcolor(ap->v, 0., 0., 0.);
142 <        VCOPY(ap->p, hp->rp->rop);
143 <        return(NULL);
138 >        if (zd*ap->d < 1.0)             /* new/closer distance? */
139 >                ap->d = 1.0/zd;
140 >        if (!n) {                       /* record first vertex & value */
141 >                if (zd > 10.0*thescene.cusize + 1000.)
142 >                        zd = 10.0*thescene.cusize + 1000.;
143 >                VSUM(ap->p, ar.rorg, ar.rdir, zd);
144 >                copycolor(ap->v, ar.rcol);
145 >        } else {                        /* else update recorded value */
146 >                hp->acol[RED] -= colval(ap->v,RED);
147 >                hp->acol[GRN] -= colval(ap->v,GRN);
148 >                hp->acol[BLU] -= colval(ap->v,BLU);
149 >                zd = 1.0/(double)(n+1);
150 >                scalecolor(ar.rcol, zd);
151 >                zd *= (double)n;
152 >                scalecolor(ap->v, zd);
153 >                addcolor(ap->v, ar.rcol);
154 >        }
155 >        addcolor(hp->acol, ap->v);      /* add to our sum */
156 >        return(1);
157   }
158  
159  
160 + /* Estimate variance based on ambient division differences */
161 + static float *
162 + getambdiffs(AMBHEMI *hp)
163 + {
164 +        const double    normf = 1./bright(hp->acoef);
165 +        float   *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
166 +        float   *ep;
167 +        AMBSAMP *ap;
168 +        double  b, b1, d2;
169 +        int     i, j;
170 +
171 +        if (earr == NULL)               /* out of memory? */
172 +                return(NULL);
173 +                                        /* sum squared neighbor diffs */
174 +        for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
175 +            for (j = 0; j < hp->ns; j++, ap++, ep++) {
176 +                b = bright(ap[0].v);
177 +                if (i) {                /* from above */
178 +                        b1 = bright(ap[-hp->ns].v);
179 +                        d2 = b - b1;
180 +                        d2 *= d2*normf/(b + b1);
181 +                        ep[0] += d2;
182 +                        ep[-hp->ns] += d2;
183 +                }
184 +                if (!j) continue;
185 +                                        /* from behind */
186 +                b1 = bright(ap[-1].v);
187 +                d2 = b - b1;
188 +                d2 *= d2*normf/(b + b1);
189 +                ep[0] += d2;
190 +                ep[-1] += d2;
191 +                if (!i) continue;
192 +                                        /* diagonal */
193 +                b1 = bright(ap[-hp->ns-1].v);
194 +                d2 = b - b1;
195 +                d2 *= d2*normf/(b + b1);
196 +                ep[0] += d2;
197 +                ep[-hp->ns-1] += d2;
198 +            }
199 +                                        /* correct for number of neighbors */
200 +        earr[0] *= 8./3.;
201 +        earr[hp->ns-1] *= 8./3.;
202 +        earr[(hp->ns-1)*hp->ns] *= 8./3.;
203 +        earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.;
204 +        for (i = 1; i < hp->ns-1; i++) {
205 +                earr[i*hp->ns] *= 8./5.;
206 +                earr[i*hp->ns + hp->ns-1] *= 8./5.;
207 +        }
208 +        for (j = 1; j < hp->ns-1; j++) {
209 +                earr[j] *= 8./5.;
210 +                earr[(hp->ns-1)*hp->ns + j] *= 8./5.;
211 +        }
212 +        return(earr);
213 + }
214 +
215 +
216 + /* Perform super-sampling on hemisphere (introduces bias) */
217 + static void
218 + ambsupersamp(AMBHEMI *hp, int cnt)
219 + {
220 +        float   *earr = getambdiffs(hp);
221 +        double  e2rem = 0;
222 +        float   *ep;
223 +        int     i, j, n, nss;
224 +
225 +        if (earr == NULL)               /* just skip calc. if no memory */
226 +                return;
227 +                                        /* accumulate estimated variances */
228 +        for (ep = earr + hp->ns*hp->ns; ep > earr; )
229 +                e2rem += *--ep;
230 +        ep = earr;                      /* perform super-sampling */
231 +        for (i = 0; i < hp->ns; i++)
232 +            for (j = 0; j < hp->ns; j++) {
233 +                if (e2rem <= FTINY)
234 +                        goto done;      /* nothing left to do */
235 +                nss = *ep/e2rem*cnt + frandom();
236 +                for (n = 1; n <= nss && ambsample(hp,i,j,n); n++)
237 +                        if (!--cnt) goto done;
238 +                e2rem -= *ep++;         /* update remainder */
239 +        }
240 + done:
241 +        free(earr);
242 + }
243 +
244 +
245 + static AMBHEMI *
246 + samp_hemi(                              /* sample indirect hemisphere */
247 +        COLOR   rcol,
248 +        RAY     *r,
249 +        double  wt
250 + )
251 + {
252 +        AMBHEMI *hp;
253 +        double  d;
254 +        int     n, i, j;
255 +                                        /* insignificance check */
256 +        if (bright(rcol) <= FTINY)
257 +                return(NULL);
258 +                                        /* set number of divisions */
259 +        if (ambacc <= FTINY &&
260 +                        wt > (d = 0.8*intens(rcol)*r->rweight/(ambdiv*minweight)))
261 +                wt = d;                 /* avoid ray termination */
262 +        n = sqrt(ambdiv * wt) + 0.5;
263 +        i = 1 + 5*(ambacc > FTINY);     /* minimum number of samples */
264 +        if (n < i)
265 +                n = i;
266 +                                        /* allocate sampling array */
267 +        hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
268 +        if (hp == NULL)
269 +                error(SYSTEM, "out of memory in samp_hemi");
270 +        hp->rp = r;
271 +        hp->ns = n;
272 +        hp->acol[RED] = hp->acol[GRN] = hp->acol[BLU] = 0.0;
273 +        memset(hp->sa, 0, sizeof(AMBSAMP)*n*n);
274 +        hp->sampOK = 0;
275 +                                        /* assign coefficient */
276 +        copycolor(hp->acoef, rcol);
277 +        d = 1.0/(n*n);
278 +        scalecolor(hp->acoef, d);
279 +                                        /* make tangent plane axes */
280 +        if (!getperpendicular(hp->ux, r->ron, 1))
281 +                error(CONSISTENCY, "bad ray direction in samp_hemi");
282 +        VCROSS(hp->uy, r->ron, hp->ux);
283 +                                        /* sample divisions */
284 +        for (i = hp->ns; i--; )
285 +            for (j = hp->ns; j--; )
286 +                hp->sampOK += ambsample(hp, i, j, 0);
287 +        copycolor(rcol, hp->acol);
288 +        if (!hp->sampOK) {              /* utter failure? */
289 +                free(hp);
290 +                return(NULL);
291 +        }
292 +        if (hp->sampOK < hp->ns*hp->ns) {
293 +                hp->sampOK *= -1;       /* soft failure */
294 +                return(hp);
295 +        }
296 +        n = ambssamp*wt + 0.5;
297 +        if (n > 8) {                    /* perform super-sampling? */
298 +                ambsupersamp(hp, n);
299 +                copycolor(rcol, hp->acol);
300 +        }
301 +        return(hp);                     /* all is well */
302 + }
303 +
304 +
305 + /* Return brightness of farthest ambient sample */
306 + static double
307 + back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3)
308 + {
309 +        if (hp->sa[n1].d <= hp->sa[n2].d) {
310 +                if (hp->sa[n1].d <= hp->sa[n3].d)
311 +                        return(colval(hp->sa[n1].v,CIEY));
312 +                return(colval(hp->sa[n3].v,CIEY));
313 +        }
314 +        if (hp->sa[n2].d <= hp->sa[n3].d)
315 +                return(colval(hp->sa[n2].v,CIEY));
316 +        return(colval(hp->sa[n3].v,CIEY));
317 + }
318 +
319 +
320   /* Compute vectors and coefficients for Hessian/gradient calcs */
321   static void
322 < comp_fftri(FFTRI *ftp, FVECT ap0, FVECT ap1, FVECT rop)
322 > comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1)
323   {
324 <        FVECT   vcp;
325 <        double  dot_e, dot_er, rdot_r, rdot_r1, J2;
146 <        int     i;
324 >        double  rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
325 >        int     ii;
326  
327 <        VSUB(ftp->r_i, ap0, rop);
328 <        VSUB(ftp->r_i1, ap1, rop);
329 <        VSUB(ftp->e_i, ap1, ap0);
330 <        VCROSS(vcp, ftp->e_i, ftp->r_i);
331 <        ftp->nf = 1.0/DOT(vcp,vcp);
327 >        VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop);
328 >        VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop);
329 >        VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p);
330 >        VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
331 >        rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
332          dot_e = DOT(ftp->e_i,ftp->e_i);
333          dot_er = DOT(ftp->e_i, ftp->r_i);
334          rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
335          rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
336          ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
337 <                        sqrt( ftp->nf );
337 >                        sqrt( rdot_cp );
338          ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
339 <                        dot_e*ftp->I1 )*0.5*ftp->nf;
339 >                        dot_e*ftp->I1 )*0.5*rdot_cp;
340          J2 =  ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
341 <        for (i = 3; i--; )
342 <                ftp->rI2_eJ2[i] = ftp->I2*ftp->r_i[i] + J2*ftp->e_i[i];
341 >        for (ii = 3; ii--; )
342 >                ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
343   }
344  
345  
# Line 181 | Line 360 | compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
360   static void
361   comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
362   {
363 <        FVECT   vcp;
363 >        FVECT   ncp;
364          FVECT   m1[3], m2[3], m3[3], m4[3];
365          double  d1, d2, d3, d4;
366          double  I3, J3, K3;
# Line 191 | Line 370 | comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
370          d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
371          d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
372          d4 = DOT(ftp->e_i, ftp->r_i);
373 <        I3 = 0.25*ftp->nf*( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 +
374 <                                3.0/d3*ftp->I2 );
373 >        I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
374 >                        / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
375          J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
376          K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
377                                          /* intermediate matrices */
378 <        VCROSS(vcp, nrm, ftp->e_i);
379 <        compose_matrix(m1, vcp, ftp->rI2_eJ2);
378 >        VCROSS(ncp, nrm, ftp->e_i);
379 >        compose_matrix(m1, ncp, ftp->rI2_eJ2);
380          compose_matrix(m2, ftp->r_i, ftp->r_i);
381          compose_matrix(m3, ftp->e_i, ftp->e_i);
382          compose_matrix(m4, ftp->r_i, ftp->e_i);
383 <        VCROSS(vcp, ftp->r_i, ftp->e_i);
205 <        d1 = DOT(nrm, vcp);
383 >        d1 = DOT(nrm, ftp->rcp);
384          d2 = -d1*ftp->I2;
385          d1 *= 2.0;
386          for (i = 3; i--; )              /* final matrix sum */
# Line 210 | Line 388 | comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
388                  hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
389                                                  2.0*J3*m4[i][j] );
390                  hess[i][j] += d2*(i==j);
391 <                hess[i][j] *= 1.0/PI;
391 >                hess[i][j] *= -1.0/PI;
392              }
393   }
394  
# Line 232 | Line 410 | rev_hessian(FVECT hess[3])
410   /* Add to radiometric Hessian from the given triangle */
411   static void
412   add2hessian(FVECT hess[3], FVECT ehess1[3],
413 <                FVECT ehess2[3], FVECT ehess3[3], COLORV v)
413 >                FVECT ehess2[3], FVECT ehess3[3], double v)
414   {
415          int     i, j;
416  
# Line 246 | Line 424 | add2hessian(FVECT hess[3], FVECT ehess1[3],
424   static void
425   comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
426   {
427 <        FVECT   vcp;
427 >        FVECT   ncp;
428          double  f1;
429          int     i;
430  
431 <        VCROSS(vcp, ftp->r_i, ftp->r_i1);
432 <        f1 = 2.0*DOT(nrm, vcp);
255 <        VCROSS(vcp, nrm, ftp->e_i);
431 >        f1 = 2.0*DOT(nrm, ftp->rcp);
432 >        VCROSS(ncp, nrm, ftp->e_i);
433          for (i = 3; i--; )
434 <                grad[i] = (-0.5/PI)*( ftp->I1*vcp[i] + f1*ftp->rI2_eJ2[i] );
434 >                grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
435   }
436  
437  
# Line 270 | Line 447 | rev_gradient(FVECT grad)
447  
448   /* Add to displacement gradient from the given triangle */
449   static void
450 < add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, COLORV v)
450 > add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
451   {
452          int     i;
453  
# Line 279 | Line 456 | add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, F
456   }
457  
458  
282 /* Return brightness of furthest ambient sample */
283 static COLORV
284 back_ambval(struct s_ambsamp *ap1, struct s_ambsamp *ap2,
285                struct s_ambsamp *ap3, FVECT orig)
286 {
287        COLORV  vback;
288        FVECT   vec;
289        double  d2, d2best;
290
291        VSUB(vec, ap1->p, orig);
292        d2best = DOT(vec,vec);
293        vback = colval(ap1->v,CIEY);
294        VSUB(vec, ap2->p, orig);
295        d2 = DOT(vec,vec);
296        if (d2 > d2best) {
297                d2best = d2;
298                vback = colval(ap2->v,CIEY);
299        }
300        VSUB(vec, ap3->p, orig);
301        d2 = DOT(vec,vec);
302        if (d2 > d2best)
303                return(colval(ap3->v,CIEY));
304        return(vback);
305 }
306
307
459   /* Compute anisotropic radii and eigenvector directions */
460 < static int
460 > static void
461   eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
462   {
463          double  hess2[2][2];
# Line 322 | Line 473 | eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3
473          hess2[0][1] = DOT(uv[0], b);
474          hess2[1][0] = DOT(uv[1], a);
475          hess2[1][1] = DOT(uv[1], b);
476 <                                        /* compute eigenvalues */
477 <        if ( quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
478 <                        hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]) != 2 ||
479 <                        (evalue[0] = fabs(evalue[0])) <= FTINY*FTINY ||
480 <                        (evalue[1] = fabs(evalue[1])) <= FTINY*FTINY )
481 <                error(INTERNAL, "bad eigenvalue calculation");
482 <
476 >                                        /* compute eigenvalue(s) */
477 >        i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
478 >                        hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
479 >        if (i == 1)                     /* double-root (circle) */
480 >                evalue[1] = evalue[0];
481 >        if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
482 >                        ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
483 >                ra[0] = ra[1] = maxarad;
484 >                return;
485 >        }
486          if (evalue[0] > evalue[1]) {
487                  ra[0] = sqrt(sqrt(4.0/evalue[0]));
488                  ra[1] = sqrt(sqrt(4.0/evalue[1]));
# Line 386 | Line 540 | ambHessian(                            /* anisotropic radii & pos. gradient */
540          }
541                                          /* compute first row of edges */
542          for (j = 0; j < hp->ns-1; j++) {
543 <                comp_fftri(&fftr, ambsamp(hp,0,j).p,
390 <                                ambsamp(hp,0,j+1).p, hp->rp->rop);
543 >                comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
544                  if (hessrow != NULL)
545                          comp_hessian(hessrow[j], &fftr, hp->rp->ron);
546                  if (gradrow != NULL)
# Line 397 | Line 550 | ambHessian(                            /* anisotropic radii & pos. gradient */
550          for (i = 0; i < hp->ns-1; i++) {
551              FVECT       hesscol[3];     /* compute first vertical edge */
552              FVECT       gradcol;
553 <            comp_fftri(&fftr, ambsamp(hp,i,0).p,
401 <                        ambsamp(hp,i+1,0).p, hp->rp->rop);
553 >            comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
554              if (hessrow != NULL)
555                  comp_hessian(hesscol, &fftr, hp->rp->ron);
556              if (gradrow != NULL)
# Line 406 | Line 558 | ambHessian(                            /* anisotropic radii & pos. gradient */
558              for (j = 0; j < hp->ns-1; j++) {
559                  FVECT   hessdia[3];     /* compute triangle contributions */
560                  FVECT   graddia;
561 <                COLORV  backg;
562 <                backg = back_ambval(&ambsamp(hp,i,j), &ambsamp(hp,i,j+1),
563 <                                        &ambsamp(hp,i+1,j), hp->rp->rop);
561 >                double  backg;
562 >                backg = back_ambval(hp, AI(hp,i,j),
563 >                                        AI(hp,i,j+1), AI(hp,i+1,j));
564                                          /* diagonal (inner) edge */
565 <                comp_fftri(&fftr, ambsamp(hp,i,j+1).p,
414 <                                ambsamp(hp,i+1,j).p, hp->rp->rop);
565 >                comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
566                  if (hessrow != NULL) {
567                      comp_hessian(hessdia, &fftr, hp->rp->ron);
568                      rev_hessian(hesscol);
569                      add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
570                  }
571 <                if (gradient != NULL) {
571 >                if (gradrow != NULL) {
572                      comp_gradient(graddia, &fftr, hp->rp->ron);
573                      rev_gradient(gradcol);
574                      add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
575                  }
576                                          /* initialize edge in next row */
577 <                comp_fftri(&fftr, ambsamp(hp,i+1,j+1).p,
427 <                                ambsamp(hp,i+1,j).p, hp->rp->rop);
577 >                comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
578                  if (hessrow != NULL)
579                      comp_hessian(hessrow[j], &fftr, hp->rp->ron);
580                  if (gradrow != NULL)
581                      comp_gradient(gradrow[j], &fftr, hp->rp->ron);
582                                          /* new column edge & paired triangle */
583 <                backg = back_ambval(&ambsamp(hp,i,j+1), &ambsamp(hp,i+1,j+1),
584 <                                        &ambsamp(hp,i+1,j), hp->rp->rop);
585 <                comp_fftri(&fftr, ambsamp(hp,i,j+1).p, ambsamp(hp,i+1,j+1).p,
436 <                                hp->rp->rop);
583 >                backg = back_ambval(hp, AI(hp,i+1,j+1),
584 >                                        AI(hp,i+1,j), AI(hp,i,j+1));
585 >                comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
586                  if (hessrow != NULL) {
587                      comp_hessian(hesscol, &fftr, hp->rp->ron);
588                      rev_hessian(hessdia);
# Line 467 | Line 616 | ambHessian(                            /* anisotropic radii & pos. gradient */
616   static void
617   ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
618   {
619 <        struct s_ambsamp        *ap;
620 <        double                  dgsum[2];
621 <        int                     n;
622 <        FVECT                   vd;
623 <        double                  gfact;
619 >        AMBSAMP *ap;
620 >        double  dgsum[2];
621 >        int     n;
622 >        FVECT   vd;
623 >        double  gfact;
624  
625          dgsum[0] = dgsum[1] = 0.0;      /* sum values times -tan(theta) */
626          for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
# Line 479 | Line 628 | ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
628                  VSUB(vd, ap->p, hp->rp->rop);
629                                          /* brightness over cosine factor */
630                  gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
631 <                                        /* -sine = -proj_radius/vd_length */
632 <                dgsum[0] += DOT(uv[1], vd) * gfact;
633 <                dgsum[1] -= DOT(uv[0], vd) * gfact;
631 >                                        /* sine = proj_radius/vd_length */
632 >                dgsum[0] -= DOT(uv[1], vd) * gfact;
633 >                dgsum[1] += DOT(uv[0], vd) * gfact;
634          }
635          dg[0] = dgsum[0] / (hp->ns*hp->ns);
636          dg[1] = dgsum[1] / (hp->ns*hp->ns);
637   }
638  
639  
640 + /* Compute potential light leak direction flags for cache value */
641 + static uint32
642 + ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
643 + {
644 +        const double    max_d = 1.0/(minarad*ambacc + 0.001);
645 +        const double    ang_res = 0.5*PI/hp->ns;
646 +        const double    ang_step = ang_res/((int)(16/PI*ang_res) + 1.01);
647 +        double          avg_d = 0;
648 +        uint32          flgs = 0;
649 +        FVECT           vec;
650 +        double          u, v;
651 +        double          ang, a1;
652 +        int             i, j;
653 +                                        /* don't bother for a few samples */
654 +        if (hp->ns < 8)
655 +                return(0);
656 +                                        /* check distances overhead */
657 +        for (i = hp->ns*3/4; i-- > hp->ns>>2; )
658 +            for (j = hp->ns*3/4; j-- > hp->ns>>2; )
659 +                avg_d += ambsam(hp,i,j).d;
660 +        avg_d *= 4.0/(hp->ns*hp->ns);
661 +        if (avg_d*r0 >= 1.0)            /* ceiling too low for corral? */
662 +                return(0);
663 +        if (avg_d >= max_d)             /* insurance */
664 +                return(0);
665 +                                        /* else circle around perimeter */
666 +        for (i = 0; i < hp->ns; i++)
667 +            for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
668 +                AMBSAMP *ap = &ambsam(hp,i,j);
669 +                if ((ap->d <= FTINY) | (ap->d >= max_d))
670 +                        continue;       /* too far or too near */
671 +                VSUB(vec, ap->p, hp->rp->rop);
672 +                u = DOT(vec, uv[0]);
673 +                v = DOT(vec, uv[1]);
674 +                if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v)
675 +                        continue;       /* occluder outside ellipse */
676 +                ang = atan2a(v, u);     /* else set direction flags */
677 +                for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step)
678 +                        flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
679 +            }
680 +        return(flgs);
681 + }
682 +
683 +
684   int
685   doambient(                              /* compute ambient component */
686          COLOR   rcol,                   /* input/output color */
# Line 496 | Line 689 | doambient(                             /* compute ambient component */
689          FVECT   uv[2],                  /* returned (optional) */
690          float   ra[2],                  /* returned (optional) */
691          float   pg[2],                  /* returned (optional) */
692 <        float   dg[2]                   /* returned (optional) */
692 >        float   dg[2],                  /* returned (optional) */
693 >        uint32  *crlp                   /* returned (optional) */
694   )
695   {
696 <        AMBHEMI                 *hp = inithemi(rcol, r, wt);
697 <        int                     cnt = 0;
698 <        FVECT                   my_uv[2];
699 <        double                  d, acol[3];
700 <        struct s_ambsamp        *ap;
701 <        int                     i, j;
508 <                                        /* check/initialize */
509 <        if (hp == NULL)
510 <                return(0);
696 >        AMBHEMI *hp = samp_hemi(rcol, r, wt);
697 >        FVECT   my_uv[2];
698 >        double  d, K;
699 >        AMBSAMP *ap;
700 >        int     i;
701 >                                        /* clear return values */
702          if (uv != NULL)
703                  memset(uv, 0, sizeof(FVECT)*2);
704          if (ra != NULL)
# Line 516 | Line 707 | doambient(                             /* compute ambient component */
707                  pg[0] = pg[1] = 0.0;
708          if (dg != NULL)
709                  dg[0] = dg[1] = 0.0;
710 <                                        /* sample the hemisphere */
711 <        acol[0] = acol[1] = acol[2] = 0.0;
712 <        for (i = hp->ns; i--; )
713 <                for (j = hp->ns; j--; )
714 <                        if ((ap = ambsample(hp, i, j)) != NULL) {
715 <                                addcolor(acol, ap->v);
716 <                                ++cnt;
717 <                        }
718 <        if (!cnt) {
528 <                setcolor(rcol, 0.0, 0.0, 0.0);
529 <                free(hp);
530 <                return(0);              /* no valid samples */
710 >        if (crlp != NULL)
711 >                *crlp = 0;
712 >        if (hp == NULL)                 /* sampling falure? */
713 >                return(0);
714 >
715 >        if ((ra == NULL) & (pg == NULL) & (dg == NULL) ||
716 >                        (hp->sampOK < 0) | (hp->ns < 6)) {
717 >                free(hp);               /* Hessian not requested/possible */
718 >                return(-1);             /* value-only return value */
719          }
720 <        copycolor(rcol, acol);          /* final indirect irradiance/PI */
721 <        if (cnt < hp->ns*hp->ns ||      /* incomplete sampling? */
722 <                        (ra == NULL) & (pg == NULL) & (dg == NULL)) {
723 <                free(hp);
724 <                return(-1);             /* no radius or gradient calc. */
720 >        if ((d = bright(rcol)) > FTINY) {       /* normalize Y values */
721 >                d = 0.99*(hp->ns*hp->ns)/d;
722 >                K = 0.01;
723 >        } else {                        /* or fall back on geometric Hessian */
724 >                K = 1.0;
725 >                pg = NULL;
726 >                dg = NULL;
727 >                crlp = NULL;
728          }
538        if (bright(acol) > FTINY)       /* normalize Y values */
539                d = cnt/bright(acol);
540        else
541                d = 0.0;
729          ap = hp->sa;                    /* relative Y channel from here on... */
730          for (i = hp->ns*hp->ns; i--; ap++)
731 <                colval(ap->v,CIEY) = bright(ap->v)*d + 0.01;
731 >                colval(ap->v,CIEY) = bright(ap->v)*d + K;
732  
733          if (uv == NULL)                 /* make sure we have axis pointers */
734                  uv = my_uv;
# Line 552 | Line 739 | doambient(                             /* compute ambient component */
739                  ambdirgrad(hp, uv, dg);
740  
741          if (ra != NULL) {               /* scale/clamp radii */
742 +                if (pg != NULL) {
743 +                        if (ra[0]*(d = fabs(pg[0])) > 1.0)
744 +                                ra[0] = 1.0/d;
745 +                        if (ra[1]*(d = fabs(pg[1])) > 1.0)
746 +                                ra[1] = 1.0/d;
747 +                        if (ra[0] > ra[1])
748 +                                ra[0] = ra[1];
749 +                }
750                  if (ra[0] < minarad) {
751                          ra[0] = minarad;
752                          if (ra[1] < minarad)
753                                  ra[1] = minarad;
559                                        /* cap gradient if necessary */
560                        if (pg != NULL) {
561                                d = pg[0]*pg[0]*ra[0]*ra[0] +
562                                                pg[1]*pg[1]*ra[1]*ra[1];
563                                if (d > 1.0) {
564                                        d = 1.0/sqrt(d);
565                                        pg[0] *= d;
566                                        pg[1] *= d;
567                                }
568                        }
754                  }
755 <                ra[0] *= d = 1.0/sqrt(sqrt(wt));
755 >                ra[0] *= d = 1.0/sqrt(wt);
756                  if ((ra[1] *= d) > 2.0*ra[0])
757                          ra[1] = 2.0*ra[0];
758                  if (ra[1] > maxarad) {
# Line 575 | Line 760 | doambient(                             /* compute ambient component */
760                          if (ra[0] > maxarad)
761                                  ra[0] = maxarad;
762                  }
763 +                                        /* flag encroached directions */
764 +                if (crlp != NULL)
765 +                        *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
766 +                if (pg != NULL) {       /* cap gradient if necessary */
767 +                        d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
768 +                        if (d > 1.0) {
769 +                                d = 1.0/sqrt(d);
770 +                                pg[0] *= d;
771 +                                pg[1] *= d;
772 +                        }
773 +                }
774          }
775          free(hp);                       /* clean up and return */
776          return(1);
# Line 668 | Line 864 | divsample(                             /* sample a division */
864          ndims--;
865          multcolor(ar.rcol, ar.rcoef);   /* apply coefficient */
866          addcolor(dp->v, ar.rcol);
867 <                                        /* use rt to improve gradient calc */
868 <        if (ar.rt > FTINY && ar.rt < FHUGE)
869 <                dp->r += 1.0/ar.rt;
867 >                                        /* use rxt to improve gradient calc */
868 >        if (ar.rxt > FTINY && ar.rxt < FHUGE)
869 >                dp->r += 1.0/ar.rxt;
870                                          /* (re)initialize error */
871          if (dp->n++) {
872                  b2 = bright(dp->v)/dp->n - bright(ar.rcol);

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines