4 |
|
/* |
5 |
|
* Routines to compute "ambient" values using Monte Carlo |
6 |
|
* |
7 |
+ |
* Hessian calculations based on "Practical Hessian-Based Error Control |
8 |
+ |
* for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz |
9 |
+ |
* from ACM SIGGRAPH Asia 2012 conference proceedings. |
10 |
+ |
* |
11 |
|
* Declarations of external symbols in ambient.h |
12 |
|
*/ |
13 |
|
|
14 |
|
#include "copyright.h" |
15 |
|
|
16 |
|
#include "ray.h" |
13 |
– |
|
17 |
|
#include "ambient.h" |
15 |
– |
|
18 |
|
#include "random.h" |
19 |
|
|
20 |
+ |
#ifdef NEWAMB |
21 |
|
|
22 |
+ |
extern void SDsquare2disk(double ds[2], double seedx, double seedy); |
23 |
+ |
|
24 |
+ |
typedef struct { |
25 |
+ |
RAY *rp; /* originating ray sample */ |
26 |
+ |
FVECT ux, uy; /* tangent axis unit vectors */ |
27 |
+ |
int ns; /* number of samples per axis */ |
28 |
+ |
COLOR acoef; /* division contribution coefficient */ |
29 |
+ |
struct s_ambsamp { |
30 |
+ |
COLOR v; /* hemisphere sample value */ |
31 |
+ |
FVECT p; /* intersection point */ |
32 |
+ |
} sa[1]; /* sample array (extends struct) */ |
33 |
+ |
} AMBHEMI; /* ambient sample hemisphere */ |
34 |
+ |
|
35 |
+ |
typedef struct s_ambsamp AMBSAMP; |
36 |
+ |
|
37 |
+ |
#define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)] |
38 |
+ |
|
39 |
+ |
typedef struct { |
40 |
+ |
FVECT r_i, r_i1, e_i, rcp, rI2_eJ2; |
41 |
+ |
double I1, I2; |
42 |
+ |
} FFTRI; /* vectors and coefficients for Hessian calculation */ |
43 |
+ |
|
44 |
+ |
|
45 |
+ |
static AMBHEMI * |
46 |
+ |
inithemi( /* initialize sampling hemisphere */ |
47 |
+ |
COLOR ac, |
48 |
+ |
RAY *r, |
49 |
+ |
double wt |
50 |
+ |
) |
51 |
+ |
{ |
52 |
+ |
AMBHEMI *hp; |
53 |
+ |
double d; |
54 |
+ |
int n, i; |
55 |
+ |
/* set number of divisions */ |
56 |
+ |
if (ambacc <= FTINY && |
57 |
+ |
wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight))) |
58 |
+ |
wt = d; /* avoid ray termination */ |
59 |
+ |
n = sqrt(ambdiv * wt) + 0.5; |
60 |
+ |
i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */ |
61 |
+ |
if (n < i) |
62 |
+ |
n = i; |
63 |
+ |
/* allocate sampling array */ |
64 |
+ |
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); |
65 |
+ |
if (hp == NULL) |
66 |
+ |
return(NULL); |
67 |
+ |
hp->rp = r; |
68 |
+ |
hp->ns = n; |
69 |
+ |
/* assign coefficient */ |
70 |
+ |
copycolor(hp->acoef, ac); |
71 |
+ |
d = 1.0/(n*n); |
72 |
+ |
scalecolor(hp->acoef, d); |
73 |
+ |
/* make tangent plane axes */ |
74 |
+ |
hp->uy[0] = 0.5 - frandom(); |
75 |
+ |
hp->uy[1] = 0.5 - frandom(); |
76 |
+ |
hp->uy[2] = 0.5 - frandom(); |
77 |
+ |
for (i = 3; i--; ) |
78 |
+ |
if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6)) |
79 |
+ |
break; |
80 |
+ |
if (i < 0) |
81 |
+ |
error(CONSISTENCY, "bad ray direction in inithemi"); |
82 |
+ |
hp->uy[i] = 1.0; |
83 |
+ |
VCROSS(hp->ux, hp->uy, r->ron); |
84 |
+ |
normalize(hp->ux); |
85 |
+ |
VCROSS(hp->uy, r->ron, hp->ux); |
86 |
+ |
/* we're ready to sample */ |
87 |
+ |
return(hp); |
88 |
+ |
} |
89 |
+ |
|
90 |
+ |
|
91 |
+ |
/* Prepare ambient division sample */ |
92 |
+ |
static int |
93 |
+ |
prepambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n) |
94 |
+ |
{ |
95 |
+ |
int hlist[3], ii; |
96 |
+ |
double spt[2], zd; |
97 |
+ |
/* ambient coefficient for weight */ |
98 |
+ |
if (ambacc > FTINY) |
99 |
+ |
setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL); |
100 |
+ |
else |
101 |
+ |
copycolor(arp->rcoef, hp->acoef); |
102 |
+ |
if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0) |
103 |
+ |
return(0); |
104 |
+ |
if (ambacc > FTINY) { |
105 |
+ |
multcolor(arp->rcoef, hp->acoef); |
106 |
+ |
scalecolor(arp->rcoef, 1./AVGREFL); |
107 |
+ |
} |
108 |
+ |
hlist[0] = hp->rp->rno; |
109 |
+ |
hlist[1] = i; |
110 |
+ |
hlist[2] = j; |
111 |
+ |
multisamp(spt, 2, urand(ilhash(hlist,3)+n)); |
112 |
+ |
if (!n) { /* avoid border samples for n==0 */ |
113 |
+ |
if ((spt[0] < 0.1) | (spt[0] > 0.9)) |
114 |
+ |
spt[0] = 0.1 + 0.8*frandom(); |
115 |
+ |
if ((spt[1] < 0.1) | (spt[1] > 0.9)) |
116 |
+ |
spt[1] = 0.1 + 0.8*frandom(); |
117 |
+ |
} |
118 |
+ |
SDsquare2disk(spt, (i+spt[0])/hp->ns, (j+spt[1])/hp->ns); |
119 |
+ |
zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); |
120 |
+ |
for (ii = 3; ii--; ) |
121 |
+ |
arp->rdir[ii] = spt[0]*hp->ux[ii] + |
122 |
+ |
spt[1]*hp->uy[ii] + |
123 |
+ |
zd*hp->rp->ron[ii]; |
124 |
+ |
checknorm(arp->rdir); |
125 |
+ |
return(1); |
126 |
+ |
} |
127 |
+ |
|
128 |
+ |
|
129 |
+ |
static AMBSAMP * |
130 |
+ |
ambsample( /* sample an ambient direction */ |
131 |
+ |
AMBHEMI *hp, |
132 |
+ |
int i, |
133 |
+ |
int j |
134 |
+ |
) |
135 |
+ |
{ |
136 |
+ |
AMBSAMP *ap = &ambsamp(hp,i,j); |
137 |
+ |
RAY ar; |
138 |
+ |
/* generate hemispherical sample */ |
139 |
+ |
if (!prepambsamp(&ar, hp, i, j, 0)) |
140 |
+ |
goto badsample; |
141 |
+ |
dimlist[ndims++] = i*hp->ns + j + 90171; |
142 |
+ |
rayvalue(&ar); /* evaluate ray */ |
143 |
+ |
ndims--; |
144 |
+ |
/* limit vertex distance */ |
145 |
+ |
if (ar.rt > 10.0*thescene.cusize) |
146 |
+ |
ar.rt = 10.0*thescene.cusize; |
147 |
+ |
else if (ar.rt <= FTINY) /* should never happen! */ |
148 |
+ |
goto badsample; |
149 |
+ |
VSUM(ap->p, ar.rorg, ar.rdir, ar.rt); |
150 |
+ |
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
151 |
+ |
copycolor(ap->v, ar.rcol); |
152 |
+ |
return(ap); |
153 |
+ |
badsample: |
154 |
+ |
setcolor(ap->v, 0., 0., 0.); |
155 |
+ |
VCOPY(ap->p, hp->rp->rop); |
156 |
+ |
return(NULL); |
157 |
+ |
} |
158 |
+ |
|
159 |
+ |
|
160 |
+ |
/* Estimate errors based on ambient division differences */ |
161 |
+ |
static float * |
162 |
+ |
getambdiffs(AMBHEMI *hp) |
163 |
+ |
{ |
164 |
+ |
float *earr = calloc(hp->ns*hp->ns, sizeof(float)); |
165 |
+ |
float *ep; |
166 |
+ |
double b, d2; |
167 |
+ |
int i, j; |
168 |
+ |
|
169 |
+ |
if (earr == NULL) /* out of memory? */ |
170 |
+ |
return(NULL); |
171 |
+ |
/* compute squared neighbor diffs */ |
172 |
+ |
for (ep = earr, i = 0; i < hp->ns; i++) |
173 |
+ |
for (j = 0; j < hp->ns; j++, ep++) { |
174 |
+ |
b = bright(ambsamp(hp,i,j).v); |
175 |
+ |
if (i) { /* from above */ |
176 |
+ |
d2 = b - bright(ambsamp(hp,i-1,j).v); |
177 |
+ |
d2 *= d2; |
178 |
+ |
ep[0] += d2; |
179 |
+ |
ep[-hp->ns] += d2; |
180 |
+ |
} |
181 |
+ |
if (j) { /* from behind */ |
182 |
+ |
d2 = b - bright(ambsamp(hp,i,j-1).v); |
183 |
+ |
d2 *= d2; |
184 |
+ |
ep[0] += d2; |
185 |
+ |
ep[-1] += d2; |
186 |
+ |
} |
187 |
+ |
} |
188 |
+ |
/* correct for number of neighbors */ |
189 |
+ |
earr[0] *= 2.f; |
190 |
+ |
earr[hp->ns-1] *= 2.f; |
191 |
+ |
earr[(hp->ns-1)*hp->ns] *= 2.f; |
192 |
+ |
earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f; |
193 |
+ |
for (i = 1; i < hp->ns-1; i++) { |
194 |
+ |
earr[i*hp->ns] *= 4./3.; |
195 |
+ |
earr[i*hp->ns + hp->ns-1] *= 4./3.; |
196 |
+ |
} |
197 |
+ |
for (j = 1; j < hp->ns-1; j++) { |
198 |
+ |
earr[j] *= 4./3.; |
199 |
+ |
earr[(hp->ns-1)*hp->ns + j] *= 4./3.; |
200 |
+ |
} |
201 |
+ |
return(earr); |
202 |
+ |
} |
203 |
+ |
|
204 |
+ |
|
205 |
+ |
/* Perform super-sampling on hemisphere */ |
206 |
+ |
static void |
207 |
+ |
ambsupersamp(double acol[3], AMBHEMI *hp, int cnt) |
208 |
+ |
{ |
209 |
+ |
float *earr = getambdiffs(hp); |
210 |
+ |
double e2sum = 0; |
211 |
+ |
AMBSAMP *ap; |
212 |
+ |
RAY ar; |
213 |
+ |
COLOR asum; |
214 |
+ |
float *ep; |
215 |
+ |
int i, j, n; |
216 |
+ |
|
217 |
+ |
if (earr == NULL) /* just skip calc. if no memory */ |
218 |
+ |
return; |
219 |
+ |
/* add up estimated variances */ |
220 |
+ |
for (ep = earr + hp->ns*hp->ns; ep-- > earr; ) |
221 |
+ |
e2sum += *ep; |
222 |
+ |
ep = earr; /* perform super-sampling */ |
223 |
+ |
for (ap = hp->sa, i = 0; i < hp->ns; i++) |
224 |
+ |
for (j = 0; j < hp->ns; j++, ap++) { |
225 |
+ |
int nss = *ep/e2sum*cnt + frandom(); |
226 |
+ |
setcolor(asum, 0., 0., 0.); |
227 |
+ |
for (n = 1; n <= nss; n++) { |
228 |
+ |
if (!prepambsamp(&ar, hp, i, j, n)) { |
229 |
+ |
nss = n-1; |
230 |
+ |
break; |
231 |
+ |
} |
232 |
+ |
dimlist[ndims++] = i*hp->ns + j + 90171; |
233 |
+ |
rayvalue(&ar); /* evaluate super-sample */ |
234 |
+ |
ndims--; |
235 |
+ |
multcolor(ar.rcol, ar.rcoef); |
236 |
+ |
addcolor(asum, ar.rcol); |
237 |
+ |
} |
238 |
+ |
if (nss) { /* update returned ambient value */ |
239 |
+ |
const double ssf = 1./(nss + 1); |
240 |
+ |
for (n = 3; n--; ) |
241 |
+ |
acol[n] += ssf*colval(asum,n) + |
242 |
+ |
(ssf - 1.)*colval(ap->v,n); |
243 |
+ |
} |
244 |
+ |
e2sum -= *ep++; /* update remainders */ |
245 |
+ |
cnt -= nss; |
246 |
+ |
} |
247 |
+ |
free(earr); |
248 |
+ |
} |
249 |
+ |
|
250 |
+ |
|
251 |
+ |
/* Compute vectors and coefficients for Hessian/gradient calcs */ |
252 |
+ |
static void |
253 |
+ |
comp_fftri(FFTRI *ftp, FVECT ap0, FVECT ap1, FVECT rop) |
254 |
+ |
{ |
255 |
+ |
double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2; |
256 |
+ |
int i; |
257 |
+ |
|
258 |
+ |
VSUB(ftp->r_i, ap0, rop); |
259 |
+ |
VSUB(ftp->r_i1, ap1, rop); |
260 |
+ |
VSUB(ftp->e_i, ap1, ap0); |
261 |
+ |
VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1); |
262 |
+ |
rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp); |
263 |
+ |
dot_e = DOT(ftp->e_i,ftp->e_i); |
264 |
+ |
dot_er = DOT(ftp->e_i, ftp->r_i); |
265 |
+ |
rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i); |
266 |
+ |
rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1); |
267 |
+ |
ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) * |
268 |
+ |
sqrt( rdot_cp ); |
269 |
+ |
ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r + |
270 |
+ |
dot_e*ftp->I1 )*0.5*rdot_cp; |
271 |
+ |
J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e; |
272 |
+ |
for (i = 3; i--; ) |
273 |
+ |
ftp->rI2_eJ2[i] = ftp->I2*ftp->r_i[i] + J2*ftp->e_i[i]; |
274 |
+ |
} |
275 |
+ |
|
276 |
+ |
|
277 |
+ |
/* Compose 3x3 matrix from two vectors */ |
278 |
+ |
static void |
279 |
+ |
compose_matrix(FVECT mat[3], FVECT va, FVECT vb) |
280 |
+ |
{ |
281 |
+ |
mat[0][0] = 2.0*va[0]*vb[0]; |
282 |
+ |
mat[1][1] = 2.0*va[1]*vb[1]; |
283 |
+ |
mat[2][2] = 2.0*va[2]*vb[2]; |
284 |
+ |
mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0]; |
285 |
+ |
mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0]; |
286 |
+ |
mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1]; |
287 |
+ |
} |
288 |
+ |
|
289 |
+ |
|
290 |
+ |
/* Compute partial 3x3 Hessian matrix for edge */ |
291 |
+ |
static void |
292 |
+ |
comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm) |
293 |
+ |
{ |
294 |
+ |
FVECT ncp; |
295 |
+ |
FVECT m1[3], m2[3], m3[3], m4[3]; |
296 |
+ |
double d1, d2, d3, d4; |
297 |
+ |
double I3, J3, K3; |
298 |
+ |
int i, j; |
299 |
+ |
/* compute intermediate coefficients */ |
300 |
+ |
d1 = 1.0/DOT(ftp->r_i,ftp->r_i); |
301 |
+ |
d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1); |
302 |
+ |
d3 = 1.0/DOT(ftp->e_i,ftp->e_i); |
303 |
+ |
d4 = DOT(ftp->e_i, ftp->r_i); |
304 |
+ |
I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 ) |
305 |
+ |
/ ( 4.0*DOT(ftp->rcp,ftp->rcp) ); |
306 |
+ |
J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3; |
307 |
+ |
K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3); |
308 |
+ |
/* intermediate matrices */ |
309 |
+ |
VCROSS(ncp, nrm, ftp->e_i); |
310 |
+ |
compose_matrix(m1, ncp, ftp->rI2_eJ2); |
311 |
+ |
compose_matrix(m2, ftp->r_i, ftp->r_i); |
312 |
+ |
compose_matrix(m3, ftp->e_i, ftp->e_i); |
313 |
+ |
compose_matrix(m4, ftp->r_i, ftp->e_i); |
314 |
+ |
d1 = DOT(nrm, ftp->rcp); |
315 |
+ |
d2 = -d1*ftp->I2; |
316 |
+ |
d1 *= 2.0; |
317 |
+ |
for (i = 3; i--; ) /* final matrix sum */ |
318 |
+ |
for (j = 3; j--; ) { |
319 |
+ |
hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] + |
320 |
+ |
2.0*J3*m4[i][j] ); |
321 |
+ |
hess[i][j] += d2*(i==j); |
322 |
+ |
hess[i][j] *= 1.0/PI; |
323 |
+ |
} |
324 |
+ |
} |
325 |
+ |
|
326 |
+ |
|
327 |
+ |
/* Reverse hessian calculation result for edge in other direction */ |
328 |
+ |
static void |
329 |
+ |
rev_hessian(FVECT hess[3]) |
330 |
+ |
{ |
331 |
+ |
int i; |
332 |
+ |
|
333 |
+ |
for (i = 3; i--; ) { |
334 |
+ |
hess[i][0] = -hess[i][0]; |
335 |
+ |
hess[i][1] = -hess[i][1]; |
336 |
+ |
hess[i][2] = -hess[i][2]; |
337 |
+ |
} |
338 |
+ |
} |
339 |
+ |
|
340 |
+ |
|
341 |
+ |
/* Add to radiometric Hessian from the given triangle */ |
342 |
+ |
static void |
343 |
+ |
add2hessian(FVECT hess[3], FVECT ehess1[3], |
344 |
+ |
FVECT ehess2[3], FVECT ehess3[3], COLORV v) |
345 |
+ |
{ |
346 |
+ |
int i, j; |
347 |
+ |
|
348 |
+ |
for (i = 3; i--; ) |
349 |
+ |
for (j = 3; j--; ) |
350 |
+ |
hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] ); |
351 |
+ |
} |
352 |
+ |
|
353 |
+ |
|
354 |
+ |
/* Compute partial displacement form factor gradient for edge */ |
355 |
+ |
static void |
356 |
+ |
comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm) |
357 |
+ |
{ |
358 |
+ |
FVECT ncp; |
359 |
+ |
double f1; |
360 |
+ |
int i; |
361 |
+ |
|
362 |
+ |
f1 = 2.0*DOT(nrm, ftp->rcp); |
363 |
+ |
VCROSS(ncp, nrm, ftp->e_i); |
364 |
+ |
for (i = 3; i--; ) |
365 |
+ |
grad[i] = (-0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] ); |
366 |
+ |
} |
367 |
+ |
|
368 |
+ |
|
369 |
+ |
/* Reverse gradient calculation result for edge in other direction */ |
370 |
+ |
static void |
371 |
+ |
rev_gradient(FVECT grad) |
372 |
+ |
{ |
373 |
+ |
grad[0] = -grad[0]; |
374 |
+ |
grad[1] = -grad[1]; |
375 |
+ |
grad[2] = -grad[2]; |
376 |
+ |
} |
377 |
+ |
|
378 |
+ |
|
379 |
+ |
/* Add to displacement gradient from the given triangle */ |
380 |
+ |
static void |
381 |
+ |
add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, COLORV v) |
382 |
+ |
{ |
383 |
+ |
int i; |
384 |
+ |
|
385 |
+ |
for (i = 3; i--; ) |
386 |
+ |
grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] ); |
387 |
+ |
} |
388 |
+ |
|
389 |
+ |
|
390 |
+ |
/* Return brightness of furthest ambient sample */ |
391 |
+ |
static COLORV |
392 |
+ |
back_ambval(AMBSAMP *ap1, AMBSAMP *ap2, AMBSAMP *ap3, FVECT orig) |
393 |
+ |
{ |
394 |
+ |
COLORV vback; |
395 |
+ |
FVECT vec; |
396 |
+ |
double d2, d2best; |
397 |
+ |
|
398 |
+ |
VSUB(vec, ap1->p, orig); |
399 |
+ |
d2best = DOT(vec,vec); |
400 |
+ |
vback = colval(ap1->v,CIEY); |
401 |
+ |
VSUB(vec, ap2->p, orig); |
402 |
+ |
d2 = DOT(vec,vec); |
403 |
+ |
if (d2 > d2best) { |
404 |
+ |
d2best = d2; |
405 |
+ |
vback = colval(ap2->v,CIEY); |
406 |
+ |
} |
407 |
+ |
VSUB(vec, ap3->p, orig); |
408 |
+ |
d2 = DOT(vec,vec); |
409 |
+ |
if (d2 > d2best) |
410 |
+ |
return(colval(ap3->v,CIEY)); |
411 |
+ |
return(vback); |
412 |
+ |
} |
413 |
+ |
|
414 |
+ |
|
415 |
+ |
/* Compute anisotropic radii and eigenvector directions */ |
416 |
+ |
static int |
417 |
+ |
eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3]) |
418 |
+ |
{ |
419 |
+ |
double hess2[2][2]; |
420 |
+ |
FVECT a, b; |
421 |
+ |
double evalue[2], slope1, xmag1; |
422 |
+ |
int i; |
423 |
+ |
/* project Hessian to sample plane */ |
424 |
+ |
for (i = 3; i--; ) { |
425 |
+ |
a[i] = DOT(hessian[i], uv[0]); |
426 |
+ |
b[i] = DOT(hessian[i], uv[1]); |
427 |
+ |
} |
428 |
+ |
hess2[0][0] = DOT(uv[0], a); |
429 |
+ |
hess2[0][1] = DOT(uv[0], b); |
430 |
+ |
hess2[1][0] = DOT(uv[1], a); |
431 |
+ |
hess2[1][1] = DOT(uv[1], b); |
432 |
+ |
/* compute eigenvalue(s) */ |
433 |
+ |
i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1], |
434 |
+ |
hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]); |
435 |
+ |
if (i == 1) /* double-root (circle) */ |
436 |
+ |
evalue[1] = evalue[0]; |
437 |
+ |
if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) | |
438 |
+ |
((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) |
439 |
+ |
error(INTERNAL, "bad eigenvalue calculation"); |
440 |
+ |
|
441 |
+ |
if (evalue[0] > evalue[1]) { |
442 |
+ |
ra[0] = sqrt(sqrt(4.0/evalue[0])); |
443 |
+ |
ra[1] = sqrt(sqrt(4.0/evalue[1])); |
444 |
+ |
slope1 = evalue[1]; |
445 |
+ |
} else { |
446 |
+ |
ra[0] = sqrt(sqrt(4.0/evalue[1])); |
447 |
+ |
ra[1] = sqrt(sqrt(4.0/evalue[0])); |
448 |
+ |
slope1 = evalue[0]; |
449 |
+ |
} |
450 |
+ |
/* compute unit eigenvectors */ |
451 |
+ |
if (fabs(hess2[0][1]) <= FTINY) |
452 |
+ |
return; /* uv OK as is */ |
453 |
+ |
slope1 = (slope1 - hess2[0][0]) / hess2[0][1]; |
454 |
+ |
xmag1 = sqrt(1.0/(1.0 + slope1*slope1)); |
455 |
+ |
for (i = 3; i--; ) { |
456 |
+ |
b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i]; |
457 |
+ |
a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i]; |
458 |
+ |
} |
459 |
+ |
VCOPY(uv[0], a); |
460 |
+ |
VCOPY(uv[1], b); |
461 |
+ |
} |
462 |
+ |
|
463 |
+ |
|
464 |
+ |
static void |
465 |
+ |
ambHessian( /* anisotropic radii & pos. gradient */ |
466 |
+ |
AMBHEMI *hp, |
467 |
+ |
FVECT uv[2], /* returned */ |
468 |
+ |
float ra[2], /* returned (optional) */ |
469 |
+ |
float pg[2] /* returned (optional) */ |
470 |
+ |
) |
471 |
+ |
{ |
472 |
+ |
static char memerrmsg[] = "out of memory in ambHessian()"; |
473 |
+ |
FVECT (*hessrow)[3] = NULL; |
474 |
+ |
FVECT *gradrow = NULL; |
475 |
+ |
FVECT hessian[3]; |
476 |
+ |
FVECT gradient; |
477 |
+ |
FFTRI fftr; |
478 |
+ |
int i, j; |
479 |
+ |
/* be sure to assign unit vectors */ |
480 |
+ |
VCOPY(uv[0], hp->ux); |
481 |
+ |
VCOPY(uv[1], hp->uy); |
482 |
+ |
/* clock-wise vertex traversal from sample POV */ |
483 |
+ |
if (ra != NULL) { /* initialize Hessian row buffer */ |
484 |
+ |
hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1)); |
485 |
+ |
if (hessrow == NULL) |
486 |
+ |
error(SYSTEM, memerrmsg); |
487 |
+ |
memset(hessian, 0, sizeof(hessian)); |
488 |
+ |
} else if (pg == NULL) /* bogus call? */ |
489 |
+ |
return; |
490 |
+ |
if (pg != NULL) { /* initialize form factor row buffer */ |
491 |
+ |
gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1)); |
492 |
+ |
if (gradrow == NULL) |
493 |
+ |
error(SYSTEM, memerrmsg); |
494 |
+ |
memset(gradient, 0, sizeof(gradient)); |
495 |
+ |
} |
496 |
+ |
/* compute first row of edges */ |
497 |
+ |
for (j = 0; j < hp->ns-1; j++) { |
498 |
+ |
comp_fftri(&fftr, ambsamp(hp,0,j).p, |
499 |
+ |
ambsamp(hp,0,j+1).p, hp->rp->rop); |
500 |
+ |
if (hessrow != NULL) |
501 |
+ |
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
502 |
+ |
if (gradrow != NULL) |
503 |
+ |
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
504 |
+ |
} |
505 |
+ |
/* sum each row of triangles */ |
506 |
+ |
for (i = 0; i < hp->ns-1; i++) { |
507 |
+ |
FVECT hesscol[3]; /* compute first vertical edge */ |
508 |
+ |
FVECT gradcol; |
509 |
+ |
comp_fftri(&fftr, ambsamp(hp,i,0).p, |
510 |
+ |
ambsamp(hp,i+1,0).p, hp->rp->rop); |
511 |
+ |
if (hessrow != NULL) |
512 |
+ |
comp_hessian(hesscol, &fftr, hp->rp->ron); |
513 |
+ |
if (gradrow != NULL) |
514 |
+ |
comp_gradient(gradcol, &fftr, hp->rp->ron); |
515 |
+ |
for (j = 0; j < hp->ns-1; j++) { |
516 |
+ |
FVECT hessdia[3]; /* compute triangle contributions */ |
517 |
+ |
FVECT graddia; |
518 |
+ |
COLORV backg; |
519 |
+ |
backg = back_ambval(&ambsamp(hp,i,j), &ambsamp(hp,i,j+1), |
520 |
+ |
&ambsamp(hp,i+1,j), hp->rp->rop); |
521 |
+ |
/* diagonal (inner) edge */ |
522 |
+ |
comp_fftri(&fftr, ambsamp(hp,i,j+1).p, |
523 |
+ |
ambsamp(hp,i+1,j).p, hp->rp->rop); |
524 |
+ |
if (hessrow != NULL) { |
525 |
+ |
comp_hessian(hessdia, &fftr, hp->rp->ron); |
526 |
+ |
rev_hessian(hesscol); |
527 |
+ |
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
528 |
+ |
} |
529 |
+ |
if (gradrow != NULL) { |
530 |
+ |
comp_gradient(graddia, &fftr, hp->rp->ron); |
531 |
+ |
rev_gradient(gradcol); |
532 |
+ |
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
533 |
+ |
} |
534 |
+ |
/* initialize edge in next row */ |
535 |
+ |
comp_fftri(&fftr, ambsamp(hp,i+1,j+1).p, |
536 |
+ |
ambsamp(hp,i+1,j).p, hp->rp->rop); |
537 |
+ |
if (hessrow != NULL) |
538 |
+ |
comp_hessian(hessrow[j], &fftr, hp->rp->ron); |
539 |
+ |
if (gradrow != NULL) |
540 |
+ |
comp_gradient(gradrow[j], &fftr, hp->rp->ron); |
541 |
+ |
/* new column edge & paired triangle */ |
542 |
+ |
backg = back_ambval(&ambsamp(hp,i,j+1), &ambsamp(hp,i+1,j+1), |
543 |
+ |
&ambsamp(hp,i+1,j), hp->rp->rop); |
544 |
+ |
comp_fftri(&fftr, ambsamp(hp,i,j+1).p, ambsamp(hp,i+1,j+1).p, |
545 |
+ |
hp->rp->rop); |
546 |
+ |
if (hessrow != NULL) { |
547 |
+ |
comp_hessian(hesscol, &fftr, hp->rp->ron); |
548 |
+ |
rev_hessian(hessdia); |
549 |
+ |
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
550 |
+ |
if (i < hp->ns-2) |
551 |
+ |
rev_hessian(hessrow[j]); |
552 |
+ |
} |
553 |
+ |
if (gradrow != NULL) { |
554 |
+ |
comp_gradient(gradcol, &fftr, hp->rp->ron); |
555 |
+ |
rev_gradient(graddia); |
556 |
+ |
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
557 |
+ |
if (i < hp->ns-2) |
558 |
+ |
rev_gradient(gradrow[j]); |
559 |
+ |
} |
560 |
+ |
} |
561 |
+ |
} |
562 |
+ |
/* release row buffers */ |
563 |
+ |
if (hessrow != NULL) free(hessrow); |
564 |
+ |
if (gradrow != NULL) free(gradrow); |
565 |
+ |
|
566 |
+ |
if (ra != NULL) /* extract eigenvectors & radii */ |
567 |
+ |
eigenvectors(uv, ra, hessian); |
568 |
+ |
if (pg != NULL) { /* tangential position gradient */ |
569 |
+ |
pg[0] = DOT(gradient, uv[0]); |
570 |
+ |
pg[1] = DOT(gradient, uv[1]); |
571 |
+ |
} |
572 |
+ |
} |
573 |
+ |
|
574 |
+ |
|
575 |
+ |
/* Compute direction gradient from a hemispherical sampling */ |
576 |
+ |
static void |
577 |
+ |
ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2]) |
578 |
+ |
{ |
579 |
+ |
AMBSAMP *ap; |
580 |
+ |
double dgsum[2]; |
581 |
+ |
int n; |
582 |
+ |
FVECT vd; |
583 |
+ |
double gfact; |
584 |
+ |
|
585 |
+ |
dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */ |
586 |
+ |
for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) { |
587 |
+ |
/* use vector for azimuth + 90deg */ |
588 |
+ |
VSUB(vd, ap->p, hp->rp->rop); |
589 |
+ |
/* brightness over cosine factor */ |
590 |
+ |
gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd); |
591 |
+ |
/* sine = proj_radius/vd_length */ |
592 |
+ |
dgsum[0] -= DOT(uv[1], vd) * gfact; |
593 |
+ |
dgsum[1] += DOT(uv[0], vd) * gfact; |
594 |
+ |
} |
595 |
+ |
dg[0] = dgsum[0] / (hp->ns*hp->ns); |
596 |
+ |
dg[1] = dgsum[1] / (hp->ns*hp->ns); |
597 |
+ |
} |
598 |
+ |
|
599 |
+ |
|
600 |
+ |
int |
601 |
+ |
doambient( /* compute ambient component */ |
602 |
+ |
COLOR rcol, /* input/output color */ |
603 |
+ |
RAY *r, |
604 |
+ |
double wt, |
605 |
+ |
FVECT uv[2], /* returned (optional) */ |
606 |
+ |
float ra[2], /* returned (optional) */ |
607 |
+ |
float pg[2], /* returned (optional) */ |
608 |
+ |
float dg[2] /* returned (optional) */ |
609 |
+ |
) |
610 |
+ |
{ |
611 |
+ |
AMBHEMI *hp = inithemi(rcol, r, wt); |
612 |
+ |
int cnt = 0; |
613 |
+ |
FVECT my_uv[2]; |
614 |
+ |
double d, K, acol[3]; |
615 |
+ |
AMBSAMP *ap; |
616 |
+ |
int i, j; |
617 |
+ |
/* check/initialize */ |
618 |
+ |
if (hp == NULL) |
619 |
+ |
return(0); |
620 |
+ |
if (uv != NULL) |
621 |
+ |
memset(uv, 0, sizeof(FVECT)*2); |
622 |
+ |
if (ra != NULL) |
623 |
+ |
ra[0] = ra[1] = 0.0; |
624 |
+ |
if (pg != NULL) |
625 |
+ |
pg[0] = pg[1] = 0.0; |
626 |
+ |
if (dg != NULL) |
627 |
+ |
dg[0] = dg[1] = 0.0; |
628 |
+ |
/* sample the hemisphere */ |
629 |
+ |
acol[0] = acol[1] = acol[2] = 0.0; |
630 |
+ |
for (i = hp->ns; i--; ) |
631 |
+ |
for (j = hp->ns; j--; ) |
632 |
+ |
if ((ap = ambsample(hp, i, j)) != NULL) { |
633 |
+ |
addcolor(acol, ap->v); |
634 |
+ |
++cnt; |
635 |
+ |
} |
636 |
+ |
if (!cnt) { |
637 |
+ |
setcolor(rcol, 0.0, 0.0, 0.0); |
638 |
+ |
free(hp); |
639 |
+ |
return(0); /* no valid samples */ |
640 |
+ |
} |
641 |
+ |
if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */ |
642 |
+ |
copycolor(rcol, acol); |
643 |
+ |
free(hp); |
644 |
+ |
return(-1); /* return value w/o Hessian */ |
645 |
+ |
} |
646 |
+ |
cnt = ambssamp*wt + 0.5; /* perform super-sampling? */ |
647 |
+ |
if (cnt > 0) |
648 |
+ |
ambsupersamp(acol, hp, cnt); |
649 |
+ |
copycolor(rcol, acol); /* final indirect irradiance/PI */ |
650 |
+ |
if ((ra == NULL) & (pg == NULL) & (dg == NULL)) { |
651 |
+ |
free(hp); |
652 |
+ |
return(-1); /* no radius or gradient calc. */ |
653 |
+ |
} |
654 |
+ |
if (bright(acol) > FTINY) { /* normalize Y values */ |
655 |
+ |
d = 0.99*cnt/bright(acol); |
656 |
+ |
K = 0.01; |
657 |
+ |
} else { /* geometric Hessian fall-back */ |
658 |
+ |
d = 0.0; |
659 |
+ |
K = 1.0; |
660 |
+ |
pg = NULL; |
661 |
+ |
dg = NULL; |
662 |
+ |
} |
663 |
+ |
ap = hp->sa; /* relative Y channel from here on... */ |
664 |
+ |
for (i = hp->ns*hp->ns; i--; ap++) |
665 |
+ |
colval(ap->v,CIEY) = bright(ap->v)*d + K; |
666 |
+ |
|
667 |
+ |
if (uv == NULL) /* make sure we have axis pointers */ |
668 |
+ |
uv = my_uv; |
669 |
+ |
/* compute radii & pos. gradient */ |
670 |
+ |
ambHessian(hp, uv, ra, pg); |
671 |
+ |
|
672 |
+ |
if (dg != NULL) /* compute direction gradient */ |
673 |
+ |
ambdirgrad(hp, uv, dg); |
674 |
+ |
|
675 |
+ |
if (ra != NULL) { /* scale/clamp radii */ |
676 |
+ |
if (pg != NULL) { |
677 |
+ |
if (ra[0]*(d = fabs(pg[0])) > 1.0) |
678 |
+ |
ra[0] = 1.0/d; |
679 |
+ |
if (ra[1]*(d = fabs(pg[1])) > 1.0) |
680 |
+ |
ra[1] = 1.0/d; |
681 |
+ |
if (ra[0] > ra[1]) |
682 |
+ |
ra[0] = ra[1]; |
683 |
+ |
} |
684 |
+ |
if (ra[0] < minarad) { |
685 |
+ |
ra[0] = minarad; |
686 |
+ |
if (ra[1] < minarad) |
687 |
+ |
ra[1] = minarad; |
688 |
+ |
} |
689 |
+ |
ra[0] *= d = 1.0/sqrt(sqrt(wt)); |
690 |
+ |
if ((ra[1] *= d) > 2.0*ra[0]) |
691 |
+ |
ra[1] = 2.0*ra[0]; |
692 |
+ |
if (ra[1] > maxarad) { |
693 |
+ |
ra[1] = maxarad; |
694 |
+ |
if (ra[0] > maxarad) |
695 |
+ |
ra[0] = maxarad; |
696 |
+ |
} |
697 |
+ |
if (pg != NULL) { /* cap gradient if necessary */ |
698 |
+ |
d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1]; |
699 |
+ |
if (d > 1.0) { |
700 |
+ |
d = 1.0/sqrt(d); |
701 |
+ |
pg[0] *= d; |
702 |
+ |
pg[1] *= d; |
703 |
+ |
} |
704 |
+ |
} |
705 |
+ |
} |
706 |
+ |
free(hp); /* clean up and return */ |
707 |
+ |
return(1); |
708 |
+ |
} |
709 |
+ |
|
710 |
+ |
|
711 |
+ |
#else /* ! NEWAMB */ |
712 |
+ |
|
713 |
+ |
|
714 |
|
void |
715 |
|
inithemi( /* initialize sampling hemisphere */ |
716 |
|
AMBHEMI *hp, |
851 |
|
FVECT dg |
852 |
|
) |
853 |
|
{ |
854 |
< |
double b, d; |
854 |
> |
double b, d=0; |
855 |
|
AMBHEMI hemi; |
856 |
|
AMBSAMP *div; |
857 |
|
AMBSAMP dnew; |
1129 |
|
for (i = 0; i < 3; i++) |
1130 |
|
gv[i] = xd*hp->ux[i] + yd*hp->uy[i]; |
1131 |
|
} |
1132 |
+ |
|
1133 |
+ |
#endif /* ! NEWAMB */ |