ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.101
Committed: Tue Apr 29 23:41:10 2025 UTC (2 days, 21 hours ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: HEAD
Changes since 2.100: +66 -65 lines
Log Message:
fix(rvu,rpict,rtrace,rcontrib,mkpmap): Better ambient division sample trade-in avoids hangs

File Contents

# Content
1 #ifndef lint
2 static const char RCSid[] = "$Id: ambcomp.c,v 2.100 2025/04/28 19:30:01 greg Exp $";
3 #endif
4 /*
5 * Routines to compute "ambient" values using Monte Carlo
6 *
7 * Hessian calculations based on "Practical Hessian-Based Error Control
8 * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9 * from ACM SIGGRAPH Asia 2012 conference proceedings.
10 *
11 * Added book-keeping optimization to avoid calculations that would
12 * cancel due to traversal both directions on edges that are adjacent
13 * to same-valued triangles. This cuts about half of Hessian math.
14 *
15 * Declarations of external symbols in ambient.h
16 */
17
18 #include "copyright.h"
19
20 #include "ray.h"
21 #include "ambient.h"
22 #include "random.h"
23
24 #ifndef MINADIV
25 #define MINADIV 7 /* minimum # divisions in each dimension */
26 #endif
27 #ifndef MINSDIST
28 #define MINSDIST 0.25 /* def. min. spacing = 1/4th division */
29 #endif
30
31 typedef struct {
32 FVECT p; /* intersection point */
33 float d; /* reciprocal distance */
34 SCOLOR v; /* hemisphere sample value */
35 } AMBSAMP; /* sample value */
36
37 typedef struct {
38 RAY *rp; /* originating ray sample */
39 int ns; /* number of samples per axis */
40 int sampOK; /* acquired full sample set? */
41 int atyp; /* RAMBIENT or TAMBIENT */
42 SCOLOR acoef; /* division contribution coefficient */
43 SCOLOR acol; /* accumulated color */
44 FVECT onrm; /* oriented unperturbed surface normal */
45 FVECT ux, uy; /* tangent axis unit vectors */
46 AMBSAMP sa[1]; /* sample array (extends struct) */
47 } AMBHEMI; /* ambient sample hemisphere */
48
49 #define AI(h,i,j) ((i)*(h)->ns + (j))
50 #define ambsam(h,i,j) (h)->sa[AI(h,i,j)]
51
52 typedef struct {
53 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
54 double I1, I2;
55 } FFTRI; /* vectors and coefficients for Hessian calculation */
56
57
58 #define XLOTSIZ 512 /* size of used car lot */
59 #define CFIRST 0 /* first corner */
60 #define COTHER (CFIRST+4) /* non-corner sample */
61 #define CMAXTARGET (int)(XLOTSIZ*MINSDIST/(1-MINSDIST))
62
63 static int
64 psample_class(double ss[2]) /* classify patch sample */
65 {
66 if (ss[0] < MINSDIST) {
67 if (ss[1] < MINSDIST)
68 return(CFIRST);
69 if (ss[1] > 1.-MINSDIST)
70 return(CFIRST+2);
71 } else if (ss[0] > 1.-MINSDIST) {
72 if (ss[1] < MINSDIST)
73 return(CFIRST+1);
74 if (ss[1] > 1.-MINSDIST)
75 return(CFIRST+3);
76 }
77 return(COTHER); /* not in a corner */
78 }
79
80 static void
81 trade_patchsamp(double ss[2]) /* trade in problem patch position */
82 {
83 static float tradelot[XLOTSIZ][2];
84 static short gterm[COTHER+1];
85 double repl[2];
86 int sclass, rclass;
87 int x;
88 /* initialize lot? */
89 while (gterm[COTHER] < XLOTSIZ) {
90 tradelot[gterm[COTHER]][0] = frandom();
91 tradelot[gterm[COTHER]][1] = frandom();
92 ++gterm[COTHER];
93 }
94 /* get trade-in candidate... */
95 sclass = psample_class(ss); /* submitted corner or not? */
96 switch (sclass) {
97 case COTHER: /* trade mid-edge with corner/any */
98 x = irandom( gterm[COTHER-1] > CMAXTARGET
99 ? gterm[COTHER-1] : XLOTSIZ );
100 break;
101 case CFIRST: /* kick out of first corner */
102 x = gterm[CFIRST] + irandom(XLOTSIZ - gterm[CFIRST]);
103 break;
104 default: /* kick out of 2nd-4th corner */
105 x = irandom(XLOTSIZ - (gterm[sclass] - gterm[sclass-1]));
106 x += (x >= gterm[sclass-1])*(gterm[sclass] - gterm[sclass-1]);
107 break;
108 }
109 repl[0] = tradelot[x][0]; /* save selected replacement (result) */
110 repl[1] = tradelot[x][1];
111 /* identify replacement class */
112 for (rclass = CFIRST; rclass < COTHER; rclass++)
113 if (x < gterm[rclass])
114 break; /* repark to keep classes grouped */
115 while (rclass > sclass) { /* replacement group after submitted? */
116 tradelot[x][0] = tradelot[gterm[rclass-1]][0];
117 tradelot[x][1] = tradelot[gterm[rclass-1]][1];
118 x = gterm[--rclass]++;
119 }
120 while (rclass < sclass) { /* replacement group before submitted? */
121 tradelot[x][0] = tradelot[--gterm[rclass]][0];
122 tradelot[x][1] = tradelot[gterm[rclass]][1];
123 x = gterm[rclass++];
124 }
125 tradelot[x][0] = ss[0]; /* complete the trade-in */
126 tradelot[x][1] = ss[1];
127 ss[0] = repl[0];
128 ss[1] = repl[1];
129 }
130
131 #undef XLOTSIZ
132 #undef COTHER
133 #undef CFIRST
134
135
136 static int
137 ambcollision( /* proposed direction collides? */
138 AMBHEMI *hp,
139 int i,
140 int j,
141 RREAL spt[2]
142 )
143 {
144 int ii, jj;
145 /* check existing neighbors */
146 for (ii = i-1; ii <= i+1; ii++) {
147 if (ii < 0) continue;
148 if (ii >= hp->ns) break;
149 for (jj = j-1; jj <= j+1; jj++) {
150 AMBSAMP *ap;
151 FVECT avec;
152 double dx, dy;
153 if (jj < 0) continue;
154 if (jj >= hp->ns) break;
155 if ((ii==i) & (jj==j)) continue;
156 ap = &ambsam(hp,ii,jj);
157 if (ap->d <= .5/FHUGE)
158 continue; /* no one home */
159 VSUB(avec, ap->p, hp->rp->rop);
160 normalize(avec); /* use diskworld distance */
161 dx = DOT(avec, hp->ux) - spt[0];
162 dy = DOT(avec, hp->uy) - spt[1];
163 if ((dx*dx + dy*dy)*(hp->ns*hp->ns) <
164 PI*MINSDIST*MINSDIST)
165 return(1); /* too close */
166 }
167 }
168 return(0); /* nothing to worry about */
169 }
170
171
172 static int
173 ambsample( /* initial ambient division sample */
174 AMBHEMI *hp,
175 int i,
176 int j,
177 int n
178 )
179 {
180 int trade_ok = (!n & (hp->ns >= 4))*21;
181 AMBSAMP *ap = &ambsam(hp,i,j);
182 RAY ar;
183 int hlist[3], ii;
184 double ss[2];
185 RREAL spt[2];
186 double zd;
187 /* generate hemispherical sample */
188 /* ambient coefficient for weight */
189 if (ambacc > FTINY)
190 setscolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
191 else
192 copyscolor(ar.rcoef, hp->acoef);
193 if (rayorigin(&ar, hp->atyp, hp->rp, ar.rcoef) < 0)
194 return(0);
195 if (ambacc > FTINY) {
196 smultscolor(ar.rcoef, hp->acoef);
197 scalescolor(ar.rcoef, 1./AVGREFL);
198 }
199 hlist[0] = hp->rp->rno;
200 hlist[1] = AI(hp,i,j);
201 hlist[2] = samplendx;
202 multisamp(ss, 2, urand(ilhash(hlist,3)+n));
203 square2disk(spt, (j+ss[1])/hp->ns, (i+ss[0])/hp->ns);
204 /* avoid coincident samples? */
205 while (trade_ok-- && ambcollision(hp, i, j, spt)) {
206 if (trade_ok) {
207 trade_patchsamp(ss);
208 } else { /* punting... */
209 ss[0] = MINSDIST + (1-2*MINSDIST)*frandom();
210 ss[1] = MINSDIST + (1-2*MINSDIST)*frandom();
211 }
212 square2disk(spt, (j+ss[1])/hp->ns, (i+ss[0])/hp->ns);
213 }
214 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
215 for (ii = 3; ii--; )
216 ar.rdir[ii] = spt[0]*hp->ux[ii] +
217 spt[1]*hp->uy[ii] +
218 zd*hp->onrm[ii];
219 checknorm(ar.rdir);
220 dimlist[ndims++] = AI(hp,i,j) + 90171;
221 rayvalue(&ar); /* evaluate ray */
222 ndims--;
223 zd = raydistance(&ar);
224 if (zd <= FTINY)
225 return(0); /* should never happen */
226 smultscolor(ar.rcol, ar.rcoef); /* apply coefficient */
227 if (zd*ap->d < 1.0) /* new/closer distance? */
228 ap->d = 1.0/zd;
229 if (!n) { /* record first vertex & value */
230 if (zd > 10.0*thescene.cusize + 1000.)
231 zd = 10.0*thescene.cusize + 1000.;
232 VSUM(ap->p, ar.rorg, ar.rdir, zd);
233 copyscolor(ap->v, ar.rcol);
234 } else { /* else update recorded value */
235 sopscolor(hp->acol, -=, ap->v);
236 zd = 1.0/(double)(n+1);
237 scalescolor(ar.rcol, zd);
238 zd *= (double)n;
239 scalescolor(ap->v, zd);
240 saddscolor(ap->v, ar.rcol);
241 }
242 saddscolor(hp->acol, ap->v); /* add to our sum */
243 return(1);
244 }
245
246
247 /* Estimate variance based on ambient division differences */
248 static float *
249 getambdiffs(AMBHEMI *hp)
250 {
251 const double normf = 1./(pbright(hp->acoef) + FTINY);
252 float *earr = (float *)calloc(2*hp->ns*hp->ns, sizeof(float));
253 float *ep;
254 AMBSAMP *ap;
255 double b, b1, d2;
256 int i, j;
257
258 if (earr == NULL) /* out of memory? */
259 return(NULL);
260 /* sum squared neighbor diffs */
261 ap = hp->sa;
262 ep = earr + hp->ns*hp->ns; /* original estimates to scratch */
263 for (i = 0; i < hp->ns; i++)
264 for (j = 0; j < hp->ns; j++, ap++, ep++) {
265 b = pbright(ap[0].v);
266 if (i) { /* from above */
267 b1 = pbright(ap[-hp->ns].v);
268 d2 = b - b1;
269 d2 *= d2*normf/(b + b1 + FTINY);
270 ep[0] += d2;
271 ep[-hp->ns] += d2;
272 }
273 if (!j) continue;
274 /* from behind */
275 b1 = pbright(ap[-1].v);
276 d2 = b - b1;
277 d2 *= d2*normf/(b + b1 + FTINY);
278 ep[0] += d2;
279 ep[-1] += d2;
280 if (!i) continue;
281 /* diagonal */
282 b1 = pbright(ap[-hp->ns-1].v);
283 d2 = b - b1;
284 d2 *= d2*normf/(b + b1 + FTINY);
285 ep[0] += d2;
286 ep[-hp->ns-1] += d2;
287 }
288 /* correct for number of neighbors */
289 ep = earr + hp->ns*hp->ns;
290 ep[0] *= 6./3.;
291 ep[hp->ns-1] *= 6./3.;
292 ep[(hp->ns-1)*hp->ns] *= 6./3.;
293 ep[(hp->ns-1)*hp->ns + hp->ns-1] *= 6./3.;
294 for (i = 1; i < hp->ns-1; i++) {
295 ep[i*hp->ns] *= 6./5.;
296 ep[i*hp->ns + hp->ns-1] *= 6./5.;
297 }
298 for (j = 1; j < hp->ns-1; j++) {
299 ep[j] *= 6./5.;
300 ep[(hp->ns-1)*hp->ns + j] *= 6./5.;
301 }
302 /* blur final map to reduce bias */
303 for (i = 0; i < hp->ns-1; i++) {
304 float *ep2;
305 ep = earr + i*hp->ns;
306 ep2 = ep + hp->ns*hp->ns;
307 for (j = 0; j < hp->ns-1; j++, ep++, ep2++) {
308 ep[0] += .5*ep2[0] + .125*(ep2[1] + ep2[hp->ns]);
309 ep[1] += .125*ep2[0];
310 ep[hp->ns] += .125*ep2[0];
311 }
312 }
313 return(earr);
314 }
315
316
317 /* Perform super-sampling on hemisphere (introduces bias) */
318 static void
319 ambsupersamp(AMBHEMI *hp, int cnt)
320 {
321 float *earr = getambdiffs(hp);
322 double e2rem = 0;
323 float *ep;
324 int i, j, n, nss;
325
326 if (earr == NULL) /* just skip calc. if no memory */
327 return;
328 /* accumulate estimated variances */
329 for (ep = earr + hp->ns*hp->ns; ep > earr; )
330 e2rem += *--ep;
331 ep = earr; /* perform super-sampling */
332 for (i = 0; i < hp->ns; i++)
333 for (j = 0; j < hp->ns; j++) {
334 if (e2rem <= FTINY)
335 goto done; /* nothing left to do */
336 nss = *ep/e2rem*cnt + frandom();
337 for (n = 1; n <= nss && ambsample(hp,i,j,n); n++)
338 if (!--cnt) goto done;
339 e2rem -= *ep++; /* update remainder */
340 }
341 done:
342 free(earr);
343 }
344
345
346 static AMBHEMI *
347 samp_hemi( /* sample indirect hemisphere */
348 SCOLOR rcol,
349 RAY *r,
350 double wt
351 )
352 {
353 int backside = (wt < 0);
354 AMBHEMI *hp;
355 double d;
356 int n, i, j;
357 /* insignificance check */
358 d = sintens(rcol);
359 if (d <= FTINY)
360 return(NULL);
361 /* set number of divisions */
362 if (backside) wt = -wt;
363 if (ambacc <= FTINY &&
364 wt > (d *= 0.8*r->rweight/(ambdiv*minweight + 1e-20)))
365 wt = d; /* avoid ray termination */
366 n = sqrt(ambdiv * wt) + 0.5;
367 i = 1 + (MINADIV-1)*(ambacc > FTINY);
368 if (n < i) /* use minimum number of samples? */
369 n = i;
370 /* allocate sampling array */
371 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
372 if (hp == NULL)
373 error(SYSTEM, "out of memory in samp_hemi");
374
375 if (backside) {
376 hp->atyp = TAMBIENT;
377 hp->onrm[0] = -r->ron[0];
378 hp->onrm[1] = -r->ron[1];
379 hp->onrm[2] = -r->ron[2];
380 } else {
381 hp->atyp = RAMBIENT;
382 VCOPY(hp->onrm, r->ron);
383 }
384 hp->rp = r;
385 hp->ns = n;
386 scolorblack(hp->acol);
387 memset(hp->sa, 0, sizeof(AMBSAMP)*n*n);
388 hp->sampOK = 0;
389 /* assign coefficient */
390 copyscolor(hp->acoef, rcol);
391 d = 1.0/(n*n);
392 scalescolor(hp->acoef, d);
393 /* make tangent plane axes */
394 if (!getperpendicular(hp->ux, hp->onrm, 1))
395 error(CONSISTENCY, "bad ray direction in samp_hemi");
396 VCROSS(hp->uy, hp->onrm, hp->ux);
397 /* sample divisions */
398 for (i = hp->ns; i--; )
399 for (j = hp->ns; j--; )
400 hp->sampOK += ambsample(hp, i, j, 0);
401 copyscolor(rcol, hp->acol);
402 if (!hp->sampOK) { /* utter failure? */
403 free(hp);
404 return(NULL);
405 }
406 if (hp->sampOK < hp->ns*hp->ns) {
407 hp->sampOK *= -1; /* soft failure */
408 return(hp);
409 }
410 if (hp->sampOK <= MINADIV*MINADIV)
411 return(hp); /* don't bother super-sampling */
412 n = ambssamp*wt + 0.5;
413 if (n >= 4*hp->ns) { /* perform super-sampling? */
414 ambsupersamp(hp, n);
415 copyscolor(rcol, hp->acol);
416 }
417 return(hp); /* all is well */
418 }
419
420
421 /* Return brightness of farthest ambient sample */
422 static double
423 back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3)
424 {
425 if (hp->sa[n1].d <= hp->sa[n2].d) {
426 if (hp->sa[n1].d <= hp->sa[n3].d)
427 return(hp->sa[n1].v[0]);
428 return(hp->sa[n3].v[0]);
429 }
430 if (hp->sa[n2].d <= hp->sa[n3].d)
431 return(hp->sa[n2].v[0]);
432 return(hp->sa[n3].v[0]);
433 }
434
435
436 /* Compute vectors and coefficients for Hessian/gradient calcs */
437 static void
438 comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1)
439 {
440 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
441 int ii;
442
443 VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop);
444 VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop);
445 VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p);
446 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
447 rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
448 dot_e = DOT(ftp->e_i,ftp->e_i);
449 dot_er = DOT(ftp->e_i, ftp->r_i);
450 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
451 rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
452 ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
453 sqrt( rdot_cp );
454 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
455 dot_e*ftp->I1 )*0.5*rdot_cp;
456 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
457 for (ii = 3; ii--; )
458 ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
459 }
460
461
462 /* Compose 3x3 matrix from two vectors */
463 static void
464 compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
465 {
466 mat[0][0] = 2.0*va[0]*vb[0];
467 mat[1][1] = 2.0*va[1]*vb[1];
468 mat[2][2] = 2.0*va[2]*vb[2];
469 mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
470 mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
471 mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
472 }
473
474
475 /* Compute partial 3x3 Hessian matrix for edge */
476 static void
477 comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
478 {
479 FVECT ncp;
480 FVECT m1[3], m2[3], m3[3], m4[3];
481 double d1, d2, d3, d4;
482 double I3, J3, K3;
483 int i, j;
484 /* compute intermediate coefficients */
485 d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
486 d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
487 d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
488 d4 = DOT(ftp->e_i, ftp->r_i);
489 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
490 / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
491 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
492 K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
493 /* intermediate matrices */
494 VCROSS(ncp, nrm, ftp->e_i);
495 compose_matrix(m1, ncp, ftp->rI2_eJ2);
496 compose_matrix(m2, ftp->r_i, ftp->r_i);
497 compose_matrix(m3, ftp->e_i, ftp->e_i);
498 compose_matrix(m4, ftp->r_i, ftp->e_i);
499 d1 = DOT(nrm, ftp->rcp);
500 d2 = -d1*ftp->I2;
501 d1 *= 2.0;
502 for (i = 3; i--; ) /* final matrix sum */
503 for (j = 3; j--; ) {
504 hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
505 2.0*J3*m4[i][j] );
506 hess[i][j] += d2*(i==j);
507 hess[i][j] *= -1.0/PI;
508 }
509 }
510
511
512 /* Reverse hessian calculation result for edge in other direction */
513 static void
514 rev_hessian(FVECT hess[3])
515 {
516 int i;
517
518 for (i = 3; i--; ) {
519 hess[i][0] = -hess[i][0];
520 hess[i][1] = -hess[i][1];
521 hess[i][2] = -hess[i][2];
522 }
523 }
524
525
526 /* Add to radiometric Hessian from the given triangle */
527 static void
528 add2hessian(FVECT hess[3], FVECT ehess1[3],
529 FVECT ehess2[3], FVECT ehess3[3], double v)
530 {
531 int i, j;
532
533 for (i = 3; i--; )
534 for (j = 3; j--; )
535 hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
536 }
537
538
539 /* Compute partial displacement form factor gradient for edge */
540 static void
541 comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
542 {
543 FVECT ncp;
544 double f1;
545 int i;
546
547 f1 = 2.0*DOT(nrm, ftp->rcp);
548 VCROSS(ncp, nrm, ftp->e_i);
549 for (i = 3; i--; )
550 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
551 }
552
553
554 /* Reverse gradient calculation result for edge in other direction */
555 static void
556 rev_gradient(FVECT grad)
557 {
558 grad[0] = -grad[0];
559 grad[1] = -grad[1];
560 grad[2] = -grad[2];
561 }
562
563
564 /* Add to displacement gradient from the given triangle */
565 static void
566 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
567 {
568 int i;
569
570 for (i = 3; i--; )
571 grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
572 }
573
574
575 /* Compute anisotropic radii and eigenvector directions */
576 static void
577 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
578 {
579 double hess2[2][2];
580 FVECT a, b;
581 double evalue[2], slope1, xmag1;
582 int i;
583 /* project Hessian to sample plane */
584 for (i = 3; i--; ) {
585 a[i] = DOT(hessian[i], uv[0]);
586 b[i] = DOT(hessian[i], uv[1]);
587 }
588 hess2[0][0] = DOT(uv[0], a);
589 hess2[0][1] = DOT(uv[0], b);
590 hess2[1][0] = DOT(uv[1], a);
591 hess2[1][1] = DOT(uv[1], b);
592 /* compute eigenvalue(s) */
593 i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
594 hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
595 if (i == 1) /* double-root (circle) */
596 evalue[1] = evalue[0];
597 if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
598 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
599 ra[0] = ra[1] = maxarad;
600 return;
601 }
602 if (evalue[0] > evalue[1]) {
603 ra[0] = sqrt(sqrt(4.0/evalue[0]));
604 ra[1] = sqrt(sqrt(4.0/evalue[1]));
605 slope1 = evalue[1];
606 } else {
607 ra[0] = sqrt(sqrt(4.0/evalue[1]));
608 ra[1] = sqrt(sqrt(4.0/evalue[0]));
609 slope1 = evalue[0];
610 }
611 /* compute unit eigenvectors */
612 if (fabs(hess2[0][1]) <= FTINY)
613 return; /* uv OK as is */
614 slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
615 xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
616 for (i = 3; i--; ) {
617 b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
618 a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
619 }
620 VCOPY(uv[0], a);
621 VCOPY(uv[1], b);
622 }
623
624
625 static void
626 ambHessian( /* anisotropic radii & pos. gradient */
627 AMBHEMI *hp,
628 FVECT uv[2], /* returned */
629 float ra[2], /* returned (optional) */
630 float pg[2] /* returned (optional) */
631 )
632 {
633 static char memerrmsg[] = "out of memory in ambHessian()";
634 FVECT (*hessrow)[3] = NULL;
635 FVECT *gradrow = NULL;
636 FVECT hessian[3];
637 FVECT gradient;
638 FFTRI fftr;
639 int i, j;
640 /* be sure to assign unit vectors */
641 VCOPY(uv[0], hp->ux);
642 VCOPY(uv[1], hp->uy);
643 /* clock-wise vertex traversal from sample POV */
644 if (ra != NULL) { /* initialize Hessian row buffer */
645 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
646 if (hessrow == NULL)
647 error(SYSTEM, memerrmsg);
648 memset(hessian, 0, sizeof(hessian));
649 } else if (pg == NULL) /* bogus call? */
650 return;
651 if (pg != NULL) { /* initialize form factor row buffer */
652 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
653 if (gradrow == NULL)
654 error(SYSTEM, memerrmsg);
655 memset(gradient, 0, sizeof(gradient));
656 }
657 /* compute first row of edges */
658 for (j = 0; j < hp->ns-1; j++) {
659 comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
660 if (hessrow != NULL)
661 comp_hessian(hessrow[j], &fftr, hp->onrm);
662 if (gradrow != NULL)
663 comp_gradient(gradrow[j], &fftr, hp->onrm);
664 }
665 /* sum each row of triangles */
666 for (i = 0; i < hp->ns-1; i++) {
667 FVECT hesscol[3]; /* compute first vertical edge */
668 FVECT gradcol;
669 comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
670 if (hessrow != NULL)
671 comp_hessian(hesscol, &fftr, hp->onrm);
672 if (gradrow != NULL)
673 comp_gradient(gradcol, &fftr, hp->onrm);
674 for (j = 0; j < hp->ns-1; j++) {
675 FVECT hessdia[3]; /* compute triangle contributions */
676 FVECT graddia;
677 double backg;
678 backg = back_ambval(hp, AI(hp,i,j),
679 AI(hp,i,j+1), AI(hp,i+1,j));
680 /* diagonal (inner) edge */
681 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
682 if (hessrow != NULL) {
683 comp_hessian(hessdia, &fftr, hp->onrm);
684 rev_hessian(hesscol);
685 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
686 }
687 if (gradrow != NULL) {
688 comp_gradient(graddia, &fftr, hp->onrm);
689 rev_gradient(gradcol);
690 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
691 }
692 /* initialize edge in next row */
693 comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
694 if (hessrow != NULL)
695 comp_hessian(hessrow[j], &fftr, hp->onrm);
696 if (gradrow != NULL)
697 comp_gradient(gradrow[j], &fftr, hp->onrm);
698 /* new column edge & paired triangle */
699 backg = back_ambval(hp, AI(hp,i+1,j+1),
700 AI(hp,i+1,j), AI(hp,i,j+1));
701 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
702 if (hessrow != NULL) {
703 comp_hessian(hesscol, &fftr, hp->onrm);
704 rev_hessian(hessdia);
705 add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
706 if (i < hp->ns-2)
707 rev_hessian(hessrow[j]);
708 }
709 if (gradrow != NULL) {
710 comp_gradient(gradcol, &fftr, hp->onrm);
711 rev_gradient(graddia);
712 add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
713 if (i < hp->ns-2)
714 rev_gradient(gradrow[j]);
715 }
716 }
717 }
718 /* release row buffers */
719 if (hessrow != NULL) free(hessrow);
720 if (gradrow != NULL) free(gradrow);
721
722 if (ra != NULL) /* extract eigenvectors & radii */
723 eigenvectors(uv, ra, hessian);
724 if (pg != NULL) { /* tangential position gradient */
725 pg[0] = DOT(gradient, uv[0]);
726 pg[1] = DOT(gradient, uv[1]);
727 }
728 }
729
730
731 /* Compute direction gradient from a hemispherical sampling */
732 static void
733 ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
734 {
735 AMBSAMP *ap;
736 double dgsum[2];
737 int n;
738 FVECT vd;
739 double gfact;
740
741 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
742 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
743 /* use vector for azimuth + 90deg */
744 VSUB(vd, ap->p, hp->rp->rop);
745 /* brightness over cosine factor */
746 gfact = ap->v[0] / DOT(hp->onrm, vd);
747 /* sine = proj_radius/vd_length */
748 dgsum[0] -= DOT(uv[1], vd) * gfact;
749 dgsum[1] += DOT(uv[0], vd) * gfact;
750 }
751 dg[0] = dgsum[0] / (hp->ns*hp->ns);
752 dg[1] = dgsum[1] / (hp->ns*hp->ns);
753 }
754
755
756 /* Compute potential light leak direction flags for cache value */
757 static uint32
758 ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
759 {
760 const double max_d = 1.0/(minarad*ambacc + 0.001);
761 const double ang_res = 0.5*PI/hp->ns;
762 const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01);
763 double avg_d = 0;
764 uint32 flgs = 0;
765 FVECT vec;
766 double u, v;
767 double ang, a1;
768 int i, j;
769 /* don't bother for a few samples */
770 if (hp->ns < 8)
771 return(0);
772 /* check distances overhead */
773 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
774 for (j = hp->ns*3/4; j-- > hp->ns>>2; )
775 avg_d += ambsam(hp,i,j).d;
776 avg_d *= 4.0/(hp->ns*hp->ns);
777 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
778 return(0);
779 if (avg_d >= max_d) /* insurance */
780 return(0);
781 /* else circle around perimeter */
782 for (i = 0; i < hp->ns; i++)
783 for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
784 AMBSAMP *ap = &ambsam(hp,i,j);
785 if ((ap->d <= FTINY) | (ap->d >= max_d))
786 continue; /* too far or too near */
787 VSUB(vec, ap->p, hp->rp->rop);
788 u = DOT(vec, uv[0]);
789 v = DOT(vec, uv[1]);
790 if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v)
791 continue; /* occluder outside ellipse */
792 ang = atan2a(v, u); /* else set direction flags */
793 for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step)
794 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
795 }
796 return(flgs);
797 }
798
799
800 int
801 doambient( /* compute ambient component */
802 SCOLOR rcol, /* input/output color */
803 RAY *r,
804 double wt, /* negative for back side */
805 FVECT uv[2], /* returned (optional) */
806 float ra[2], /* returned (optional) */
807 float pg[2], /* returned (optional) */
808 float dg[2], /* returned (optional) */
809 uint32 *crlp /* returned (optional) */
810 )
811 {
812 AMBHEMI *hp = samp_hemi(rcol, r, wt);
813 FVECT my_uv[2];
814 double d, K;
815 AMBSAMP *ap;
816 int i;
817 /* clear return values */
818 if (uv != NULL)
819 memset(uv, 0, sizeof(FVECT)*2);
820 if (ra != NULL)
821 ra[0] = ra[1] = 0.0;
822 if (pg != NULL)
823 pg[0] = pg[1] = 0.0;
824 if (dg != NULL)
825 dg[0] = dg[1] = 0.0;
826 if (crlp != NULL)
827 *crlp = 0;
828 if (hp == NULL) /* sampling falure? */
829 return(0);
830
831 if ((ra == NULL) & (pg == NULL) & (dg == NULL) ||
832 (hp->sampOK < 0) | (hp->ns < MINADIV)) {
833 free(hp); /* Hessian not requested/possible */
834 return(-1); /* value-only return value */
835 }
836 if ((d = scolor_mean(rcol)) > FTINY) {
837 d = 0.99*(hp->ns*hp->ns)/d; /* normalize avg. values */
838 K = 0.01;
839 } else { /* or fall back on geometric Hessian */
840 K = 1.0;
841 pg = NULL;
842 dg = NULL;
843 crlp = NULL;
844 }
845 ap = hp->sa; /* single channel from here on... */
846 for (i = hp->ns*hp->ns; i--; ap++)
847 ap->v[0] = scolor_mean(ap->v)*d + K;
848
849 if (uv == NULL) /* make sure we have axis pointers */
850 uv = my_uv;
851 /* compute radii & pos. gradient */
852 ambHessian(hp, uv, ra, pg);
853
854 if (dg != NULL) /* compute direction gradient */
855 ambdirgrad(hp, uv, dg);
856
857 if (ra != NULL) { /* scale/clamp radii */
858 if (pg != NULL) {
859 if (ra[0]*(d = fabs(pg[0])) > 1.0)
860 ra[0] = 1.0/d;
861 if (ra[1]*(d = fabs(pg[1])) > 1.0)
862 ra[1] = 1.0/d;
863 if (ra[0] > ra[1])
864 ra[0] = ra[1];
865 }
866 if (ra[0] < minarad) {
867 ra[0] = minarad;
868 if (ra[1] < minarad)
869 ra[1] = minarad;
870 }
871 ra[0] *= d = 1.0/sqrt(fabs(wt));
872 if ((ra[1] *= d) > 2.0*ra[0])
873 ra[1] = 2.0*ra[0];
874 if (ra[1] > maxarad) {
875 ra[1] = maxarad;
876 if (ra[0] > maxarad)
877 ra[0] = maxarad;
878 }
879 /* flag encroached directions */
880 if (crlp != NULL) /* XXX doesn't update with changes to ambacc */
881 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
882 if (pg != NULL) { /* cap gradient if necessary */
883 d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
884 if (d > 1.0) {
885 d = 1.0/sqrt(d);
886 pg[0] *= d;
887 pg[1] *= d;
888 }
889 }
890 }
891 free(hp); /* clean up and return */
892 return(1);
893 }