1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: ambcomp.c,v 2.100 2025/04/28 19:30:01 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* Routines to compute "ambient" values using Monte Carlo |
6 |
* |
7 |
* Hessian calculations based on "Practical Hessian-Based Error Control |
8 |
* for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz |
9 |
* from ACM SIGGRAPH Asia 2012 conference proceedings. |
10 |
* |
11 |
* Added book-keeping optimization to avoid calculations that would |
12 |
* cancel due to traversal both directions on edges that are adjacent |
13 |
* to same-valued triangles. This cuts about half of Hessian math. |
14 |
* |
15 |
* Declarations of external symbols in ambient.h |
16 |
*/ |
17 |
|
18 |
#include "copyright.h" |
19 |
|
20 |
#include "ray.h" |
21 |
#include "ambient.h" |
22 |
#include "random.h" |
23 |
|
24 |
#ifndef MINADIV |
25 |
#define MINADIV 7 /* minimum # divisions in each dimension */ |
26 |
#endif |
27 |
#ifndef MINSDIST |
28 |
#define MINSDIST 0.25 /* def. min. spacing = 1/4th division */ |
29 |
#endif |
30 |
|
31 |
typedef struct { |
32 |
FVECT p; /* intersection point */ |
33 |
float d; /* reciprocal distance */ |
34 |
SCOLOR v; /* hemisphere sample value */ |
35 |
} AMBSAMP; /* sample value */ |
36 |
|
37 |
typedef struct { |
38 |
RAY *rp; /* originating ray sample */ |
39 |
int ns; /* number of samples per axis */ |
40 |
int sampOK; /* acquired full sample set? */ |
41 |
int atyp; /* RAMBIENT or TAMBIENT */ |
42 |
SCOLOR acoef; /* division contribution coefficient */ |
43 |
SCOLOR acol; /* accumulated color */ |
44 |
FVECT onrm; /* oriented unperturbed surface normal */ |
45 |
FVECT ux, uy; /* tangent axis unit vectors */ |
46 |
AMBSAMP sa[1]; /* sample array (extends struct) */ |
47 |
} AMBHEMI; /* ambient sample hemisphere */ |
48 |
|
49 |
#define AI(h,i,j) ((i)*(h)->ns + (j)) |
50 |
#define ambsam(h,i,j) (h)->sa[AI(h,i,j)] |
51 |
|
52 |
typedef struct { |
53 |
FVECT r_i, r_i1, e_i, rcp, rI2_eJ2; |
54 |
double I1, I2; |
55 |
} FFTRI; /* vectors and coefficients for Hessian calculation */ |
56 |
|
57 |
|
58 |
#define XLOTSIZ 512 /* size of used car lot */ |
59 |
#define CFIRST 0 /* first corner */ |
60 |
#define COTHER (CFIRST+4) /* non-corner sample */ |
61 |
#define CMAXTARGET (int)(XLOTSIZ*MINSDIST/(1-MINSDIST)) |
62 |
|
63 |
static int |
64 |
psample_class(double ss[2]) /* classify patch sample */ |
65 |
{ |
66 |
if (ss[0] < MINSDIST) { |
67 |
if (ss[1] < MINSDIST) |
68 |
return(CFIRST); |
69 |
if (ss[1] > 1.-MINSDIST) |
70 |
return(CFIRST+2); |
71 |
} else if (ss[0] > 1.-MINSDIST) { |
72 |
if (ss[1] < MINSDIST) |
73 |
return(CFIRST+1); |
74 |
if (ss[1] > 1.-MINSDIST) |
75 |
return(CFIRST+3); |
76 |
} |
77 |
return(COTHER); /* not in a corner */ |
78 |
} |
79 |
|
80 |
static void |
81 |
trade_patchsamp(double ss[2]) /* trade in problem patch position */ |
82 |
{ |
83 |
static float tradelot[XLOTSIZ][2]; |
84 |
static short gterm[COTHER+1]; |
85 |
double repl[2]; |
86 |
int sclass, rclass; |
87 |
int x; |
88 |
/* initialize lot? */ |
89 |
while (gterm[COTHER] < XLOTSIZ) { |
90 |
tradelot[gterm[COTHER]][0] = frandom(); |
91 |
tradelot[gterm[COTHER]][1] = frandom(); |
92 |
++gterm[COTHER]; |
93 |
} |
94 |
/* get trade-in candidate... */ |
95 |
sclass = psample_class(ss); /* submitted corner or not? */ |
96 |
switch (sclass) { |
97 |
case COTHER: /* trade mid-edge with corner/any */ |
98 |
x = irandom( gterm[COTHER-1] > CMAXTARGET |
99 |
? gterm[COTHER-1] : XLOTSIZ ); |
100 |
break; |
101 |
case CFIRST: /* kick out of first corner */ |
102 |
x = gterm[CFIRST] + irandom(XLOTSIZ - gterm[CFIRST]); |
103 |
break; |
104 |
default: /* kick out of 2nd-4th corner */ |
105 |
x = irandom(XLOTSIZ - (gterm[sclass] - gterm[sclass-1])); |
106 |
x += (x >= gterm[sclass-1])*(gterm[sclass] - gterm[sclass-1]); |
107 |
break; |
108 |
} |
109 |
repl[0] = tradelot[x][0]; /* save selected replacement (result) */ |
110 |
repl[1] = tradelot[x][1]; |
111 |
/* identify replacement class */ |
112 |
for (rclass = CFIRST; rclass < COTHER; rclass++) |
113 |
if (x < gterm[rclass]) |
114 |
break; /* repark to keep classes grouped */ |
115 |
while (rclass > sclass) { /* replacement group after submitted? */ |
116 |
tradelot[x][0] = tradelot[gterm[rclass-1]][0]; |
117 |
tradelot[x][1] = tradelot[gterm[rclass-1]][1]; |
118 |
x = gterm[--rclass]++; |
119 |
} |
120 |
while (rclass < sclass) { /* replacement group before submitted? */ |
121 |
tradelot[x][0] = tradelot[--gterm[rclass]][0]; |
122 |
tradelot[x][1] = tradelot[gterm[rclass]][1]; |
123 |
x = gterm[rclass++]; |
124 |
} |
125 |
tradelot[x][0] = ss[0]; /* complete the trade-in */ |
126 |
tradelot[x][1] = ss[1]; |
127 |
ss[0] = repl[0]; |
128 |
ss[1] = repl[1]; |
129 |
} |
130 |
|
131 |
#undef XLOTSIZ |
132 |
#undef COTHER |
133 |
#undef CFIRST |
134 |
|
135 |
|
136 |
static int |
137 |
ambcollision( /* proposed direction collides? */ |
138 |
AMBHEMI *hp, |
139 |
int i, |
140 |
int j, |
141 |
RREAL spt[2] |
142 |
) |
143 |
{ |
144 |
int ii, jj; |
145 |
/* check existing neighbors */ |
146 |
for (ii = i-1; ii <= i+1; ii++) { |
147 |
if (ii < 0) continue; |
148 |
if (ii >= hp->ns) break; |
149 |
for (jj = j-1; jj <= j+1; jj++) { |
150 |
AMBSAMP *ap; |
151 |
FVECT avec; |
152 |
double dx, dy; |
153 |
if (jj < 0) continue; |
154 |
if (jj >= hp->ns) break; |
155 |
if ((ii==i) & (jj==j)) continue; |
156 |
ap = &ambsam(hp,ii,jj); |
157 |
if (ap->d <= .5/FHUGE) |
158 |
continue; /* no one home */ |
159 |
VSUB(avec, ap->p, hp->rp->rop); |
160 |
normalize(avec); /* use diskworld distance */ |
161 |
dx = DOT(avec, hp->ux) - spt[0]; |
162 |
dy = DOT(avec, hp->uy) - spt[1]; |
163 |
if ((dx*dx + dy*dy)*(hp->ns*hp->ns) < |
164 |
PI*MINSDIST*MINSDIST) |
165 |
return(1); /* too close */ |
166 |
} |
167 |
} |
168 |
return(0); /* nothing to worry about */ |
169 |
} |
170 |
|
171 |
|
172 |
static int |
173 |
ambsample( /* initial ambient division sample */ |
174 |
AMBHEMI *hp, |
175 |
int i, |
176 |
int j, |
177 |
int n |
178 |
) |
179 |
{ |
180 |
int trade_ok = (!n & (hp->ns >= 4))*21; |
181 |
AMBSAMP *ap = &ambsam(hp,i,j); |
182 |
RAY ar; |
183 |
int hlist[3], ii; |
184 |
double ss[2]; |
185 |
RREAL spt[2]; |
186 |
double zd; |
187 |
/* generate hemispherical sample */ |
188 |
/* ambient coefficient for weight */ |
189 |
if (ambacc > FTINY) |
190 |
setscolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL); |
191 |
else |
192 |
copyscolor(ar.rcoef, hp->acoef); |
193 |
if (rayorigin(&ar, hp->atyp, hp->rp, ar.rcoef) < 0) |
194 |
return(0); |
195 |
if (ambacc > FTINY) { |
196 |
smultscolor(ar.rcoef, hp->acoef); |
197 |
scalescolor(ar.rcoef, 1./AVGREFL); |
198 |
} |
199 |
hlist[0] = hp->rp->rno; |
200 |
hlist[1] = AI(hp,i,j); |
201 |
hlist[2] = samplendx; |
202 |
multisamp(ss, 2, urand(ilhash(hlist,3)+n)); |
203 |
square2disk(spt, (j+ss[1])/hp->ns, (i+ss[0])/hp->ns); |
204 |
/* avoid coincident samples? */ |
205 |
while (trade_ok-- && ambcollision(hp, i, j, spt)) { |
206 |
if (trade_ok) { |
207 |
trade_patchsamp(ss); |
208 |
} else { /* punting... */ |
209 |
ss[0] = MINSDIST + (1-2*MINSDIST)*frandom(); |
210 |
ss[1] = MINSDIST + (1-2*MINSDIST)*frandom(); |
211 |
} |
212 |
square2disk(spt, (j+ss[1])/hp->ns, (i+ss[0])/hp->ns); |
213 |
} |
214 |
zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]); |
215 |
for (ii = 3; ii--; ) |
216 |
ar.rdir[ii] = spt[0]*hp->ux[ii] + |
217 |
spt[1]*hp->uy[ii] + |
218 |
zd*hp->onrm[ii]; |
219 |
checknorm(ar.rdir); |
220 |
dimlist[ndims++] = AI(hp,i,j) + 90171; |
221 |
rayvalue(&ar); /* evaluate ray */ |
222 |
ndims--; |
223 |
zd = raydistance(&ar); |
224 |
if (zd <= FTINY) |
225 |
return(0); /* should never happen */ |
226 |
smultscolor(ar.rcol, ar.rcoef); /* apply coefficient */ |
227 |
if (zd*ap->d < 1.0) /* new/closer distance? */ |
228 |
ap->d = 1.0/zd; |
229 |
if (!n) { /* record first vertex & value */ |
230 |
if (zd > 10.0*thescene.cusize + 1000.) |
231 |
zd = 10.0*thescene.cusize + 1000.; |
232 |
VSUM(ap->p, ar.rorg, ar.rdir, zd); |
233 |
copyscolor(ap->v, ar.rcol); |
234 |
} else { /* else update recorded value */ |
235 |
sopscolor(hp->acol, -=, ap->v); |
236 |
zd = 1.0/(double)(n+1); |
237 |
scalescolor(ar.rcol, zd); |
238 |
zd *= (double)n; |
239 |
scalescolor(ap->v, zd); |
240 |
saddscolor(ap->v, ar.rcol); |
241 |
} |
242 |
saddscolor(hp->acol, ap->v); /* add to our sum */ |
243 |
return(1); |
244 |
} |
245 |
|
246 |
|
247 |
/* Estimate variance based on ambient division differences */ |
248 |
static float * |
249 |
getambdiffs(AMBHEMI *hp) |
250 |
{ |
251 |
const double normf = 1./(pbright(hp->acoef) + FTINY); |
252 |
float *earr = (float *)calloc(2*hp->ns*hp->ns, sizeof(float)); |
253 |
float *ep; |
254 |
AMBSAMP *ap; |
255 |
double b, b1, d2; |
256 |
int i, j; |
257 |
|
258 |
if (earr == NULL) /* out of memory? */ |
259 |
return(NULL); |
260 |
/* sum squared neighbor diffs */ |
261 |
ap = hp->sa; |
262 |
ep = earr + hp->ns*hp->ns; /* original estimates to scratch */ |
263 |
for (i = 0; i < hp->ns; i++) |
264 |
for (j = 0; j < hp->ns; j++, ap++, ep++) { |
265 |
b = pbright(ap[0].v); |
266 |
if (i) { /* from above */ |
267 |
b1 = pbright(ap[-hp->ns].v); |
268 |
d2 = b - b1; |
269 |
d2 *= d2*normf/(b + b1 + FTINY); |
270 |
ep[0] += d2; |
271 |
ep[-hp->ns] += d2; |
272 |
} |
273 |
if (!j) continue; |
274 |
/* from behind */ |
275 |
b1 = pbright(ap[-1].v); |
276 |
d2 = b - b1; |
277 |
d2 *= d2*normf/(b + b1 + FTINY); |
278 |
ep[0] += d2; |
279 |
ep[-1] += d2; |
280 |
if (!i) continue; |
281 |
/* diagonal */ |
282 |
b1 = pbright(ap[-hp->ns-1].v); |
283 |
d2 = b - b1; |
284 |
d2 *= d2*normf/(b + b1 + FTINY); |
285 |
ep[0] += d2; |
286 |
ep[-hp->ns-1] += d2; |
287 |
} |
288 |
/* correct for number of neighbors */ |
289 |
ep = earr + hp->ns*hp->ns; |
290 |
ep[0] *= 6./3.; |
291 |
ep[hp->ns-1] *= 6./3.; |
292 |
ep[(hp->ns-1)*hp->ns] *= 6./3.; |
293 |
ep[(hp->ns-1)*hp->ns + hp->ns-1] *= 6./3.; |
294 |
for (i = 1; i < hp->ns-1; i++) { |
295 |
ep[i*hp->ns] *= 6./5.; |
296 |
ep[i*hp->ns + hp->ns-1] *= 6./5.; |
297 |
} |
298 |
for (j = 1; j < hp->ns-1; j++) { |
299 |
ep[j] *= 6./5.; |
300 |
ep[(hp->ns-1)*hp->ns + j] *= 6./5.; |
301 |
} |
302 |
/* blur final map to reduce bias */ |
303 |
for (i = 0; i < hp->ns-1; i++) { |
304 |
float *ep2; |
305 |
ep = earr + i*hp->ns; |
306 |
ep2 = ep + hp->ns*hp->ns; |
307 |
for (j = 0; j < hp->ns-1; j++, ep++, ep2++) { |
308 |
ep[0] += .5*ep2[0] + .125*(ep2[1] + ep2[hp->ns]); |
309 |
ep[1] += .125*ep2[0]; |
310 |
ep[hp->ns] += .125*ep2[0]; |
311 |
} |
312 |
} |
313 |
return(earr); |
314 |
} |
315 |
|
316 |
|
317 |
/* Perform super-sampling on hemisphere (introduces bias) */ |
318 |
static void |
319 |
ambsupersamp(AMBHEMI *hp, int cnt) |
320 |
{ |
321 |
float *earr = getambdiffs(hp); |
322 |
double e2rem = 0; |
323 |
float *ep; |
324 |
int i, j, n, nss; |
325 |
|
326 |
if (earr == NULL) /* just skip calc. if no memory */ |
327 |
return; |
328 |
/* accumulate estimated variances */ |
329 |
for (ep = earr + hp->ns*hp->ns; ep > earr; ) |
330 |
e2rem += *--ep; |
331 |
ep = earr; /* perform super-sampling */ |
332 |
for (i = 0; i < hp->ns; i++) |
333 |
for (j = 0; j < hp->ns; j++) { |
334 |
if (e2rem <= FTINY) |
335 |
goto done; /* nothing left to do */ |
336 |
nss = *ep/e2rem*cnt + frandom(); |
337 |
for (n = 1; n <= nss && ambsample(hp,i,j,n); n++) |
338 |
if (!--cnt) goto done; |
339 |
e2rem -= *ep++; /* update remainder */ |
340 |
} |
341 |
done: |
342 |
free(earr); |
343 |
} |
344 |
|
345 |
|
346 |
static AMBHEMI * |
347 |
samp_hemi( /* sample indirect hemisphere */ |
348 |
SCOLOR rcol, |
349 |
RAY *r, |
350 |
double wt |
351 |
) |
352 |
{ |
353 |
int backside = (wt < 0); |
354 |
AMBHEMI *hp; |
355 |
double d; |
356 |
int n, i, j; |
357 |
/* insignificance check */ |
358 |
d = sintens(rcol); |
359 |
if (d <= FTINY) |
360 |
return(NULL); |
361 |
/* set number of divisions */ |
362 |
if (backside) wt = -wt; |
363 |
if (ambacc <= FTINY && |
364 |
wt > (d *= 0.8*r->rweight/(ambdiv*minweight + 1e-20))) |
365 |
wt = d; /* avoid ray termination */ |
366 |
n = sqrt(ambdiv * wt) + 0.5; |
367 |
i = 1 + (MINADIV-1)*(ambacc > FTINY); |
368 |
if (n < i) /* use minimum number of samples? */ |
369 |
n = i; |
370 |
/* allocate sampling array */ |
371 |
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1)); |
372 |
if (hp == NULL) |
373 |
error(SYSTEM, "out of memory in samp_hemi"); |
374 |
|
375 |
if (backside) { |
376 |
hp->atyp = TAMBIENT; |
377 |
hp->onrm[0] = -r->ron[0]; |
378 |
hp->onrm[1] = -r->ron[1]; |
379 |
hp->onrm[2] = -r->ron[2]; |
380 |
} else { |
381 |
hp->atyp = RAMBIENT; |
382 |
VCOPY(hp->onrm, r->ron); |
383 |
} |
384 |
hp->rp = r; |
385 |
hp->ns = n; |
386 |
scolorblack(hp->acol); |
387 |
memset(hp->sa, 0, sizeof(AMBSAMP)*n*n); |
388 |
hp->sampOK = 0; |
389 |
/* assign coefficient */ |
390 |
copyscolor(hp->acoef, rcol); |
391 |
d = 1.0/(n*n); |
392 |
scalescolor(hp->acoef, d); |
393 |
/* make tangent plane axes */ |
394 |
if (!getperpendicular(hp->ux, hp->onrm, 1)) |
395 |
error(CONSISTENCY, "bad ray direction in samp_hemi"); |
396 |
VCROSS(hp->uy, hp->onrm, hp->ux); |
397 |
/* sample divisions */ |
398 |
for (i = hp->ns; i--; ) |
399 |
for (j = hp->ns; j--; ) |
400 |
hp->sampOK += ambsample(hp, i, j, 0); |
401 |
copyscolor(rcol, hp->acol); |
402 |
if (!hp->sampOK) { /* utter failure? */ |
403 |
free(hp); |
404 |
return(NULL); |
405 |
} |
406 |
if (hp->sampOK < hp->ns*hp->ns) { |
407 |
hp->sampOK *= -1; /* soft failure */ |
408 |
return(hp); |
409 |
} |
410 |
if (hp->sampOK <= MINADIV*MINADIV) |
411 |
return(hp); /* don't bother super-sampling */ |
412 |
n = ambssamp*wt + 0.5; |
413 |
if (n >= 4*hp->ns) { /* perform super-sampling? */ |
414 |
ambsupersamp(hp, n); |
415 |
copyscolor(rcol, hp->acol); |
416 |
} |
417 |
return(hp); /* all is well */ |
418 |
} |
419 |
|
420 |
|
421 |
/* Return brightness of farthest ambient sample */ |
422 |
static double |
423 |
back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3) |
424 |
{ |
425 |
if (hp->sa[n1].d <= hp->sa[n2].d) { |
426 |
if (hp->sa[n1].d <= hp->sa[n3].d) |
427 |
return(hp->sa[n1].v[0]); |
428 |
return(hp->sa[n3].v[0]); |
429 |
} |
430 |
if (hp->sa[n2].d <= hp->sa[n3].d) |
431 |
return(hp->sa[n2].v[0]); |
432 |
return(hp->sa[n3].v[0]); |
433 |
} |
434 |
|
435 |
|
436 |
/* Compute vectors and coefficients for Hessian/gradient calcs */ |
437 |
static void |
438 |
comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1) |
439 |
{ |
440 |
double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2; |
441 |
int ii; |
442 |
|
443 |
VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop); |
444 |
VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop); |
445 |
VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p); |
446 |
VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1); |
447 |
rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp); |
448 |
dot_e = DOT(ftp->e_i,ftp->e_i); |
449 |
dot_er = DOT(ftp->e_i, ftp->r_i); |
450 |
rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i); |
451 |
rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1); |
452 |
ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) * |
453 |
sqrt( rdot_cp ); |
454 |
ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r + |
455 |
dot_e*ftp->I1 )*0.5*rdot_cp; |
456 |
J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e; |
457 |
for (ii = 3; ii--; ) |
458 |
ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii]; |
459 |
} |
460 |
|
461 |
|
462 |
/* Compose 3x3 matrix from two vectors */ |
463 |
static void |
464 |
compose_matrix(FVECT mat[3], FVECT va, FVECT vb) |
465 |
{ |
466 |
mat[0][0] = 2.0*va[0]*vb[0]; |
467 |
mat[1][1] = 2.0*va[1]*vb[1]; |
468 |
mat[2][2] = 2.0*va[2]*vb[2]; |
469 |
mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0]; |
470 |
mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0]; |
471 |
mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1]; |
472 |
} |
473 |
|
474 |
|
475 |
/* Compute partial 3x3 Hessian matrix for edge */ |
476 |
static void |
477 |
comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm) |
478 |
{ |
479 |
FVECT ncp; |
480 |
FVECT m1[3], m2[3], m3[3], m4[3]; |
481 |
double d1, d2, d3, d4; |
482 |
double I3, J3, K3; |
483 |
int i, j; |
484 |
/* compute intermediate coefficients */ |
485 |
d1 = 1.0/DOT(ftp->r_i,ftp->r_i); |
486 |
d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1); |
487 |
d3 = 1.0/DOT(ftp->e_i,ftp->e_i); |
488 |
d4 = DOT(ftp->e_i, ftp->r_i); |
489 |
I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 ) |
490 |
/ ( 4.0*DOT(ftp->rcp,ftp->rcp) ); |
491 |
J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3; |
492 |
K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3); |
493 |
/* intermediate matrices */ |
494 |
VCROSS(ncp, nrm, ftp->e_i); |
495 |
compose_matrix(m1, ncp, ftp->rI2_eJ2); |
496 |
compose_matrix(m2, ftp->r_i, ftp->r_i); |
497 |
compose_matrix(m3, ftp->e_i, ftp->e_i); |
498 |
compose_matrix(m4, ftp->r_i, ftp->e_i); |
499 |
d1 = DOT(nrm, ftp->rcp); |
500 |
d2 = -d1*ftp->I2; |
501 |
d1 *= 2.0; |
502 |
for (i = 3; i--; ) /* final matrix sum */ |
503 |
for (j = 3; j--; ) { |
504 |
hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] + |
505 |
2.0*J3*m4[i][j] ); |
506 |
hess[i][j] += d2*(i==j); |
507 |
hess[i][j] *= -1.0/PI; |
508 |
} |
509 |
} |
510 |
|
511 |
|
512 |
/* Reverse hessian calculation result for edge in other direction */ |
513 |
static void |
514 |
rev_hessian(FVECT hess[3]) |
515 |
{ |
516 |
int i; |
517 |
|
518 |
for (i = 3; i--; ) { |
519 |
hess[i][0] = -hess[i][0]; |
520 |
hess[i][1] = -hess[i][1]; |
521 |
hess[i][2] = -hess[i][2]; |
522 |
} |
523 |
} |
524 |
|
525 |
|
526 |
/* Add to radiometric Hessian from the given triangle */ |
527 |
static void |
528 |
add2hessian(FVECT hess[3], FVECT ehess1[3], |
529 |
FVECT ehess2[3], FVECT ehess3[3], double v) |
530 |
{ |
531 |
int i, j; |
532 |
|
533 |
for (i = 3; i--; ) |
534 |
for (j = 3; j--; ) |
535 |
hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] ); |
536 |
} |
537 |
|
538 |
|
539 |
/* Compute partial displacement form factor gradient for edge */ |
540 |
static void |
541 |
comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm) |
542 |
{ |
543 |
FVECT ncp; |
544 |
double f1; |
545 |
int i; |
546 |
|
547 |
f1 = 2.0*DOT(nrm, ftp->rcp); |
548 |
VCROSS(ncp, nrm, ftp->e_i); |
549 |
for (i = 3; i--; ) |
550 |
grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] ); |
551 |
} |
552 |
|
553 |
|
554 |
/* Reverse gradient calculation result for edge in other direction */ |
555 |
static void |
556 |
rev_gradient(FVECT grad) |
557 |
{ |
558 |
grad[0] = -grad[0]; |
559 |
grad[1] = -grad[1]; |
560 |
grad[2] = -grad[2]; |
561 |
} |
562 |
|
563 |
|
564 |
/* Add to displacement gradient from the given triangle */ |
565 |
static void |
566 |
add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v) |
567 |
{ |
568 |
int i; |
569 |
|
570 |
for (i = 3; i--; ) |
571 |
grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] ); |
572 |
} |
573 |
|
574 |
|
575 |
/* Compute anisotropic radii and eigenvector directions */ |
576 |
static void |
577 |
eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3]) |
578 |
{ |
579 |
double hess2[2][2]; |
580 |
FVECT a, b; |
581 |
double evalue[2], slope1, xmag1; |
582 |
int i; |
583 |
/* project Hessian to sample plane */ |
584 |
for (i = 3; i--; ) { |
585 |
a[i] = DOT(hessian[i], uv[0]); |
586 |
b[i] = DOT(hessian[i], uv[1]); |
587 |
} |
588 |
hess2[0][0] = DOT(uv[0], a); |
589 |
hess2[0][1] = DOT(uv[0], b); |
590 |
hess2[1][0] = DOT(uv[1], a); |
591 |
hess2[1][1] = DOT(uv[1], b); |
592 |
/* compute eigenvalue(s) */ |
593 |
i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1], |
594 |
hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]); |
595 |
if (i == 1) /* double-root (circle) */ |
596 |
evalue[1] = evalue[0]; |
597 |
if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) | |
598 |
((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) { |
599 |
ra[0] = ra[1] = maxarad; |
600 |
return; |
601 |
} |
602 |
if (evalue[0] > evalue[1]) { |
603 |
ra[0] = sqrt(sqrt(4.0/evalue[0])); |
604 |
ra[1] = sqrt(sqrt(4.0/evalue[1])); |
605 |
slope1 = evalue[1]; |
606 |
} else { |
607 |
ra[0] = sqrt(sqrt(4.0/evalue[1])); |
608 |
ra[1] = sqrt(sqrt(4.0/evalue[0])); |
609 |
slope1 = evalue[0]; |
610 |
} |
611 |
/* compute unit eigenvectors */ |
612 |
if (fabs(hess2[0][1]) <= FTINY) |
613 |
return; /* uv OK as is */ |
614 |
slope1 = (slope1 - hess2[0][0]) / hess2[0][1]; |
615 |
xmag1 = sqrt(1.0/(1.0 + slope1*slope1)); |
616 |
for (i = 3; i--; ) { |
617 |
b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i]; |
618 |
a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i]; |
619 |
} |
620 |
VCOPY(uv[0], a); |
621 |
VCOPY(uv[1], b); |
622 |
} |
623 |
|
624 |
|
625 |
static void |
626 |
ambHessian( /* anisotropic radii & pos. gradient */ |
627 |
AMBHEMI *hp, |
628 |
FVECT uv[2], /* returned */ |
629 |
float ra[2], /* returned (optional) */ |
630 |
float pg[2] /* returned (optional) */ |
631 |
) |
632 |
{ |
633 |
static char memerrmsg[] = "out of memory in ambHessian()"; |
634 |
FVECT (*hessrow)[3] = NULL; |
635 |
FVECT *gradrow = NULL; |
636 |
FVECT hessian[3]; |
637 |
FVECT gradient; |
638 |
FFTRI fftr; |
639 |
int i, j; |
640 |
/* be sure to assign unit vectors */ |
641 |
VCOPY(uv[0], hp->ux); |
642 |
VCOPY(uv[1], hp->uy); |
643 |
/* clock-wise vertex traversal from sample POV */ |
644 |
if (ra != NULL) { /* initialize Hessian row buffer */ |
645 |
hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1)); |
646 |
if (hessrow == NULL) |
647 |
error(SYSTEM, memerrmsg); |
648 |
memset(hessian, 0, sizeof(hessian)); |
649 |
} else if (pg == NULL) /* bogus call? */ |
650 |
return; |
651 |
if (pg != NULL) { /* initialize form factor row buffer */ |
652 |
gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1)); |
653 |
if (gradrow == NULL) |
654 |
error(SYSTEM, memerrmsg); |
655 |
memset(gradient, 0, sizeof(gradient)); |
656 |
} |
657 |
/* compute first row of edges */ |
658 |
for (j = 0; j < hp->ns-1; j++) { |
659 |
comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1)); |
660 |
if (hessrow != NULL) |
661 |
comp_hessian(hessrow[j], &fftr, hp->onrm); |
662 |
if (gradrow != NULL) |
663 |
comp_gradient(gradrow[j], &fftr, hp->onrm); |
664 |
} |
665 |
/* sum each row of triangles */ |
666 |
for (i = 0; i < hp->ns-1; i++) { |
667 |
FVECT hesscol[3]; /* compute first vertical edge */ |
668 |
FVECT gradcol; |
669 |
comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0)); |
670 |
if (hessrow != NULL) |
671 |
comp_hessian(hesscol, &fftr, hp->onrm); |
672 |
if (gradrow != NULL) |
673 |
comp_gradient(gradcol, &fftr, hp->onrm); |
674 |
for (j = 0; j < hp->ns-1; j++) { |
675 |
FVECT hessdia[3]; /* compute triangle contributions */ |
676 |
FVECT graddia; |
677 |
double backg; |
678 |
backg = back_ambval(hp, AI(hp,i,j), |
679 |
AI(hp,i,j+1), AI(hp,i+1,j)); |
680 |
/* diagonal (inner) edge */ |
681 |
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j)); |
682 |
if (hessrow != NULL) { |
683 |
comp_hessian(hessdia, &fftr, hp->onrm); |
684 |
rev_hessian(hesscol); |
685 |
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
686 |
} |
687 |
if (gradrow != NULL) { |
688 |
comp_gradient(graddia, &fftr, hp->onrm); |
689 |
rev_gradient(gradcol); |
690 |
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
691 |
} |
692 |
/* initialize edge in next row */ |
693 |
comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j)); |
694 |
if (hessrow != NULL) |
695 |
comp_hessian(hessrow[j], &fftr, hp->onrm); |
696 |
if (gradrow != NULL) |
697 |
comp_gradient(gradrow[j], &fftr, hp->onrm); |
698 |
/* new column edge & paired triangle */ |
699 |
backg = back_ambval(hp, AI(hp,i+1,j+1), |
700 |
AI(hp,i+1,j), AI(hp,i,j+1)); |
701 |
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1)); |
702 |
if (hessrow != NULL) { |
703 |
comp_hessian(hesscol, &fftr, hp->onrm); |
704 |
rev_hessian(hessdia); |
705 |
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg); |
706 |
if (i < hp->ns-2) |
707 |
rev_hessian(hessrow[j]); |
708 |
} |
709 |
if (gradrow != NULL) { |
710 |
comp_gradient(gradcol, &fftr, hp->onrm); |
711 |
rev_gradient(graddia); |
712 |
add2gradient(gradient, gradrow[j], graddia, gradcol, backg); |
713 |
if (i < hp->ns-2) |
714 |
rev_gradient(gradrow[j]); |
715 |
} |
716 |
} |
717 |
} |
718 |
/* release row buffers */ |
719 |
if (hessrow != NULL) free(hessrow); |
720 |
if (gradrow != NULL) free(gradrow); |
721 |
|
722 |
if (ra != NULL) /* extract eigenvectors & radii */ |
723 |
eigenvectors(uv, ra, hessian); |
724 |
if (pg != NULL) { /* tangential position gradient */ |
725 |
pg[0] = DOT(gradient, uv[0]); |
726 |
pg[1] = DOT(gradient, uv[1]); |
727 |
} |
728 |
} |
729 |
|
730 |
|
731 |
/* Compute direction gradient from a hemispherical sampling */ |
732 |
static void |
733 |
ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2]) |
734 |
{ |
735 |
AMBSAMP *ap; |
736 |
double dgsum[2]; |
737 |
int n; |
738 |
FVECT vd; |
739 |
double gfact; |
740 |
|
741 |
dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */ |
742 |
for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) { |
743 |
/* use vector for azimuth + 90deg */ |
744 |
VSUB(vd, ap->p, hp->rp->rop); |
745 |
/* brightness over cosine factor */ |
746 |
gfact = ap->v[0] / DOT(hp->onrm, vd); |
747 |
/* sine = proj_radius/vd_length */ |
748 |
dgsum[0] -= DOT(uv[1], vd) * gfact; |
749 |
dgsum[1] += DOT(uv[0], vd) * gfact; |
750 |
} |
751 |
dg[0] = dgsum[0] / (hp->ns*hp->ns); |
752 |
dg[1] = dgsum[1] / (hp->ns*hp->ns); |
753 |
} |
754 |
|
755 |
|
756 |
/* Compute potential light leak direction flags for cache value */ |
757 |
static uint32 |
758 |
ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1) |
759 |
{ |
760 |
const double max_d = 1.0/(minarad*ambacc + 0.001); |
761 |
const double ang_res = 0.5*PI/hp->ns; |
762 |
const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01); |
763 |
double avg_d = 0; |
764 |
uint32 flgs = 0; |
765 |
FVECT vec; |
766 |
double u, v; |
767 |
double ang, a1; |
768 |
int i, j; |
769 |
/* don't bother for a few samples */ |
770 |
if (hp->ns < 8) |
771 |
return(0); |
772 |
/* check distances overhead */ |
773 |
for (i = hp->ns*3/4; i-- > hp->ns>>2; ) |
774 |
for (j = hp->ns*3/4; j-- > hp->ns>>2; ) |
775 |
avg_d += ambsam(hp,i,j).d; |
776 |
avg_d *= 4.0/(hp->ns*hp->ns); |
777 |
if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */ |
778 |
return(0); |
779 |
if (avg_d >= max_d) /* insurance */ |
780 |
return(0); |
781 |
/* else circle around perimeter */ |
782 |
for (i = 0; i < hp->ns; i++) |
783 |
for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) { |
784 |
AMBSAMP *ap = &ambsam(hp,i,j); |
785 |
if ((ap->d <= FTINY) | (ap->d >= max_d)) |
786 |
continue; /* too far or too near */ |
787 |
VSUB(vec, ap->p, hp->rp->rop); |
788 |
u = DOT(vec, uv[0]); |
789 |
v = DOT(vec, uv[1]); |
790 |
if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v) |
791 |
continue; /* occluder outside ellipse */ |
792 |
ang = atan2a(v, u); /* else set direction flags */ |
793 |
for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step) |
794 |
flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0))); |
795 |
} |
796 |
return(flgs); |
797 |
} |
798 |
|
799 |
|
800 |
int |
801 |
doambient( /* compute ambient component */ |
802 |
SCOLOR rcol, /* input/output color */ |
803 |
RAY *r, |
804 |
double wt, /* negative for back side */ |
805 |
FVECT uv[2], /* returned (optional) */ |
806 |
float ra[2], /* returned (optional) */ |
807 |
float pg[2], /* returned (optional) */ |
808 |
float dg[2], /* returned (optional) */ |
809 |
uint32 *crlp /* returned (optional) */ |
810 |
) |
811 |
{ |
812 |
AMBHEMI *hp = samp_hemi(rcol, r, wt); |
813 |
FVECT my_uv[2]; |
814 |
double d, K; |
815 |
AMBSAMP *ap; |
816 |
int i; |
817 |
/* clear return values */ |
818 |
if (uv != NULL) |
819 |
memset(uv, 0, sizeof(FVECT)*2); |
820 |
if (ra != NULL) |
821 |
ra[0] = ra[1] = 0.0; |
822 |
if (pg != NULL) |
823 |
pg[0] = pg[1] = 0.0; |
824 |
if (dg != NULL) |
825 |
dg[0] = dg[1] = 0.0; |
826 |
if (crlp != NULL) |
827 |
*crlp = 0; |
828 |
if (hp == NULL) /* sampling falure? */ |
829 |
return(0); |
830 |
|
831 |
if ((ra == NULL) & (pg == NULL) & (dg == NULL) || |
832 |
(hp->sampOK < 0) | (hp->ns < MINADIV)) { |
833 |
free(hp); /* Hessian not requested/possible */ |
834 |
return(-1); /* value-only return value */ |
835 |
} |
836 |
if ((d = scolor_mean(rcol)) > FTINY) { |
837 |
d = 0.99*(hp->ns*hp->ns)/d; /* normalize avg. values */ |
838 |
K = 0.01; |
839 |
} else { /* or fall back on geometric Hessian */ |
840 |
K = 1.0; |
841 |
pg = NULL; |
842 |
dg = NULL; |
843 |
crlp = NULL; |
844 |
} |
845 |
ap = hp->sa; /* single channel from here on... */ |
846 |
for (i = hp->ns*hp->ns; i--; ap++) |
847 |
ap->v[0] = scolor_mean(ap->v)*d + K; |
848 |
|
849 |
if (uv == NULL) /* make sure we have axis pointers */ |
850 |
uv = my_uv; |
851 |
/* compute radii & pos. gradient */ |
852 |
ambHessian(hp, uv, ra, pg); |
853 |
|
854 |
if (dg != NULL) /* compute direction gradient */ |
855 |
ambdirgrad(hp, uv, dg); |
856 |
|
857 |
if (ra != NULL) { /* scale/clamp radii */ |
858 |
if (pg != NULL) { |
859 |
if (ra[0]*(d = fabs(pg[0])) > 1.0) |
860 |
ra[0] = 1.0/d; |
861 |
if (ra[1]*(d = fabs(pg[1])) > 1.0) |
862 |
ra[1] = 1.0/d; |
863 |
if (ra[0] > ra[1]) |
864 |
ra[0] = ra[1]; |
865 |
} |
866 |
if (ra[0] < minarad) { |
867 |
ra[0] = minarad; |
868 |
if (ra[1] < minarad) |
869 |
ra[1] = minarad; |
870 |
} |
871 |
ra[0] *= d = 1.0/sqrt(fabs(wt)); |
872 |
if ((ra[1] *= d) > 2.0*ra[0]) |
873 |
ra[1] = 2.0*ra[0]; |
874 |
if (ra[1] > maxarad) { |
875 |
ra[1] = maxarad; |
876 |
if (ra[0] > maxarad) |
877 |
ra[0] = maxarad; |
878 |
} |
879 |
/* flag encroached directions */ |
880 |
if (crlp != NULL) /* XXX doesn't update with changes to ambacc */ |
881 |
*crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc); |
882 |
if (pg != NULL) { /* cap gradient if necessary */ |
883 |
d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1]; |
884 |
if (d > 1.0) { |
885 |
d = 1.0/sqrt(d); |
886 |
pg[0] *= d; |
887 |
pg[1] *= d; |
888 |
} |
889 |
} |
890 |
} |
891 |
free(hp); /* clean up and return */ |
892 |
return(1); |
893 |
} |