ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.92
Committed: Fri Apr 5 01:10:26 2024 UTC (2 months, 1 week ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.91: +32 -18 lines
Log Message:
fix: Improved tracking of reflected vs. transmitted rays for antimatter

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.92 static const char RCSid[] = "$Id: ambcomp.c,v 2.91 2023/11/17 20:02:07 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * Routines to compute "ambient" values using Monte Carlo
6 greg 2.9 *
7 greg 2.27 * Hessian calculations based on "Practical Hessian-Based Error Control
8     * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9     * from ACM SIGGRAPH Asia 2012 conference proceedings.
10     *
11 greg 2.46 * Added book-keeping optimization to avoid calculations that would
12     * cancel due to traversal both directions on edges that are adjacent
13     * to same-valued triangles. This cuts about half of Hessian math.
14     *
15 greg 2.9 * Declarations of external symbols in ambient.h
16     */
17    
18 greg 2.10 #include "copyright.h"
19 greg 1.1
20     #include "ray.h"
21 greg 2.25 #include "ambient.h"
22     #include "random.h"
23 greg 1.1
24 greg 2.86 #ifndef MINADIV
25     #define MINADIV 7 /* minimum # divisions in each dimension */
26     #endif
27    
28 greg 2.26 typedef struct {
29 greg 2.90 FVECT p; /* intersection point */
30 greg 2.83 float d; /* reciprocal distance */
31 greg 2.90 SCOLOR v; /* hemisphere sample value */
32 greg 2.44 } AMBSAMP; /* sample value */
33    
34     typedef struct {
35 greg 2.26 RAY *rp; /* originating ray sample */
36     int ns; /* number of samples per axis */
37 greg 2.61 int sampOK; /* acquired full sample set? */
38 greg 2.92 int atyp; /* RAMBIENT or TAMBIENT */
39 greg 2.90 SCOLOR acoef; /* division contribution coefficient */
40     SCOLOR acol; /* accumulated color */
41 greg 2.92 FVECT onrm; /* oriented unperturbed surface normal */
42 greg 2.61 FVECT ux, uy; /* tangent axis unit vectors */
43 greg 2.44 AMBSAMP sa[1]; /* sample array (extends struct) */
44 greg 2.26 } AMBHEMI; /* ambient sample hemisphere */
45    
46 greg 2.56 #define AI(h,i,j) ((i)*(h)->ns + (j))
47     #define ambsam(h,i,j) (h)->sa[AI(h,i,j)]
48 greg 2.26
49 greg 2.27 typedef struct {
50 greg 2.35 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
51     double I1, I2;
52 greg 2.27 } FFTRI; /* vectors and coefficients for Hessian calculation */
53    
54 greg 2.26
55 greg 2.61 static int
56 greg 2.73 ambcollision( /* proposed direciton collides? */
57     AMBHEMI *hp,
58     int i,
59     int j,
60     FVECT dv
61     )
62     {
63 greg 2.74 double cos_thresh;
64     int ii, jj;
65 greg 2.75 /* min. spacing = 1/4th division */
66     cos_thresh = (PI/4.)/(double)hp->ns;
67 greg 2.74 cos_thresh = 1. - .5*cos_thresh*cos_thresh;
68     /* check existing neighbors */
69 greg 2.73 for (ii = i-1; ii <= i+1; ii++) {
70     if (ii < 0) continue;
71     if (ii >= hp->ns) break;
72     for (jj = j-1; jj <= j+1; jj++) {
73     AMBSAMP *ap;
74     FVECT avec;
75     double dprod;
76     if (jj < 0) continue;
77     if (jj >= hp->ns) break;
78     if ((ii==i) & (jj==j)) continue;
79     ap = &ambsam(hp,ii,jj);
80 greg 2.74 if (ap->d <= .5/FHUGE)
81     continue; /* no one home */
82 greg 2.73 VSUB(avec, ap->p, hp->rp->rop);
83     dprod = DOT(avec, dv);
84     if (dprod >= cos_thresh*VLEN(avec))
85     return(1); /* collision */
86     }
87     }
88 greg 2.74 return(0); /* nothing to worry about */
89 greg 2.73 }
90    
91    
92     static int
93 greg 2.61 ambsample( /* initial ambient division sample */
94     AMBHEMI *hp,
95     int i,
96     int j,
97     int n
98 greg 2.26 )
99     {
100 greg 2.61 AMBSAMP *ap = &ambsam(hp,i,j);
101     RAY ar;
102 greg 2.41 int hlist[3], ii;
103 greg 2.88 RREAL spt[2];
104     double zd;
105 greg 2.61 /* generate hemispherical sample */
106 greg 2.26 /* ambient coefficient for weight */
107     if (ambacc > FTINY)
108 greg 2.90 setscolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
109 greg 2.26 else
110 greg 2.90 copyscolor(ar.rcoef, hp->acoef);
111 greg 2.92 if (rayorigin(&ar, hp->atyp, hp->rp, ar.rcoef) < 0)
112 greg 2.41 return(0);
113 greg 2.26 if (ambacc > FTINY) {
114 greg 2.90 smultscolor(ar.rcoef, hp->acoef);
115     scalescolor(ar.rcoef, 1./AVGREFL);
116 greg 2.41 }
117     hlist[0] = hp->rp->rno;
118 greg 2.46 hlist[1] = j;
119     hlist[2] = i;
120 greg 2.41 multisamp(spt, 2, urand(ilhash(hlist,3)+n));
121 greg 2.73 resample:
122 greg 2.88 square2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
123 greg 2.26 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
124     for (ii = 3; ii--; )
125 greg 2.61 ar.rdir[ii] = spt[0]*hp->ux[ii] +
126 greg 2.26 spt[1]*hp->uy[ii] +
127 greg 2.92 zd*hp->onrm[ii];
128 greg 2.61 checknorm(ar.rdir);
129 greg 2.73 /* avoid coincident samples */
130     if (!n && ambcollision(hp, i, j, ar.rdir)) {
131     spt[0] = frandom(); spt[1] = frandom();
132 greg 2.75 goto resample; /* reject this sample */
133 greg 2.73 }
134 greg 2.56 dimlist[ndims++] = AI(hp,i,j) + 90171;
135 greg 2.61 rayvalue(&ar); /* evaluate ray */
136     ndims--;
137 greg 2.83 zd = raydistance(&ar);
138     if (zd <= FTINY)
139 greg 2.61 return(0); /* should never happen */
140 greg 2.90 smultscolor(ar.rcol, ar.rcoef); /* apply coefficient */
141 greg 2.83 if (zd*ap->d < 1.0) /* new/closer distance? */
142     ap->d = 1.0/zd;
143 greg 2.61 if (!n) { /* record first vertex & value */
144 greg 2.83 if (zd > 10.0*thescene.cusize + 1000.)
145     zd = 10.0*thescene.cusize + 1000.;
146     VSUM(ap->p, ar.rorg, ar.rdir, zd);
147 greg 2.90 copyscolor(ap->v, ar.rcol);
148 greg 2.61 } else { /* else update recorded value */
149 greg 2.90 sopscolor(hp->acol, -=, ap->v);
150 greg 2.61 zd = 1.0/(double)(n+1);
151 greg 2.90 scalescolor(ar.rcol, zd);
152 greg 2.61 zd *= (double)n;
153 greg 2.90 scalescolor(ap->v, zd);
154     saddscolor(ap->v, ar.rcol);
155 greg 2.61 }
156 greg 2.90 saddscolor(hp->acol, ap->v); /* add to our sum */
157 greg 2.41 return(1);
158     }
159    
160    
161 greg 2.82 /* Estimate variance based on ambient division differences */
162 greg 2.41 static float *
163     getambdiffs(AMBHEMI *hp)
164     {
165 greg 2.77 const double normf = 1./bright(hp->acoef);
166 greg 2.55 float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
167 greg 2.41 float *ep;
168 greg 2.42 AMBSAMP *ap;
169 greg 2.81 double b, b1, d2;
170 greg 2.41 int i, j;
171    
172     if (earr == NULL) /* out of memory? */
173     return(NULL);
174 greg 2.81 /* sum squared neighbor diffs */
175 greg 2.42 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
176     for (j = 0; j < hp->ns; j++, ap++, ep++) {
177 greg 2.90 b = pbright(ap[0].v);
178 greg 2.41 if (i) { /* from above */
179 greg 2.90 b1 = pbright(ap[-hp->ns].v);
180 greg 2.82 d2 = b - b1;
181 greg 2.89 d2 *= d2*normf/(b + b1 + FTINY);
182 greg 2.41 ep[0] += d2;
183     ep[-hp->ns] += d2;
184     }
185 greg 2.55 if (!j) continue;
186     /* from behind */
187 greg 2.90 b1 = pbright(ap[-1].v);
188 greg 2.82 d2 = b - b1;
189 greg 2.89 d2 *= d2*normf/(b + b1 + FTINY);
190 greg 2.55 ep[0] += d2;
191     ep[-1] += d2;
192     if (!i) continue;
193     /* diagonal */
194 greg 2.90 b1 = pbright(ap[-hp->ns-1].v);
195 greg 2.82 d2 = b - b1;
196 greg 2.89 d2 *= d2*normf/(b + b1 + FTINY);
197 greg 2.55 ep[0] += d2;
198     ep[-hp->ns-1] += d2;
199 greg 2.41 }
200     /* correct for number of neighbors */
201 greg 2.55 earr[0] *= 8./3.;
202     earr[hp->ns-1] *= 8./3.;
203     earr[(hp->ns-1)*hp->ns] *= 8./3.;
204     earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.;
205 greg 2.41 for (i = 1; i < hp->ns-1; i++) {
206 greg 2.55 earr[i*hp->ns] *= 8./5.;
207     earr[i*hp->ns + hp->ns-1] *= 8./5.;
208 greg 2.41 }
209     for (j = 1; j < hp->ns-1; j++) {
210 greg 2.55 earr[j] *= 8./5.;
211     earr[(hp->ns-1)*hp->ns + j] *= 8./5.;
212 greg 2.41 }
213     return(earr);
214     }
215    
216    
217 greg 2.43 /* Perform super-sampling on hemisphere (introduces bias) */
218 greg 2.41 static void
219 greg 2.61 ambsupersamp(AMBHEMI *hp, int cnt)
220 greg 2.41 {
221     float *earr = getambdiffs(hp);
222 greg 2.54 double e2rem = 0;
223 greg 2.41 float *ep;
224 greg 2.55 int i, j, n, nss;
225 greg 2.41
226     if (earr == NULL) /* just skip calc. if no memory */
227     return;
228 greg 2.54 /* accumulate estimated variances */
229 greg 2.55 for (ep = earr + hp->ns*hp->ns; ep > earr; )
230     e2rem += *--ep;
231 greg 2.41 ep = earr; /* perform super-sampling */
232 greg 2.81 for (i = 0; i < hp->ns; i++)
233     for (j = 0; j < hp->ns; j++) {
234 greg 2.55 if (e2rem <= FTINY)
235     goto done; /* nothing left to do */
236     nss = *ep/e2rem*cnt + frandom();
237 greg 2.62 for (n = 1; n <= nss && ambsample(hp,i,j,n); n++)
238 greg 2.77 if (!--cnt) goto done;
239 greg 2.61 e2rem -= *ep++; /* update remainder */
240 greg 2.41 }
241 greg 2.55 done:
242 greg 2.41 free(earr);
243     }
244    
245    
246 greg 2.61 static AMBHEMI *
247     samp_hemi( /* sample indirect hemisphere */
248 greg 2.90 SCOLOR rcol,
249 greg 2.61 RAY *r,
250     double wt
251     )
252     {
253 greg 2.92 int backside = (wt < 0);
254 greg 2.61 AMBHEMI *hp;
255     double d;
256     int n, i, j;
257 greg 2.77 /* insignificance check */
258 greg 2.90 d = sintens(rcol);
259     if (d <= FTINY)
260 greg 2.77 return(NULL);
261 greg 2.61 /* set number of divisions */
262 greg 2.92 if (backside) wt = -wt;
263 greg 2.61 if (ambacc <= FTINY &&
264 greg 2.90 wt > (d *= 0.8*r->rweight/(ambdiv*minweight)))
265 greg 2.61 wt = d; /* avoid ray termination */
266     n = sqrt(ambdiv * wt) + 0.5;
267 greg 2.86 i = 1 + (MINADIV-1)*(ambacc > FTINY);
268     if (n < i) /* use minimum number of samples? */
269 greg 2.61 n = i;
270     /* allocate sampling array */
271     hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
272     if (hp == NULL)
273     error(SYSTEM, "out of memory in samp_hemi");
274 greg 2.92
275     if (backside) {
276     hp->atyp = TAMBIENT;
277     hp->onrm[0] = -r->ron[0];
278     hp->onrm[1] = -r->ron[1];
279     hp->onrm[2] = -r->ron[2];
280     } else {
281     hp->atyp = RAMBIENT;
282     VCOPY(hp->onrm, r->ron);
283     }
284 greg 2.61 hp->rp = r;
285     hp->ns = n;
286 greg 2.90 scolorblack(hp->acol);
287 greg 2.62 memset(hp->sa, 0, sizeof(AMBSAMP)*n*n);
288 greg 2.61 hp->sampOK = 0;
289     /* assign coefficient */
290 greg 2.90 copyscolor(hp->acoef, rcol);
291 greg 2.61 d = 1.0/(n*n);
292 greg 2.90 scalescolor(hp->acoef, d);
293 greg 2.61 /* make tangent plane axes */
294 greg 2.92 if (!getperpendicular(hp->ux, hp->onrm, 1))
295 greg 2.61 error(CONSISTENCY, "bad ray direction in samp_hemi");
296 greg 2.92 VCROSS(hp->uy, hp->onrm, hp->ux);
297 greg 2.61 /* sample divisions */
298     for (i = hp->ns; i--; )
299     for (j = hp->ns; j--; )
300     hp->sampOK += ambsample(hp, i, j, 0);
301 greg 2.90 copyscolor(rcol, hp->acol);
302 greg 2.61 if (!hp->sampOK) { /* utter failure? */
303     free(hp);
304     return(NULL);
305     }
306     if (hp->sampOK < hp->ns*hp->ns) {
307     hp->sampOK *= -1; /* soft failure */
308     return(hp);
309     }
310 greg 2.86 if (hp->sampOK <= MINADIV*MINADIV)
311     return(hp); /* don't bother super-sampling */
312 greg 2.61 n = ambssamp*wt + 0.5;
313     if (n > 8) { /* perform super-sampling? */
314     ambsupersamp(hp, n);
315 greg 2.90 copyscolor(rcol, hp->acol);
316 greg 2.61 }
317     return(hp); /* all is well */
318     }
319    
320    
321 greg 2.46 /* Return brightness of farthest ambient sample */
322     static double
323 greg 2.56 back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3)
324 greg 2.46 {
325 greg 2.56 if (hp->sa[n1].d <= hp->sa[n2].d) {
326     if (hp->sa[n1].d <= hp->sa[n3].d)
327 greg 2.90 return(hp->sa[n1].v[0]);
328     return(hp->sa[n3].v[0]);
329 greg 2.56 }
330     if (hp->sa[n2].d <= hp->sa[n3].d)
331 greg 2.90 return(hp->sa[n2].v[0]);
332     return(hp->sa[n3].v[0]);
333 greg 2.46 }
334    
335    
336 greg 2.27 /* Compute vectors and coefficients for Hessian/gradient calcs */
337     static void
338 greg 2.56 comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1)
339 greg 2.27 {
340 greg 2.56 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
341     int ii;
342    
343     VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop);
344     VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop);
345     VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p);
346 greg 2.35 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
347     rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
348 greg 2.27 dot_e = DOT(ftp->e_i,ftp->e_i);
349     dot_er = DOT(ftp->e_i, ftp->r_i);
350 greg 2.32 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
351     rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
352     ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
353 greg 2.35 sqrt( rdot_cp );
354 greg 2.32 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
355 greg 2.35 dot_e*ftp->I1 )*0.5*rdot_cp;
356 greg 2.32 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
357 greg 2.46 for (ii = 3; ii--; )
358     ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
359 greg 2.27 }
360    
361    
362 greg 2.28 /* Compose 3x3 matrix from two vectors */
363 greg 2.27 static void
364     compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
365     {
366     mat[0][0] = 2.0*va[0]*vb[0];
367     mat[1][1] = 2.0*va[1]*vb[1];
368     mat[2][2] = 2.0*va[2]*vb[2];
369     mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
370     mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
371     mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
372     }
373    
374    
375     /* Compute partial 3x3 Hessian matrix for edge */
376     static void
377     comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
378     {
379 greg 2.35 FVECT ncp;
380 greg 2.27 FVECT m1[3], m2[3], m3[3], m4[3];
381     double d1, d2, d3, d4;
382     double I3, J3, K3;
383     int i, j;
384     /* compute intermediate coefficients */
385     d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
386     d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
387     d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
388     d4 = DOT(ftp->e_i, ftp->r_i);
389 greg 2.35 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
390     / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
391 greg 2.27 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
392     K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
393     /* intermediate matrices */
394 greg 2.35 VCROSS(ncp, nrm, ftp->e_i);
395     compose_matrix(m1, ncp, ftp->rI2_eJ2);
396 greg 2.27 compose_matrix(m2, ftp->r_i, ftp->r_i);
397     compose_matrix(m3, ftp->e_i, ftp->e_i);
398     compose_matrix(m4, ftp->r_i, ftp->e_i);
399 greg 2.35 d1 = DOT(nrm, ftp->rcp);
400 greg 2.27 d2 = -d1*ftp->I2;
401     d1 *= 2.0;
402     for (i = 3; i--; ) /* final matrix sum */
403     for (j = 3; j--; ) {
404     hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
405     2.0*J3*m4[i][j] );
406     hess[i][j] += d2*(i==j);
407 greg 2.46 hess[i][j] *= -1.0/PI;
408 greg 2.27 }
409     }
410    
411    
412     /* Reverse hessian calculation result for edge in other direction */
413     static void
414     rev_hessian(FVECT hess[3])
415     {
416     int i;
417    
418     for (i = 3; i--; ) {
419     hess[i][0] = -hess[i][0];
420     hess[i][1] = -hess[i][1];
421     hess[i][2] = -hess[i][2];
422     }
423     }
424    
425    
426     /* Add to radiometric Hessian from the given triangle */
427     static void
428     add2hessian(FVECT hess[3], FVECT ehess1[3],
429 greg 2.46 FVECT ehess2[3], FVECT ehess3[3], double v)
430 greg 2.27 {
431     int i, j;
432    
433     for (i = 3; i--; )
434     for (j = 3; j--; )
435     hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
436     }
437    
438    
439     /* Compute partial displacement form factor gradient for edge */
440     static void
441     comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
442     {
443 greg 2.35 FVECT ncp;
444 greg 2.27 double f1;
445     int i;
446    
447 greg 2.35 f1 = 2.0*DOT(nrm, ftp->rcp);
448     VCROSS(ncp, nrm, ftp->e_i);
449 greg 2.27 for (i = 3; i--; )
450 greg 2.46 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
451 greg 2.27 }
452    
453    
454     /* Reverse gradient calculation result for edge in other direction */
455     static void
456     rev_gradient(FVECT grad)
457     {
458     grad[0] = -grad[0];
459     grad[1] = -grad[1];
460     grad[2] = -grad[2];
461     }
462    
463    
464     /* Add to displacement gradient from the given triangle */
465     static void
466 greg 2.46 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
467 greg 2.27 {
468     int i;
469    
470     for (i = 3; i--; )
471     grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
472     }
473    
474    
475     /* Compute anisotropic radii and eigenvector directions */
476 greg 2.53 static void
477 greg 2.27 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
478     {
479     double hess2[2][2];
480     FVECT a, b;
481     double evalue[2], slope1, xmag1;
482     int i;
483     /* project Hessian to sample plane */
484     for (i = 3; i--; ) {
485     a[i] = DOT(hessian[i], uv[0]);
486     b[i] = DOT(hessian[i], uv[1]);
487     }
488     hess2[0][0] = DOT(uv[0], a);
489     hess2[0][1] = DOT(uv[0], b);
490     hess2[1][0] = DOT(uv[1], a);
491     hess2[1][1] = DOT(uv[1], b);
492 greg 2.38 /* compute eigenvalue(s) */
493     i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
494     hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
495     if (i == 1) /* double-root (circle) */
496     evalue[1] = evalue[0];
497     if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
498 greg 2.53 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
499     ra[0] = ra[1] = maxarad;
500     return;
501     }
502 greg 2.27 if (evalue[0] > evalue[1]) {
503 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[0]));
504     ra[1] = sqrt(sqrt(4.0/evalue[1]));
505 greg 2.27 slope1 = evalue[1];
506     } else {
507 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[1]));
508     ra[1] = sqrt(sqrt(4.0/evalue[0]));
509 greg 2.27 slope1 = evalue[0];
510     }
511     /* compute unit eigenvectors */
512     if (fabs(hess2[0][1]) <= FTINY)
513     return; /* uv OK as is */
514     slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
515     xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
516     for (i = 3; i--; ) {
517     b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
518     a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
519     }
520     VCOPY(uv[0], a);
521     VCOPY(uv[1], b);
522     }
523    
524    
525 greg 2.26 static void
526     ambHessian( /* anisotropic radii & pos. gradient */
527     AMBHEMI *hp,
528     FVECT uv[2], /* returned */
529 greg 2.28 float ra[2], /* returned (optional) */
530     float pg[2] /* returned (optional) */
531 greg 2.26 )
532     {
533 greg 2.27 static char memerrmsg[] = "out of memory in ambHessian()";
534     FVECT (*hessrow)[3] = NULL;
535     FVECT *gradrow = NULL;
536     FVECT hessian[3];
537     FVECT gradient;
538     FFTRI fftr;
539     int i, j;
540     /* be sure to assign unit vectors */
541     VCOPY(uv[0], hp->ux);
542     VCOPY(uv[1], hp->uy);
543     /* clock-wise vertex traversal from sample POV */
544     if (ra != NULL) { /* initialize Hessian row buffer */
545 greg 2.28 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
546 greg 2.27 if (hessrow == NULL)
547     error(SYSTEM, memerrmsg);
548     memset(hessian, 0, sizeof(hessian));
549     } else if (pg == NULL) /* bogus call? */
550     return;
551     if (pg != NULL) { /* initialize form factor row buffer */
552 greg 2.28 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
553 greg 2.27 if (gradrow == NULL)
554     error(SYSTEM, memerrmsg);
555     memset(gradient, 0, sizeof(gradient));
556     }
557     /* compute first row of edges */
558     for (j = 0; j < hp->ns-1; j++) {
559 greg 2.56 comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
560 greg 2.27 if (hessrow != NULL)
561 greg 2.92 comp_hessian(hessrow[j], &fftr, hp->onrm);
562 greg 2.27 if (gradrow != NULL)
563 greg 2.92 comp_gradient(gradrow[j], &fftr, hp->onrm);
564 greg 2.27 }
565     /* sum each row of triangles */
566     for (i = 0; i < hp->ns-1; i++) {
567     FVECT hesscol[3]; /* compute first vertical edge */
568     FVECT gradcol;
569 greg 2.56 comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
570 greg 2.27 if (hessrow != NULL)
571 greg 2.92 comp_hessian(hesscol, &fftr, hp->onrm);
572 greg 2.27 if (gradrow != NULL)
573 greg 2.92 comp_gradient(gradcol, &fftr, hp->onrm);
574 greg 2.27 for (j = 0; j < hp->ns-1; j++) {
575     FVECT hessdia[3]; /* compute triangle contributions */
576     FVECT graddia;
577 greg 2.46 double backg;
578 greg 2.56 backg = back_ambval(hp, AI(hp,i,j),
579     AI(hp,i,j+1), AI(hp,i+1,j));
580 greg 2.27 /* diagonal (inner) edge */
581 greg 2.56 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
582 greg 2.27 if (hessrow != NULL) {
583 greg 2.92 comp_hessian(hessdia, &fftr, hp->onrm);
584 greg 2.27 rev_hessian(hesscol);
585     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
586     }
587 greg 2.39 if (gradrow != NULL) {
588 greg 2.92 comp_gradient(graddia, &fftr, hp->onrm);
589 greg 2.27 rev_gradient(gradcol);
590     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
591     }
592     /* initialize edge in next row */
593 greg 2.56 comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
594 greg 2.27 if (hessrow != NULL)
595 greg 2.92 comp_hessian(hessrow[j], &fftr, hp->onrm);
596 greg 2.27 if (gradrow != NULL)
597 greg 2.92 comp_gradient(gradrow[j], &fftr, hp->onrm);
598 greg 2.27 /* new column edge & paired triangle */
599 greg 2.56 backg = back_ambval(hp, AI(hp,i+1,j+1),
600     AI(hp,i+1,j), AI(hp,i,j+1));
601     comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
602 greg 2.27 if (hessrow != NULL) {
603 greg 2.92 comp_hessian(hesscol, &fftr, hp->onrm);
604 greg 2.27 rev_hessian(hessdia);
605     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
606     if (i < hp->ns-2)
607     rev_hessian(hessrow[j]);
608     }
609     if (gradrow != NULL) {
610 greg 2.92 comp_gradient(gradcol, &fftr, hp->onrm);
611 greg 2.27 rev_gradient(graddia);
612     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
613     if (i < hp->ns-2)
614     rev_gradient(gradrow[j]);
615     }
616     }
617     }
618     /* release row buffers */
619     if (hessrow != NULL) free(hessrow);
620     if (gradrow != NULL) free(gradrow);
621    
622     if (ra != NULL) /* extract eigenvectors & radii */
623     eigenvectors(uv, ra, hessian);
624 greg 2.32 if (pg != NULL) { /* tangential position gradient */
625     pg[0] = DOT(gradient, uv[0]);
626     pg[1] = DOT(gradient, uv[1]);
627 greg 2.27 }
628     }
629    
630    
631     /* Compute direction gradient from a hemispherical sampling */
632     static void
633     ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
634     {
635 greg 2.41 AMBSAMP *ap;
636     double dgsum[2];
637     int n;
638     FVECT vd;
639     double gfact;
640 greg 2.27
641 greg 2.29 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
642 greg 2.27 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
643     /* use vector for azimuth + 90deg */
644     VSUB(vd, ap->p, hp->rp->rop);
645 greg 2.29 /* brightness over cosine factor */
646 greg 2.92 gfact = ap->v[0] / DOT(hp->onrm, vd);
647 greg 2.40 /* sine = proj_radius/vd_length */
648     dgsum[0] -= DOT(uv[1], vd) * gfact;
649     dgsum[1] += DOT(uv[0], vd) * gfact;
650 greg 2.26 }
651 greg 2.29 dg[0] = dgsum[0] / (hp->ns*hp->ns);
652     dg[1] = dgsum[1] / (hp->ns*hp->ns);
653 greg 2.26 }
654    
655 greg 2.27
656 greg 2.49 /* Compute potential light leak direction flags for cache value */
657     static uint32
658     ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
659 greg 2.47 {
660 greg 2.50 const double max_d = 1.0/(minarad*ambacc + 0.001);
661 greg 2.66 const double ang_res = 0.5*PI/hp->ns;
662     const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01);
663 greg 2.51 double avg_d = 0;
664 greg 2.50 uint32 flgs = 0;
665 greg 2.58 FVECT vec;
666 greg 2.62 double u, v;
667 greg 2.58 double ang, a1;
668 greg 2.50 int i, j;
669 greg 2.52 /* don't bother for a few samples */
670 greg 2.72 if (hp->ns < 8)
671 greg 2.52 return(0);
672     /* check distances overhead */
673 greg 2.51 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
674     for (j = hp->ns*3/4; j-- > hp->ns>>2; )
675     avg_d += ambsam(hp,i,j).d;
676     avg_d *= 4.0/(hp->ns*hp->ns);
677 greg 2.52 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
678     return(0);
679     if (avg_d >= max_d) /* insurance */
680 greg 2.51 return(0);
681     /* else circle around perimeter */
682 greg 2.47 for (i = 0; i < hp->ns; i++)
683     for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
684     AMBSAMP *ap = &ambsam(hp,i,j);
685 greg 2.50 if ((ap->d <= FTINY) | (ap->d >= max_d))
686     continue; /* too far or too near */
687 greg 2.47 VSUB(vec, ap->p, hp->rp->rop);
688 greg 2.62 u = DOT(vec, uv[0]);
689     v = DOT(vec, uv[1]);
690     if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v)
691 greg 2.49 continue; /* occluder outside ellipse */
692     ang = atan2a(v, u); /* else set direction flags */
693 greg 2.66 for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step)
694 greg 2.50 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
695 greg 2.47 }
696 greg 2.49 return(flgs);
697 greg 2.47 }
698    
699    
700 greg 2.26 int
701     doambient( /* compute ambient component */
702 greg 2.90 SCOLOR rcol, /* input/output color */
703 greg 2.26 RAY *r,
704 greg 2.92 double wt, /* negative for back side */
705 greg 2.27 FVECT uv[2], /* returned (optional) */
706     float ra[2], /* returned (optional) */
707     float pg[2], /* returned (optional) */
708 greg 2.49 float dg[2], /* returned (optional) */
709     uint32 *crlp /* returned (optional) */
710 greg 2.26 )
711     {
712 greg 2.61 AMBHEMI *hp = samp_hemi(rcol, r, wt);
713 greg 2.41 FVECT my_uv[2];
714 greg 2.61 double d, K;
715 greg 2.41 AMBSAMP *ap;
716 greg 2.61 int i;
717     /* clear return values */
718 greg 2.26 if (uv != NULL)
719     memset(uv, 0, sizeof(FVECT)*2);
720     if (ra != NULL)
721     ra[0] = ra[1] = 0.0;
722     if (pg != NULL)
723     pg[0] = pg[1] = 0.0;
724     if (dg != NULL)
725     dg[0] = dg[1] = 0.0;
726 greg 2.49 if (crlp != NULL)
727     *crlp = 0;
728 greg 2.61 if (hp == NULL) /* sampling falure? */
729     return(0);
730    
731     if ((ra == NULL) & (pg == NULL) & (dg == NULL) ||
732 greg 2.86 (hp->sampOK < 0) | (hp->ns < MINADIV)) {
733 greg 2.61 free(hp); /* Hessian not requested/possible */
734     return(-1); /* value-only return value */
735 greg 2.26 }
736 greg 2.91 if ((d = scolor_mean(rcol)) > FTINY) {
737     d = 0.99*(hp->ns*hp->ns)/d; /* normalize avg. values */
738 greg 2.38 K = 0.01;
739 greg 2.45 } else { /* or fall back on geometric Hessian */
740 greg 2.38 K = 1.0;
741     pg = NULL;
742     dg = NULL;
743 greg 2.53 crlp = NULL;
744 greg 2.38 }
745 greg 2.90 ap = hp->sa; /* single channel from here on... */
746 greg 2.26 for (i = hp->ns*hp->ns; i--; ap++)
747 greg 2.90 ap->v[0] = scolor_mean(ap->v)*d + K;
748 greg 2.26
749     if (uv == NULL) /* make sure we have axis pointers */
750     uv = my_uv;
751     /* compute radii & pos. gradient */
752     ambHessian(hp, uv, ra, pg);
753 greg 2.29
754 greg 2.26 if (dg != NULL) /* compute direction gradient */
755     ambdirgrad(hp, uv, dg);
756 greg 2.29
757 greg 2.28 if (ra != NULL) { /* scale/clamp radii */
758 greg 2.35 if (pg != NULL) {
759     if (ra[0]*(d = fabs(pg[0])) > 1.0)
760     ra[0] = 1.0/d;
761     if (ra[1]*(d = fabs(pg[1])) > 1.0)
762     ra[1] = 1.0/d;
763 greg 2.48 if (ra[0] > ra[1])
764     ra[0] = ra[1];
765 greg 2.35 }
766 greg 2.29 if (ra[0] < minarad) {
767     ra[0] = minarad;
768     if (ra[1] < minarad)
769     ra[1] = minarad;
770     }
771 greg 2.92 ra[0] *= d = 1.0/sqrt(fabs(wt));
772 greg 2.26 if ((ra[1] *= d) > 2.0*ra[0])
773     ra[1] = 2.0*ra[0];
774 greg 2.28 if (ra[1] > maxarad) {
775     ra[1] = maxarad;
776     if (ra[0] > maxarad)
777     ra[0] = maxarad;
778     }
779 greg 2.53 /* flag encroached directions */
780 greg 2.87 if (crlp != NULL) /* XXX doesn't update with changes to ambacc */
781 greg 2.49 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
782 greg 2.35 if (pg != NULL) { /* cap gradient if necessary */
783     d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
784     if (d > 1.0) {
785     d = 1.0/sqrt(d);
786     pg[0] *= d;
787     pg[1] *= d;
788     }
789     }
790 greg 2.26 }
791     free(hp); /* clean up and return */
792     return(1);
793     }