| 1 |
greg |
1.1 |
#ifndef lint
|
| 2 |
greg |
2.88 |
static const char RCSid[] = "$Id: ambcomp.c,v 2.87 2021/12/12 19:55:43 greg Exp $";
|
| 3 |
greg |
1.1 |
#endif
|
| 4 |
|
|
/*
|
| 5 |
|
|
* Routines to compute "ambient" values using Monte Carlo
|
| 6 |
greg |
2.9 |
*
|
| 7 |
greg |
2.27 |
* Hessian calculations based on "Practical Hessian-Based Error Control
|
| 8 |
|
|
* for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
|
| 9 |
|
|
* from ACM SIGGRAPH Asia 2012 conference proceedings.
|
| 10 |
|
|
*
|
| 11 |
greg |
2.46 |
* Added book-keeping optimization to avoid calculations that would
|
| 12 |
|
|
* cancel due to traversal both directions on edges that are adjacent
|
| 13 |
|
|
* to same-valued triangles. This cuts about half of Hessian math.
|
| 14 |
|
|
*
|
| 15 |
greg |
2.9 |
* Declarations of external symbols in ambient.h
|
| 16 |
|
|
*/
|
| 17 |
|
|
|
| 18 |
greg |
2.10 |
#include "copyright.h"
|
| 19 |
greg |
1.1 |
|
| 20 |
|
|
#include "ray.h"
|
| 21 |
greg |
2.25 |
#include "ambient.h"
|
| 22 |
|
|
#include "random.h"
|
| 23 |
greg |
1.1 |
|
| 24 |
greg |
2.86 |
#ifndef MINADIV
|
| 25 |
|
|
#define MINADIV 7 /* minimum # divisions in each dimension */
|
| 26 |
|
|
#endif
|
| 27 |
|
|
|
| 28 |
greg |
2.26 |
typedef struct {
|
| 29 |
greg |
2.44 |
COLOR v; /* hemisphere sample value */
|
| 30 |
greg |
2.83 |
float d; /* reciprocal distance */
|
| 31 |
greg |
2.44 |
FVECT p; /* intersection point */
|
| 32 |
|
|
} AMBSAMP; /* sample value */
|
| 33 |
|
|
|
| 34 |
|
|
typedef struct {
|
| 35 |
greg |
2.26 |
RAY *rp; /* originating ray sample */
|
| 36 |
|
|
int ns; /* number of samples per axis */
|
| 37 |
greg |
2.61 |
int sampOK; /* acquired full sample set? */
|
| 38 |
greg |
2.26 |
COLOR acoef; /* division contribution coefficient */
|
| 39 |
greg |
2.61 |
double acol[3]; /* accumulated color */
|
| 40 |
|
|
FVECT ux, uy; /* tangent axis unit vectors */
|
| 41 |
greg |
2.44 |
AMBSAMP sa[1]; /* sample array (extends struct) */
|
| 42 |
greg |
2.26 |
} AMBHEMI; /* ambient sample hemisphere */
|
| 43 |
|
|
|
| 44 |
greg |
2.56 |
#define AI(h,i,j) ((i)*(h)->ns + (j))
|
| 45 |
|
|
#define ambsam(h,i,j) (h)->sa[AI(h,i,j)]
|
| 46 |
greg |
2.26 |
|
| 47 |
greg |
2.27 |
typedef struct {
|
| 48 |
greg |
2.35 |
FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
|
| 49 |
|
|
double I1, I2;
|
| 50 |
greg |
2.27 |
} FFTRI; /* vectors and coefficients for Hessian calculation */
|
| 51 |
|
|
|
| 52 |
greg |
2.26 |
|
| 53 |
greg |
2.61 |
static int
|
| 54 |
greg |
2.73 |
ambcollision( /* proposed direciton collides? */
|
| 55 |
|
|
AMBHEMI *hp,
|
| 56 |
|
|
int i,
|
| 57 |
|
|
int j,
|
| 58 |
|
|
FVECT dv
|
| 59 |
|
|
)
|
| 60 |
|
|
{
|
| 61 |
greg |
2.74 |
double cos_thresh;
|
| 62 |
|
|
int ii, jj;
|
| 63 |
greg |
2.75 |
/* min. spacing = 1/4th division */
|
| 64 |
|
|
cos_thresh = (PI/4.)/(double)hp->ns;
|
| 65 |
greg |
2.74 |
cos_thresh = 1. - .5*cos_thresh*cos_thresh;
|
| 66 |
|
|
/* check existing neighbors */
|
| 67 |
greg |
2.73 |
for (ii = i-1; ii <= i+1; ii++) {
|
| 68 |
|
|
if (ii < 0) continue;
|
| 69 |
|
|
if (ii >= hp->ns) break;
|
| 70 |
|
|
for (jj = j-1; jj <= j+1; jj++) {
|
| 71 |
|
|
AMBSAMP *ap;
|
| 72 |
|
|
FVECT avec;
|
| 73 |
|
|
double dprod;
|
| 74 |
|
|
if (jj < 0) continue;
|
| 75 |
|
|
if (jj >= hp->ns) break;
|
| 76 |
|
|
if ((ii==i) & (jj==j)) continue;
|
| 77 |
|
|
ap = &ambsam(hp,ii,jj);
|
| 78 |
greg |
2.74 |
if (ap->d <= .5/FHUGE)
|
| 79 |
|
|
continue; /* no one home */
|
| 80 |
greg |
2.73 |
VSUB(avec, ap->p, hp->rp->rop);
|
| 81 |
|
|
dprod = DOT(avec, dv);
|
| 82 |
|
|
if (dprod >= cos_thresh*VLEN(avec))
|
| 83 |
|
|
return(1); /* collision */
|
| 84 |
|
|
}
|
| 85 |
|
|
}
|
| 86 |
greg |
2.74 |
return(0); /* nothing to worry about */
|
| 87 |
greg |
2.73 |
}
|
| 88 |
|
|
|
| 89 |
|
|
|
| 90 |
|
|
static int
|
| 91 |
greg |
2.61 |
ambsample( /* initial ambient division sample */
|
| 92 |
|
|
AMBHEMI *hp,
|
| 93 |
|
|
int i,
|
| 94 |
|
|
int j,
|
| 95 |
|
|
int n
|
| 96 |
greg |
2.26 |
)
|
| 97 |
|
|
{
|
| 98 |
greg |
2.61 |
AMBSAMP *ap = &ambsam(hp,i,j);
|
| 99 |
|
|
RAY ar;
|
| 100 |
greg |
2.41 |
int hlist[3], ii;
|
| 101 |
greg |
2.88 |
RREAL spt[2];
|
| 102 |
|
|
double zd;
|
| 103 |
greg |
2.61 |
/* generate hemispherical sample */
|
| 104 |
greg |
2.26 |
/* ambient coefficient for weight */
|
| 105 |
|
|
if (ambacc > FTINY)
|
| 106 |
greg |
2.61 |
setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
|
| 107 |
greg |
2.26 |
else
|
| 108 |
greg |
2.61 |
copycolor(ar.rcoef, hp->acoef);
|
| 109 |
greg |
2.62 |
if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0)
|
| 110 |
greg |
2.41 |
return(0);
|
| 111 |
greg |
2.26 |
if (ambacc > FTINY) {
|
| 112 |
greg |
2.61 |
multcolor(ar.rcoef, hp->acoef);
|
| 113 |
|
|
scalecolor(ar.rcoef, 1./AVGREFL);
|
| 114 |
greg |
2.41 |
}
|
| 115 |
|
|
hlist[0] = hp->rp->rno;
|
| 116 |
greg |
2.46 |
hlist[1] = j;
|
| 117 |
|
|
hlist[2] = i;
|
| 118 |
greg |
2.41 |
multisamp(spt, 2, urand(ilhash(hlist,3)+n));
|
| 119 |
greg |
2.73 |
resample:
|
| 120 |
greg |
2.88 |
square2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
|
| 121 |
greg |
2.26 |
zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
|
| 122 |
|
|
for (ii = 3; ii--; )
|
| 123 |
greg |
2.61 |
ar.rdir[ii] = spt[0]*hp->ux[ii] +
|
| 124 |
greg |
2.26 |
spt[1]*hp->uy[ii] +
|
| 125 |
|
|
zd*hp->rp->ron[ii];
|
| 126 |
greg |
2.61 |
checknorm(ar.rdir);
|
| 127 |
greg |
2.73 |
/* avoid coincident samples */
|
| 128 |
|
|
if (!n && ambcollision(hp, i, j, ar.rdir)) {
|
| 129 |
|
|
spt[0] = frandom(); spt[1] = frandom();
|
| 130 |
greg |
2.75 |
goto resample; /* reject this sample */
|
| 131 |
greg |
2.73 |
}
|
| 132 |
greg |
2.56 |
dimlist[ndims++] = AI(hp,i,j) + 90171;
|
| 133 |
greg |
2.61 |
rayvalue(&ar); /* evaluate ray */
|
| 134 |
|
|
ndims--;
|
| 135 |
greg |
2.83 |
zd = raydistance(&ar);
|
| 136 |
|
|
if (zd <= FTINY)
|
| 137 |
greg |
2.61 |
return(0); /* should never happen */
|
| 138 |
|
|
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
|
| 139 |
greg |
2.83 |
if (zd*ap->d < 1.0) /* new/closer distance? */
|
| 140 |
|
|
ap->d = 1.0/zd;
|
| 141 |
greg |
2.61 |
if (!n) { /* record first vertex & value */
|
| 142 |
greg |
2.83 |
if (zd > 10.0*thescene.cusize + 1000.)
|
| 143 |
|
|
zd = 10.0*thescene.cusize + 1000.;
|
| 144 |
|
|
VSUM(ap->p, ar.rorg, ar.rdir, zd);
|
| 145 |
greg |
2.61 |
copycolor(ap->v, ar.rcol);
|
| 146 |
|
|
} else { /* else update recorded value */
|
| 147 |
|
|
hp->acol[RED] -= colval(ap->v,RED);
|
| 148 |
|
|
hp->acol[GRN] -= colval(ap->v,GRN);
|
| 149 |
|
|
hp->acol[BLU] -= colval(ap->v,BLU);
|
| 150 |
|
|
zd = 1.0/(double)(n+1);
|
| 151 |
|
|
scalecolor(ar.rcol, zd);
|
| 152 |
|
|
zd *= (double)n;
|
| 153 |
|
|
scalecolor(ap->v, zd);
|
| 154 |
|
|
addcolor(ap->v, ar.rcol);
|
| 155 |
|
|
}
|
| 156 |
|
|
addcolor(hp->acol, ap->v); /* add to our sum */
|
| 157 |
greg |
2.41 |
return(1);
|
| 158 |
|
|
}
|
| 159 |
|
|
|
| 160 |
|
|
|
| 161 |
greg |
2.82 |
/* Estimate variance based on ambient division differences */
|
| 162 |
greg |
2.41 |
static float *
|
| 163 |
|
|
getambdiffs(AMBHEMI *hp)
|
| 164 |
|
|
{
|
| 165 |
greg |
2.77 |
const double normf = 1./bright(hp->acoef);
|
| 166 |
greg |
2.55 |
float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
|
| 167 |
greg |
2.41 |
float *ep;
|
| 168 |
greg |
2.42 |
AMBSAMP *ap;
|
| 169 |
greg |
2.81 |
double b, b1, d2;
|
| 170 |
greg |
2.41 |
int i, j;
|
| 171 |
|
|
|
| 172 |
|
|
if (earr == NULL) /* out of memory? */
|
| 173 |
|
|
return(NULL);
|
| 174 |
greg |
2.81 |
/* sum squared neighbor diffs */
|
| 175 |
greg |
2.42 |
for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
|
| 176 |
|
|
for (j = 0; j < hp->ns; j++, ap++, ep++) {
|
| 177 |
|
|
b = bright(ap[0].v);
|
| 178 |
greg |
2.41 |
if (i) { /* from above */
|
| 179 |
greg |
2.81 |
b1 = bright(ap[-hp->ns].v);
|
| 180 |
greg |
2.82 |
d2 = b - b1;
|
| 181 |
|
|
d2 *= d2*normf/(b + b1);
|
| 182 |
greg |
2.41 |
ep[0] += d2;
|
| 183 |
|
|
ep[-hp->ns] += d2;
|
| 184 |
|
|
}
|
| 185 |
greg |
2.55 |
if (!j) continue;
|
| 186 |
|
|
/* from behind */
|
| 187 |
greg |
2.81 |
b1 = bright(ap[-1].v);
|
| 188 |
greg |
2.82 |
d2 = b - b1;
|
| 189 |
|
|
d2 *= d2*normf/(b + b1);
|
| 190 |
greg |
2.55 |
ep[0] += d2;
|
| 191 |
|
|
ep[-1] += d2;
|
| 192 |
|
|
if (!i) continue;
|
| 193 |
|
|
/* diagonal */
|
| 194 |
greg |
2.81 |
b1 = bright(ap[-hp->ns-1].v);
|
| 195 |
greg |
2.82 |
d2 = b - b1;
|
| 196 |
|
|
d2 *= d2*normf/(b + b1);
|
| 197 |
greg |
2.55 |
ep[0] += d2;
|
| 198 |
|
|
ep[-hp->ns-1] += d2;
|
| 199 |
greg |
2.41 |
}
|
| 200 |
|
|
/* correct for number of neighbors */
|
| 201 |
greg |
2.55 |
earr[0] *= 8./3.;
|
| 202 |
|
|
earr[hp->ns-1] *= 8./3.;
|
| 203 |
|
|
earr[(hp->ns-1)*hp->ns] *= 8./3.;
|
| 204 |
|
|
earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.;
|
| 205 |
greg |
2.41 |
for (i = 1; i < hp->ns-1; i++) {
|
| 206 |
greg |
2.55 |
earr[i*hp->ns] *= 8./5.;
|
| 207 |
|
|
earr[i*hp->ns + hp->ns-1] *= 8./5.;
|
| 208 |
greg |
2.41 |
}
|
| 209 |
|
|
for (j = 1; j < hp->ns-1; j++) {
|
| 210 |
greg |
2.55 |
earr[j] *= 8./5.;
|
| 211 |
|
|
earr[(hp->ns-1)*hp->ns + j] *= 8./5.;
|
| 212 |
greg |
2.41 |
}
|
| 213 |
|
|
return(earr);
|
| 214 |
|
|
}
|
| 215 |
|
|
|
| 216 |
|
|
|
| 217 |
greg |
2.43 |
/* Perform super-sampling on hemisphere (introduces bias) */
|
| 218 |
greg |
2.41 |
static void
|
| 219 |
greg |
2.61 |
ambsupersamp(AMBHEMI *hp, int cnt)
|
| 220 |
greg |
2.41 |
{
|
| 221 |
|
|
float *earr = getambdiffs(hp);
|
| 222 |
greg |
2.54 |
double e2rem = 0;
|
| 223 |
greg |
2.41 |
float *ep;
|
| 224 |
greg |
2.55 |
int i, j, n, nss;
|
| 225 |
greg |
2.41 |
|
| 226 |
|
|
if (earr == NULL) /* just skip calc. if no memory */
|
| 227 |
|
|
return;
|
| 228 |
greg |
2.54 |
/* accumulate estimated variances */
|
| 229 |
greg |
2.55 |
for (ep = earr + hp->ns*hp->ns; ep > earr; )
|
| 230 |
|
|
e2rem += *--ep;
|
| 231 |
greg |
2.41 |
ep = earr; /* perform super-sampling */
|
| 232 |
greg |
2.81 |
for (i = 0; i < hp->ns; i++)
|
| 233 |
|
|
for (j = 0; j < hp->ns; j++) {
|
| 234 |
greg |
2.55 |
if (e2rem <= FTINY)
|
| 235 |
|
|
goto done; /* nothing left to do */
|
| 236 |
|
|
nss = *ep/e2rem*cnt + frandom();
|
| 237 |
greg |
2.62 |
for (n = 1; n <= nss && ambsample(hp,i,j,n); n++)
|
| 238 |
greg |
2.77 |
if (!--cnt) goto done;
|
| 239 |
greg |
2.61 |
e2rem -= *ep++; /* update remainder */
|
| 240 |
greg |
2.41 |
}
|
| 241 |
greg |
2.55 |
done:
|
| 242 |
greg |
2.41 |
free(earr);
|
| 243 |
|
|
}
|
| 244 |
|
|
|
| 245 |
|
|
|
| 246 |
greg |
2.61 |
static AMBHEMI *
|
| 247 |
|
|
samp_hemi( /* sample indirect hemisphere */
|
| 248 |
|
|
COLOR rcol,
|
| 249 |
|
|
RAY *r,
|
| 250 |
|
|
double wt
|
| 251 |
|
|
)
|
| 252 |
|
|
{
|
| 253 |
|
|
AMBHEMI *hp;
|
| 254 |
|
|
double d;
|
| 255 |
|
|
int n, i, j;
|
| 256 |
greg |
2.77 |
/* insignificance check */
|
| 257 |
|
|
if (bright(rcol) <= FTINY)
|
| 258 |
|
|
return(NULL);
|
| 259 |
greg |
2.61 |
/* set number of divisions */
|
| 260 |
|
|
if (ambacc <= FTINY &&
|
| 261 |
|
|
wt > (d = 0.8*intens(rcol)*r->rweight/(ambdiv*minweight)))
|
| 262 |
|
|
wt = d; /* avoid ray termination */
|
| 263 |
|
|
n = sqrt(ambdiv * wt) + 0.5;
|
| 264 |
greg |
2.86 |
i = 1 + (MINADIV-1)*(ambacc > FTINY);
|
| 265 |
|
|
if (n < i) /* use minimum number of samples? */
|
| 266 |
greg |
2.61 |
n = i;
|
| 267 |
|
|
/* allocate sampling array */
|
| 268 |
|
|
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
|
| 269 |
|
|
if (hp == NULL)
|
| 270 |
|
|
error(SYSTEM, "out of memory in samp_hemi");
|
| 271 |
|
|
hp->rp = r;
|
| 272 |
|
|
hp->ns = n;
|
| 273 |
|
|
hp->acol[RED] = hp->acol[GRN] = hp->acol[BLU] = 0.0;
|
| 274 |
greg |
2.62 |
memset(hp->sa, 0, sizeof(AMBSAMP)*n*n);
|
| 275 |
greg |
2.61 |
hp->sampOK = 0;
|
| 276 |
|
|
/* assign coefficient */
|
| 277 |
|
|
copycolor(hp->acoef, rcol);
|
| 278 |
|
|
d = 1.0/(n*n);
|
| 279 |
|
|
scalecolor(hp->acoef, d);
|
| 280 |
|
|
/* make tangent plane axes */
|
| 281 |
greg |
2.70 |
if (!getperpendicular(hp->ux, r->ron, 1))
|
| 282 |
greg |
2.61 |
error(CONSISTENCY, "bad ray direction in samp_hemi");
|
| 283 |
|
|
VCROSS(hp->uy, r->ron, hp->ux);
|
| 284 |
|
|
/* sample divisions */
|
| 285 |
|
|
for (i = hp->ns; i--; )
|
| 286 |
|
|
for (j = hp->ns; j--; )
|
| 287 |
|
|
hp->sampOK += ambsample(hp, i, j, 0);
|
| 288 |
|
|
copycolor(rcol, hp->acol);
|
| 289 |
|
|
if (!hp->sampOK) { /* utter failure? */
|
| 290 |
|
|
free(hp);
|
| 291 |
|
|
return(NULL);
|
| 292 |
|
|
}
|
| 293 |
|
|
if (hp->sampOK < hp->ns*hp->ns) {
|
| 294 |
|
|
hp->sampOK *= -1; /* soft failure */
|
| 295 |
|
|
return(hp);
|
| 296 |
|
|
}
|
| 297 |
greg |
2.86 |
if (hp->sampOK <= MINADIV*MINADIV)
|
| 298 |
|
|
return(hp); /* don't bother super-sampling */
|
| 299 |
greg |
2.61 |
n = ambssamp*wt + 0.5;
|
| 300 |
|
|
if (n > 8) { /* perform super-sampling? */
|
| 301 |
|
|
ambsupersamp(hp, n);
|
| 302 |
|
|
copycolor(rcol, hp->acol);
|
| 303 |
|
|
}
|
| 304 |
|
|
return(hp); /* all is well */
|
| 305 |
|
|
}
|
| 306 |
|
|
|
| 307 |
|
|
|
| 308 |
greg |
2.46 |
/* Return brightness of farthest ambient sample */
|
| 309 |
|
|
static double
|
| 310 |
greg |
2.56 |
back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3)
|
| 311 |
greg |
2.46 |
{
|
| 312 |
greg |
2.56 |
if (hp->sa[n1].d <= hp->sa[n2].d) {
|
| 313 |
|
|
if (hp->sa[n1].d <= hp->sa[n3].d)
|
| 314 |
|
|
return(colval(hp->sa[n1].v,CIEY));
|
| 315 |
|
|
return(colval(hp->sa[n3].v,CIEY));
|
| 316 |
|
|
}
|
| 317 |
|
|
if (hp->sa[n2].d <= hp->sa[n3].d)
|
| 318 |
|
|
return(colval(hp->sa[n2].v,CIEY));
|
| 319 |
|
|
return(colval(hp->sa[n3].v,CIEY));
|
| 320 |
greg |
2.46 |
}
|
| 321 |
|
|
|
| 322 |
|
|
|
| 323 |
greg |
2.27 |
/* Compute vectors and coefficients for Hessian/gradient calcs */
|
| 324 |
|
|
static void
|
| 325 |
greg |
2.56 |
comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1)
|
| 326 |
greg |
2.27 |
{
|
| 327 |
greg |
2.56 |
double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
|
| 328 |
|
|
int ii;
|
| 329 |
|
|
|
| 330 |
|
|
VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop);
|
| 331 |
|
|
VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop);
|
| 332 |
|
|
VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p);
|
| 333 |
greg |
2.35 |
VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
|
| 334 |
|
|
rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
|
| 335 |
greg |
2.27 |
dot_e = DOT(ftp->e_i,ftp->e_i);
|
| 336 |
|
|
dot_er = DOT(ftp->e_i, ftp->r_i);
|
| 337 |
greg |
2.32 |
rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
|
| 338 |
|
|
rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
|
| 339 |
|
|
ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
|
| 340 |
greg |
2.35 |
sqrt( rdot_cp );
|
| 341 |
greg |
2.32 |
ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
|
| 342 |
greg |
2.35 |
dot_e*ftp->I1 )*0.5*rdot_cp;
|
| 343 |
greg |
2.32 |
J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
|
| 344 |
greg |
2.46 |
for (ii = 3; ii--; )
|
| 345 |
|
|
ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
|
| 346 |
greg |
2.27 |
}
|
| 347 |
|
|
|
| 348 |
|
|
|
| 349 |
greg |
2.28 |
/* Compose 3x3 matrix from two vectors */
|
| 350 |
greg |
2.27 |
static void
|
| 351 |
|
|
compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
|
| 352 |
|
|
{
|
| 353 |
|
|
mat[0][0] = 2.0*va[0]*vb[0];
|
| 354 |
|
|
mat[1][1] = 2.0*va[1]*vb[1];
|
| 355 |
|
|
mat[2][2] = 2.0*va[2]*vb[2];
|
| 356 |
|
|
mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
|
| 357 |
|
|
mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
|
| 358 |
|
|
mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
|
| 359 |
|
|
}
|
| 360 |
|
|
|
| 361 |
|
|
|
| 362 |
|
|
/* Compute partial 3x3 Hessian matrix for edge */
|
| 363 |
|
|
static void
|
| 364 |
|
|
comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
|
| 365 |
|
|
{
|
| 366 |
greg |
2.35 |
FVECT ncp;
|
| 367 |
greg |
2.27 |
FVECT m1[3], m2[3], m3[3], m4[3];
|
| 368 |
|
|
double d1, d2, d3, d4;
|
| 369 |
|
|
double I3, J3, K3;
|
| 370 |
|
|
int i, j;
|
| 371 |
|
|
/* compute intermediate coefficients */
|
| 372 |
|
|
d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
|
| 373 |
|
|
d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
|
| 374 |
|
|
d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
|
| 375 |
|
|
d4 = DOT(ftp->e_i, ftp->r_i);
|
| 376 |
greg |
2.35 |
I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
|
| 377 |
|
|
/ ( 4.0*DOT(ftp->rcp,ftp->rcp) );
|
| 378 |
greg |
2.27 |
J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
|
| 379 |
|
|
K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
|
| 380 |
|
|
/* intermediate matrices */
|
| 381 |
greg |
2.35 |
VCROSS(ncp, nrm, ftp->e_i);
|
| 382 |
|
|
compose_matrix(m1, ncp, ftp->rI2_eJ2);
|
| 383 |
greg |
2.27 |
compose_matrix(m2, ftp->r_i, ftp->r_i);
|
| 384 |
|
|
compose_matrix(m3, ftp->e_i, ftp->e_i);
|
| 385 |
|
|
compose_matrix(m4, ftp->r_i, ftp->e_i);
|
| 386 |
greg |
2.35 |
d1 = DOT(nrm, ftp->rcp);
|
| 387 |
greg |
2.27 |
d2 = -d1*ftp->I2;
|
| 388 |
|
|
d1 *= 2.0;
|
| 389 |
|
|
for (i = 3; i--; ) /* final matrix sum */
|
| 390 |
|
|
for (j = 3; j--; ) {
|
| 391 |
|
|
hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
|
| 392 |
|
|
2.0*J3*m4[i][j] );
|
| 393 |
|
|
hess[i][j] += d2*(i==j);
|
| 394 |
greg |
2.46 |
hess[i][j] *= -1.0/PI;
|
| 395 |
greg |
2.27 |
}
|
| 396 |
|
|
}
|
| 397 |
|
|
|
| 398 |
|
|
|
| 399 |
|
|
/* Reverse hessian calculation result for edge in other direction */
|
| 400 |
|
|
static void
|
| 401 |
|
|
rev_hessian(FVECT hess[3])
|
| 402 |
|
|
{
|
| 403 |
|
|
int i;
|
| 404 |
|
|
|
| 405 |
|
|
for (i = 3; i--; ) {
|
| 406 |
|
|
hess[i][0] = -hess[i][0];
|
| 407 |
|
|
hess[i][1] = -hess[i][1];
|
| 408 |
|
|
hess[i][2] = -hess[i][2];
|
| 409 |
|
|
}
|
| 410 |
|
|
}
|
| 411 |
|
|
|
| 412 |
|
|
|
| 413 |
|
|
/* Add to radiometric Hessian from the given triangle */
|
| 414 |
|
|
static void
|
| 415 |
|
|
add2hessian(FVECT hess[3], FVECT ehess1[3],
|
| 416 |
greg |
2.46 |
FVECT ehess2[3], FVECT ehess3[3], double v)
|
| 417 |
greg |
2.27 |
{
|
| 418 |
|
|
int i, j;
|
| 419 |
|
|
|
| 420 |
|
|
for (i = 3; i--; )
|
| 421 |
|
|
for (j = 3; j--; )
|
| 422 |
|
|
hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
|
| 423 |
|
|
}
|
| 424 |
|
|
|
| 425 |
|
|
|
| 426 |
|
|
/* Compute partial displacement form factor gradient for edge */
|
| 427 |
|
|
static void
|
| 428 |
|
|
comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
|
| 429 |
|
|
{
|
| 430 |
greg |
2.35 |
FVECT ncp;
|
| 431 |
greg |
2.27 |
double f1;
|
| 432 |
|
|
int i;
|
| 433 |
|
|
|
| 434 |
greg |
2.35 |
f1 = 2.0*DOT(nrm, ftp->rcp);
|
| 435 |
|
|
VCROSS(ncp, nrm, ftp->e_i);
|
| 436 |
greg |
2.27 |
for (i = 3; i--; )
|
| 437 |
greg |
2.46 |
grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
|
| 438 |
greg |
2.27 |
}
|
| 439 |
|
|
|
| 440 |
|
|
|
| 441 |
|
|
/* Reverse gradient calculation result for edge in other direction */
|
| 442 |
|
|
static void
|
| 443 |
|
|
rev_gradient(FVECT grad)
|
| 444 |
|
|
{
|
| 445 |
|
|
grad[0] = -grad[0];
|
| 446 |
|
|
grad[1] = -grad[1];
|
| 447 |
|
|
grad[2] = -grad[2];
|
| 448 |
|
|
}
|
| 449 |
|
|
|
| 450 |
|
|
|
| 451 |
|
|
/* Add to displacement gradient from the given triangle */
|
| 452 |
|
|
static void
|
| 453 |
greg |
2.46 |
add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
|
| 454 |
greg |
2.27 |
{
|
| 455 |
|
|
int i;
|
| 456 |
|
|
|
| 457 |
|
|
for (i = 3; i--; )
|
| 458 |
|
|
grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
|
| 459 |
|
|
}
|
| 460 |
|
|
|
| 461 |
|
|
|
| 462 |
|
|
/* Compute anisotropic radii and eigenvector directions */
|
| 463 |
greg |
2.53 |
static void
|
| 464 |
greg |
2.27 |
eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
|
| 465 |
|
|
{
|
| 466 |
|
|
double hess2[2][2];
|
| 467 |
|
|
FVECT a, b;
|
| 468 |
|
|
double evalue[2], slope1, xmag1;
|
| 469 |
|
|
int i;
|
| 470 |
|
|
/* project Hessian to sample plane */
|
| 471 |
|
|
for (i = 3; i--; ) {
|
| 472 |
|
|
a[i] = DOT(hessian[i], uv[0]);
|
| 473 |
|
|
b[i] = DOT(hessian[i], uv[1]);
|
| 474 |
|
|
}
|
| 475 |
|
|
hess2[0][0] = DOT(uv[0], a);
|
| 476 |
|
|
hess2[0][1] = DOT(uv[0], b);
|
| 477 |
|
|
hess2[1][0] = DOT(uv[1], a);
|
| 478 |
|
|
hess2[1][1] = DOT(uv[1], b);
|
| 479 |
greg |
2.38 |
/* compute eigenvalue(s) */
|
| 480 |
|
|
i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
|
| 481 |
|
|
hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
|
| 482 |
|
|
if (i == 1) /* double-root (circle) */
|
| 483 |
|
|
evalue[1] = evalue[0];
|
| 484 |
|
|
if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
|
| 485 |
greg |
2.53 |
((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
|
| 486 |
|
|
ra[0] = ra[1] = maxarad;
|
| 487 |
|
|
return;
|
| 488 |
|
|
}
|
| 489 |
greg |
2.27 |
if (evalue[0] > evalue[1]) {
|
| 490 |
greg |
2.29 |
ra[0] = sqrt(sqrt(4.0/evalue[0]));
|
| 491 |
|
|
ra[1] = sqrt(sqrt(4.0/evalue[1]));
|
| 492 |
greg |
2.27 |
slope1 = evalue[1];
|
| 493 |
|
|
} else {
|
| 494 |
greg |
2.29 |
ra[0] = sqrt(sqrt(4.0/evalue[1]));
|
| 495 |
|
|
ra[1] = sqrt(sqrt(4.0/evalue[0]));
|
| 496 |
greg |
2.27 |
slope1 = evalue[0];
|
| 497 |
|
|
}
|
| 498 |
|
|
/* compute unit eigenvectors */
|
| 499 |
|
|
if (fabs(hess2[0][1]) <= FTINY)
|
| 500 |
|
|
return; /* uv OK as is */
|
| 501 |
|
|
slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
|
| 502 |
|
|
xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
|
| 503 |
|
|
for (i = 3; i--; ) {
|
| 504 |
|
|
b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
|
| 505 |
|
|
a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
|
| 506 |
|
|
}
|
| 507 |
|
|
VCOPY(uv[0], a);
|
| 508 |
|
|
VCOPY(uv[1], b);
|
| 509 |
|
|
}
|
| 510 |
|
|
|
| 511 |
|
|
|
| 512 |
greg |
2.26 |
static void
|
| 513 |
|
|
ambHessian( /* anisotropic radii & pos. gradient */
|
| 514 |
|
|
AMBHEMI *hp,
|
| 515 |
|
|
FVECT uv[2], /* returned */
|
| 516 |
greg |
2.28 |
float ra[2], /* returned (optional) */
|
| 517 |
|
|
float pg[2] /* returned (optional) */
|
| 518 |
greg |
2.26 |
)
|
| 519 |
|
|
{
|
| 520 |
greg |
2.27 |
static char memerrmsg[] = "out of memory in ambHessian()";
|
| 521 |
|
|
FVECT (*hessrow)[3] = NULL;
|
| 522 |
|
|
FVECT *gradrow = NULL;
|
| 523 |
|
|
FVECT hessian[3];
|
| 524 |
|
|
FVECT gradient;
|
| 525 |
|
|
FFTRI fftr;
|
| 526 |
|
|
int i, j;
|
| 527 |
|
|
/* be sure to assign unit vectors */
|
| 528 |
|
|
VCOPY(uv[0], hp->ux);
|
| 529 |
|
|
VCOPY(uv[1], hp->uy);
|
| 530 |
|
|
/* clock-wise vertex traversal from sample POV */
|
| 531 |
|
|
if (ra != NULL) { /* initialize Hessian row buffer */
|
| 532 |
greg |
2.28 |
hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
|
| 533 |
greg |
2.27 |
if (hessrow == NULL)
|
| 534 |
|
|
error(SYSTEM, memerrmsg);
|
| 535 |
|
|
memset(hessian, 0, sizeof(hessian));
|
| 536 |
|
|
} else if (pg == NULL) /* bogus call? */
|
| 537 |
|
|
return;
|
| 538 |
|
|
if (pg != NULL) { /* initialize form factor row buffer */
|
| 539 |
greg |
2.28 |
gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
|
| 540 |
greg |
2.27 |
if (gradrow == NULL)
|
| 541 |
|
|
error(SYSTEM, memerrmsg);
|
| 542 |
|
|
memset(gradient, 0, sizeof(gradient));
|
| 543 |
|
|
}
|
| 544 |
|
|
/* compute first row of edges */
|
| 545 |
|
|
for (j = 0; j < hp->ns-1; j++) {
|
| 546 |
greg |
2.56 |
comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
|
| 547 |
greg |
2.27 |
if (hessrow != NULL)
|
| 548 |
|
|
comp_hessian(hessrow[j], &fftr, hp->rp->ron);
|
| 549 |
|
|
if (gradrow != NULL)
|
| 550 |
|
|
comp_gradient(gradrow[j], &fftr, hp->rp->ron);
|
| 551 |
|
|
}
|
| 552 |
|
|
/* sum each row of triangles */
|
| 553 |
|
|
for (i = 0; i < hp->ns-1; i++) {
|
| 554 |
|
|
FVECT hesscol[3]; /* compute first vertical edge */
|
| 555 |
|
|
FVECT gradcol;
|
| 556 |
greg |
2.56 |
comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
|
| 557 |
greg |
2.27 |
if (hessrow != NULL)
|
| 558 |
|
|
comp_hessian(hesscol, &fftr, hp->rp->ron);
|
| 559 |
|
|
if (gradrow != NULL)
|
| 560 |
|
|
comp_gradient(gradcol, &fftr, hp->rp->ron);
|
| 561 |
|
|
for (j = 0; j < hp->ns-1; j++) {
|
| 562 |
|
|
FVECT hessdia[3]; /* compute triangle contributions */
|
| 563 |
|
|
FVECT graddia;
|
| 564 |
greg |
2.46 |
double backg;
|
| 565 |
greg |
2.56 |
backg = back_ambval(hp, AI(hp,i,j),
|
| 566 |
|
|
AI(hp,i,j+1), AI(hp,i+1,j));
|
| 567 |
greg |
2.27 |
/* diagonal (inner) edge */
|
| 568 |
greg |
2.56 |
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
|
| 569 |
greg |
2.27 |
if (hessrow != NULL) {
|
| 570 |
|
|
comp_hessian(hessdia, &fftr, hp->rp->ron);
|
| 571 |
|
|
rev_hessian(hesscol);
|
| 572 |
|
|
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
|
| 573 |
|
|
}
|
| 574 |
greg |
2.39 |
if (gradrow != NULL) {
|
| 575 |
greg |
2.27 |
comp_gradient(graddia, &fftr, hp->rp->ron);
|
| 576 |
|
|
rev_gradient(gradcol);
|
| 577 |
|
|
add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
|
| 578 |
|
|
}
|
| 579 |
|
|
/* initialize edge in next row */
|
| 580 |
greg |
2.56 |
comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
|
| 581 |
greg |
2.27 |
if (hessrow != NULL)
|
| 582 |
|
|
comp_hessian(hessrow[j], &fftr, hp->rp->ron);
|
| 583 |
|
|
if (gradrow != NULL)
|
| 584 |
|
|
comp_gradient(gradrow[j], &fftr, hp->rp->ron);
|
| 585 |
|
|
/* new column edge & paired triangle */
|
| 586 |
greg |
2.56 |
backg = back_ambval(hp, AI(hp,i+1,j+1),
|
| 587 |
|
|
AI(hp,i+1,j), AI(hp,i,j+1));
|
| 588 |
|
|
comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
|
| 589 |
greg |
2.27 |
if (hessrow != NULL) {
|
| 590 |
|
|
comp_hessian(hesscol, &fftr, hp->rp->ron);
|
| 591 |
|
|
rev_hessian(hessdia);
|
| 592 |
|
|
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
|
| 593 |
|
|
if (i < hp->ns-2)
|
| 594 |
|
|
rev_hessian(hessrow[j]);
|
| 595 |
|
|
}
|
| 596 |
|
|
if (gradrow != NULL) {
|
| 597 |
|
|
comp_gradient(gradcol, &fftr, hp->rp->ron);
|
| 598 |
|
|
rev_gradient(graddia);
|
| 599 |
|
|
add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
|
| 600 |
|
|
if (i < hp->ns-2)
|
| 601 |
|
|
rev_gradient(gradrow[j]);
|
| 602 |
|
|
}
|
| 603 |
|
|
}
|
| 604 |
|
|
}
|
| 605 |
|
|
/* release row buffers */
|
| 606 |
|
|
if (hessrow != NULL) free(hessrow);
|
| 607 |
|
|
if (gradrow != NULL) free(gradrow);
|
| 608 |
|
|
|
| 609 |
|
|
if (ra != NULL) /* extract eigenvectors & radii */
|
| 610 |
|
|
eigenvectors(uv, ra, hessian);
|
| 611 |
greg |
2.32 |
if (pg != NULL) { /* tangential position gradient */
|
| 612 |
|
|
pg[0] = DOT(gradient, uv[0]);
|
| 613 |
|
|
pg[1] = DOT(gradient, uv[1]);
|
| 614 |
greg |
2.27 |
}
|
| 615 |
|
|
}
|
| 616 |
|
|
|
| 617 |
|
|
|
| 618 |
|
|
/* Compute direction gradient from a hemispherical sampling */
|
| 619 |
|
|
static void
|
| 620 |
|
|
ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
|
| 621 |
|
|
{
|
| 622 |
greg |
2.41 |
AMBSAMP *ap;
|
| 623 |
|
|
double dgsum[2];
|
| 624 |
|
|
int n;
|
| 625 |
|
|
FVECT vd;
|
| 626 |
|
|
double gfact;
|
| 627 |
greg |
2.27 |
|
| 628 |
greg |
2.29 |
dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
|
| 629 |
greg |
2.27 |
for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
|
| 630 |
|
|
/* use vector for azimuth + 90deg */
|
| 631 |
|
|
VSUB(vd, ap->p, hp->rp->rop);
|
| 632 |
greg |
2.29 |
/* brightness over cosine factor */
|
| 633 |
|
|
gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
|
| 634 |
greg |
2.40 |
/* sine = proj_radius/vd_length */
|
| 635 |
|
|
dgsum[0] -= DOT(uv[1], vd) * gfact;
|
| 636 |
|
|
dgsum[1] += DOT(uv[0], vd) * gfact;
|
| 637 |
greg |
2.26 |
}
|
| 638 |
greg |
2.29 |
dg[0] = dgsum[0] / (hp->ns*hp->ns);
|
| 639 |
|
|
dg[1] = dgsum[1] / (hp->ns*hp->ns);
|
| 640 |
greg |
2.26 |
}
|
| 641 |
|
|
|
| 642 |
greg |
2.27 |
|
| 643 |
greg |
2.49 |
/* Compute potential light leak direction flags for cache value */
|
| 644 |
|
|
static uint32
|
| 645 |
|
|
ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
|
| 646 |
greg |
2.47 |
{
|
| 647 |
greg |
2.50 |
const double max_d = 1.0/(minarad*ambacc + 0.001);
|
| 648 |
greg |
2.66 |
const double ang_res = 0.5*PI/hp->ns;
|
| 649 |
|
|
const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01);
|
| 650 |
greg |
2.51 |
double avg_d = 0;
|
| 651 |
greg |
2.50 |
uint32 flgs = 0;
|
| 652 |
greg |
2.58 |
FVECT vec;
|
| 653 |
greg |
2.62 |
double u, v;
|
| 654 |
greg |
2.58 |
double ang, a1;
|
| 655 |
greg |
2.50 |
int i, j;
|
| 656 |
greg |
2.52 |
/* don't bother for a few samples */
|
| 657 |
greg |
2.72 |
if (hp->ns < 8)
|
| 658 |
greg |
2.52 |
return(0);
|
| 659 |
|
|
/* check distances overhead */
|
| 660 |
greg |
2.51 |
for (i = hp->ns*3/4; i-- > hp->ns>>2; )
|
| 661 |
|
|
for (j = hp->ns*3/4; j-- > hp->ns>>2; )
|
| 662 |
|
|
avg_d += ambsam(hp,i,j).d;
|
| 663 |
|
|
avg_d *= 4.0/(hp->ns*hp->ns);
|
| 664 |
greg |
2.52 |
if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
|
| 665 |
|
|
return(0);
|
| 666 |
|
|
if (avg_d >= max_d) /* insurance */
|
| 667 |
greg |
2.51 |
return(0);
|
| 668 |
|
|
/* else circle around perimeter */
|
| 669 |
greg |
2.47 |
for (i = 0; i < hp->ns; i++)
|
| 670 |
|
|
for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
|
| 671 |
|
|
AMBSAMP *ap = &ambsam(hp,i,j);
|
| 672 |
greg |
2.50 |
if ((ap->d <= FTINY) | (ap->d >= max_d))
|
| 673 |
|
|
continue; /* too far or too near */
|
| 674 |
greg |
2.47 |
VSUB(vec, ap->p, hp->rp->rop);
|
| 675 |
greg |
2.62 |
u = DOT(vec, uv[0]);
|
| 676 |
|
|
v = DOT(vec, uv[1]);
|
| 677 |
|
|
if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v)
|
| 678 |
greg |
2.49 |
continue; /* occluder outside ellipse */
|
| 679 |
|
|
ang = atan2a(v, u); /* else set direction flags */
|
| 680 |
greg |
2.66 |
for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step)
|
| 681 |
greg |
2.50 |
flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
|
| 682 |
greg |
2.47 |
}
|
| 683 |
greg |
2.49 |
return(flgs);
|
| 684 |
greg |
2.47 |
}
|
| 685 |
|
|
|
| 686 |
|
|
|
| 687 |
greg |
2.26 |
int
|
| 688 |
|
|
doambient( /* compute ambient component */
|
| 689 |
|
|
COLOR rcol, /* input/output color */
|
| 690 |
|
|
RAY *r,
|
| 691 |
|
|
double wt,
|
| 692 |
greg |
2.27 |
FVECT uv[2], /* returned (optional) */
|
| 693 |
|
|
float ra[2], /* returned (optional) */
|
| 694 |
|
|
float pg[2], /* returned (optional) */
|
| 695 |
greg |
2.49 |
float dg[2], /* returned (optional) */
|
| 696 |
|
|
uint32 *crlp /* returned (optional) */
|
| 697 |
greg |
2.26 |
)
|
| 698 |
|
|
{
|
| 699 |
greg |
2.61 |
AMBHEMI *hp = samp_hemi(rcol, r, wt);
|
| 700 |
greg |
2.41 |
FVECT my_uv[2];
|
| 701 |
greg |
2.61 |
double d, K;
|
| 702 |
greg |
2.41 |
AMBSAMP *ap;
|
| 703 |
greg |
2.61 |
int i;
|
| 704 |
|
|
/* clear return values */
|
| 705 |
greg |
2.26 |
if (uv != NULL)
|
| 706 |
|
|
memset(uv, 0, sizeof(FVECT)*2);
|
| 707 |
|
|
if (ra != NULL)
|
| 708 |
|
|
ra[0] = ra[1] = 0.0;
|
| 709 |
|
|
if (pg != NULL)
|
| 710 |
|
|
pg[0] = pg[1] = 0.0;
|
| 711 |
|
|
if (dg != NULL)
|
| 712 |
|
|
dg[0] = dg[1] = 0.0;
|
| 713 |
greg |
2.49 |
if (crlp != NULL)
|
| 714 |
|
|
*crlp = 0;
|
| 715 |
greg |
2.61 |
if (hp == NULL) /* sampling falure? */
|
| 716 |
|
|
return(0);
|
| 717 |
|
|
|
| 718 |
|
|
if ((ra == NULL) & (pg == NULL) & (dg == NULL) ||
|
| 719 |
greg |
2.86 |
(hp->sampOK < 0) | (hp->ns < MINADIV)) {
|
| 720 |
greg |
2.61 |
free(hp); /* Hessian not requested/possible */
|
| 721 |
|
|
return(-1); /* value-only return value */
|
| 722 |
greg |
2.26 |
}
|
| 723 |
greg |
2.61 |
if ((d = bright(rcol)) > FTINY) { /* normalize Y values */
|
| 724 |
greg |
2.45 |
d = 0.99*(hp->ns*hp->ns)/d;
|
| 725 |
greg |
2.38 |
K = 0.01;
|
| 726 |
greg |
2.45 |
} else { /* or fall back on geometric Hessian */
|
| 727 |
greg |
2.38 |
K = 1.0;
|
| 728 |
|
|
pg = NULL;
|
| 729 |
|
|
dg = NULL;
|
| 730 |
greg |
2.53 |
crlp = NULL;
|
| 731 |
greg |
2.38 |
}
|
| 732 |
greg |
2.29 |
ap = hp->sa; /* relative Y channel from here on... */
|
| 733 |
greg |
2.26 |
for (i = hp->ns*hp->ns; i--; ap++)
|
| 734 |
greg |
2.38 |
colval(ap->v,CIEY) = bright(ap->v)*d + K;
|
| 735 |
greg |
2.26 |
|
| 736 |
|
|
if (uv == NULL) /* make sure we have axis pointers */
|
| 737 |
|
|
uv = my_uv;
|
| 738 |
|
|
/* compute radii & pos. gradient */
|
| 739 |
|
|
ambHessian(hp, uv, ra, pg);
|
| 740 |
greg |
2.29 |
|
| 741 |
greg |
2.26 |
if (dg != NULL) /* compute direction gradient */
|
| 742 |
|
|
ambdirgrad(hp, uv, dg);
|
| 743 |
greg |
2.29 |
|
| 744 |
greg |
2.28 |
if (ra != NULL) { /* scale/clamp radii */
|
| 745 |
greg |
2.35 |
if (pg != NULL) {
|
| 746 |
|
|
if (ra[0]*(d = fabs(pg[0])) > 1.0)
|
| 747 |
|
|
ra[0] = 1.0/d;
|
| 748 |
|
|
if (ra[1]*(d = fabs(pg[1])) > 1.0)
|
| 749 |
|
|
ra[1] = 1.0/d;
|
| 750 |
greg |
2.48 |
if (ra[0] > ra[1])
|
| 751 |
|
|
ra[0] = ra[1];
|
| 752 |
greg |
2.35 |
}
|
| 753 |
greg |
2.29 |
if (ra[0] < minarad) {
|
| 754 |
|
|
ra[0] = minarad;
|
| 755 |
|
|
if (ra[1] < minarad)
|
| 756 |
|
|
ra[1] = minarad;
|
| 757 |
|
|
}
|
| 758 |
greg |
2.60 |
ra[0] *= d = 1.0/sqrt(wt);
|
| 759 |
greg |
2.26 |
if ((ra[1] *= d) > 2.0*ra[0])
|
| 760 |
|
|
ra[1] = 2.0*ra[0];
|
| 761 |
greg |
2.28 |
if (ra[1] > maxarad) {
|
| 762 |
|
|
ra[1] = maxarad;
|
| 763 |
|
|
if (ra[0] > maxarad)
|
| 764 |
|
|
ra[0] = maxarad;
|
| 765 |
|
|
}
|
| 766 |
greg |
2.53 |
/* flag encroached directions */
|
| 767 |
greg |
2.87 |
if (crlp != NULL) /* XXX doesn't update with changes to ambacc */
|
| 768 |
greg |
2.49 |
*crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
|
| 769 |
greg |
2.35 |
if (pg != NULL) { /* cap gradient if necessary */
|
| 770 |
|
|
d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
|
| 771 |
|
|
if (d > 1.0) {
|
| 772 |
|
|
d = 1.0/sqrt(d);
|
| 773 |
|
|
pg[0] *= d;
|
| 774 |
|
|
pg[1] *= d;
|
| 775 |
|
|
}
|
| 776 |
|
|
}
|
| 777 |
greg |
2.26 |
}
|
| 778 |
|
|
free(hp); /* clean up and return */
|
| 779 |
|
|
return(1);
|
| 780 |
|
|
}
|