ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.81
Committed: Thu Apr 12 18:02:45 2018 UTC (6 years, 1 month ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.80: +15 -13 lines
Log Message:
Reduced bias introduced by ambient super-sampling

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.81 static const char RCSid[] = "$Id: ambcomp.c,v 2.80 2018/04/11 17:05:59 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * Routines to compute "ambient" values using Monte Carlo
6 greg 2.9 *
7 greg 2.27 * Hessian calculations based on "Practical Hessian-Based Error Control
8     * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9     * from ACM SIGGRAPH Asia 2012 conference proceedings.
10     *
11 greg 2.46 * Added book-keeping optimization to avoid calculations that would
12     * cancel due to traversal both directions on edges that are adjacent
13     * to same-valued triangles. This cuts about half of Hessian math.
14     *
15 greg 2.9 * Declarations of external symbols in ambient.h
16     */
17    
18 greg 2.10 #include "copyright.h"
19 greg 1.1
20     #include "ray.h"
21 greg 2.25 #include "ambient.h"
22     #include "random.h"
23 greg 1.1
24 greg 2.63 #ifndef OLDAMB
25 greg 1.1
26 greg 2.26 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
27    
28     typedef struct {
29 greg 2.44 COLOR v; /* hemisphere sample value */
30 greg 2.47 float d; /* reciprocal distance (1/rt) */
31 greg 2.44 FVECT p; /* intersection point */
32     } AMBSAMP; /* sample value */
33    
34     typedef struct {
35 greg 2.26 RAY *rp; /* originating ray sample */
36     int ns; /* number of samples per axis */
37 greg 2.61 int sampOK; /* acquired full sample set? */
38 greg 2.26 COLOR acoef; /* division contribution coefficient */
39 greg 2.61 double acol[3]; /* accumulated color */
40     FVECT ux, uy; /* tangent axis unit vectors */
41 greg 2.44 AMBSAMP sa[1]; /* sample array (extends struct) */
42 greg 2.26 } AMBHEMI; /* ambient sample hemisphere */
43    
44 greg 2.56 #define AI(h,i,j) ((i)*(h)->ns + (j))
45     #define ambsam(h,i,j) (h)->sa[AI(h,i,j)]
46 greg 2.26
47 greg 2.27 typedef struct {
48 greg 2.35 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
49     double I1, I2;
50 greg 2.27 } FFTRI; /* vectors and coefficients for Hessian calculation */
51    
52 greg 2.26
53 greg 2.61 static int
54 greg 2.73 ambcollision( /* proposed direciton collides? */
55     AMBHEMI *hp,
56     int i,
57     int j,
58     FVECT dv
59     )
60     {
61 greg 2.74 double cos_thresh;
62     int ii, jj;
63 greg 2.75 /* min. spacing = 1/4th division */
64     cos_thresh = (PI/4.)/(double)hp->ns;
65 greg 2.74 cos_thresh = 1. - .5*cos_thresh*cos_thresh;
66     /* check existing neighbors */
67 greg 2.73 for (ii = i-1; ii <= i+1; ii++) {
68     if (ii < 0) continue;
69     if (ii >= hp->ns) break;
70     for (jj = j-1; jj <= j+1; jj++) {
71     AMBSAMP *ap;
72     FVECT avec;
73     double dprod;
74     if (jj < 0) continue;
75     if (jj >= hp->ns) break;
76     if ((ii==i) & (jj==j)) continue;
77     ap = &ambsam(hp,ii,jj);
78 greg 2.74 if (ap->d <= .5/FHUGE)
79     continue; /* no one home */
80 greg 2.73 VSUB(avec, ap->p, hp->rp->rop);
81     dprod = DOT(avec, dv);
82     if (dprod >= cos_thresh*VLEN(avec))
83     return(1); /* collision */
84     }
85     }
86 greg 2.74 return(0); /* nothing to worry about */
87 greg 2.73 }
88    
89    
90     static int
91 greg 2.61 ambsample( /* initial ambient division sample */
92     AMBHEMI *hp,
93     int i,
94     int j,
95     int n
96 greg 2.26 )
97     {
98 greg 2.61 AMBSAMP *ap = &ambsam(hp,i,j);
99     RAY ar;
100 greg 2.41 int hlist[3], ii;
101     double spt[2], zd;
102 greg 2.61 /* generate hemispherical sample */
103 greg 2.26 /* ambient coefficient for weight */
104     if (ambacc > FTINY)
105 greg 2.61 setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
106 greg 2.26 else
107 greg 2.61 copycolor(ar.rcoef, hp->acoef);
108 greg 2.62 if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0)
109 greg 2.41 return(0);
110 greg 2.26 if (ambacc > FTINY) {
111 greg 2.61 multcolor(ar.rcoef, hp->acoef);
112     scalecolor(ar.rcoef, 1./AVGREFL);
113 greg 2.41 }
114     hlist[0] = hp->rp->rno;
115 greg 2.46 hlist[1] = j;
116     hlist[2] = i;
117 greg 2.41 multisamp(spt, 2, urand(ilhash(hlist,3)+n));
118 greg 2.73 resample:
119 greg 2.46 SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
120 greg 2.26 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
121     for (ii = 3; ii--; )
122 greg 2.61 ar.rdir[ii] = spt[0]*hp->ux[ii] +
123 greg 2.26 spt[1]*hp->uy[ii] +
124     zd*hp->rp->ron[ii];
125 greg 2.61 checknorm(ar.rdir);
126 greg 2.73 /* avoid coincident samples */
127     if (!n && ambcollision(hp, i, j, ar.rdir)) {
128     spt[0] = frandom(); spt[1] = frandom();
129 greg 2.75 goto resample; /* reject this sample */
130 greg 2.73 }
131 greg 2.56 dimlist[ndims++] = AI(hp,i,j) + 90171;
132 greg 2.61 rayvalue(&ar); /* evaluate ray */
133     ndims--;
134     if (ar.rt <= FTINY)
135     return(0); /* should never happen */
136     multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
137 greg 2.62 if (ar.rt*ap->d < 1.0) /* new/closer distance? */
138 greg 2.61 ap->d = 1.0/ar.rt;
139     if (!n) { /* record first vertex & value */
140 greg 2.76 if (ar.rt > 10.0*thescene.cusize + 1000.)
141     ar.rt = 10.0*thescene.cusize + 1000.;
142 greg 2.61 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
143     copycolor(ap->v, ar.rcol);
144     } else { /* else update recorded value */
145     hp->acol[RED] -= colval(ap->v,RED);
146     hp->acol[GRN] -= colval(ap->v,GRN);
147     hp->acol[BLU] -= colval(ap->v,BLU);
148     zd = 1.0/(double)(n+1);
149     scalecolor(ar.rcol, zd);
150     zd *= (double)n;
151     scalecolor(ap->v, zd);
152     addcolor(ap->v, ar.rcol);
153     }
154     addcolor(hp->acol, ap->v); /* add to our sum */
155 greg 2.41 return(1);
156     }
157    
158    
159 greg 2.81 /* Estimate variance based on relative ambient division differences */
160 greg 2.41 static float *
161     getambdiffs(AMBHEMI *hp)
162     {
163 greg 2.77 const double normf = 1./bright(hp->acoef);
164 greg 2.55 float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
165 greg 2.41 float *ep;
166 greg 2.42 AMBSAMP *ap;
167 greg 2.81 double b, b1, d2;
168 greg 2.41 int i, j;
169    
170     if (earr == NULL) /* out of memory? */
171     return(NULL);
172 greg 2.81 /* sum squared neighbor diffs */
173 greg 2.42 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
174     for (j = 0; j < hp->ns; j++, ap++, ep++) {
175     b = bright(ap[0].v);
176 greg 2.41 if (i) { /* from above */
177 greg 2.81 b1 = bright(ap[-hp->ns].v);
178     d2 = (b - b1)/(b + b1);
179     d2 *= d2*normf;
180 greg 2.41 ep[0] += d2;
181     ep[-hp->ns] += d2;
182     }
183 greg 2.55 if (!j) continue;
184     /* from behind */
185 greg 2.81 b1 = bright(ap[-1].v);
186     d2 = (b - b1)/(b + b1);
187     d2 *= d2*normf;
188 greg 2.55 ep[0] += d2;
189     ep[-1] += d2;
190     if (!i) continue;
191     /* diagonal */
192 greg 2.81 b1 = bright(ap[-hp->ns-1].v);
193     d2 = (b - b1)/(b + b1);
194     d2 *= d2*normf;
195 greg 2.55 ep[0] += d2;
196     ep[-hp->ns-1] += d2;
197 greg 2.41 }
198     /* correct for number of neighbors */
199 greg 2.55 earr[0] *= 8./3.;
200     earr[hp->ns-1] *= 8./3.;
201     earr[(hp->ns-1)*hp->ns] *= 8./3.;
202     earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.;
203 greg 2.41 for (i = 1; i < hp->ns-1; i++) {
204 greg 2.55 earr[i*hp->ns] *= 8./5.;
205     earr[i*hp->ns + hp->ns-1] *= 8./5.;
206 greg 2.41 }
207     for (j = 1; j < hp->ns-1; j++) {
208 greg 2.55 earr[j] *= 8./5.;
209     earr[(hp->ns-1)*hp->ns + j] *= 8./5.;
210 greg 2.41 }
211     return(earr);
212     }
213    
214    
215 greg 2.43 /* Perform super-sampling on hemisphere (introduces bias) */
216 greg 2.41 static void
217 greg 2.61 ambsupersamp(AMBHEMI *hp, int cnt)
218 greg 2.41 {
219     float *earr = getambdiffs(hp);
220 greg 2.54 double e2rem = 0;
221 greg 2.41 float *ep;
222 greg 2.55 int i, j, n, nss;
223 greg 2.41
224     if (earr == NULL) /* just skip calc. if no memory */
225     return;
226 greg 2.54 /* accumulate estimated variances */
227 greg 2.55 for (ep = earr + hp->ns*hp->ns; ep > earr; )
228     e2rem += *--ep;
229 greg 2.41 ep = earr; /* perform super-sampling */
230 greg 2.81 for (i = 0; i < hp->ns; i++)
231     for (j = 0; j < hp->ns; j++) {
232 greg 2.55 if (e2rem <= FTINY)
233     goto done; /* nothing left to do */
234     nss = *ep/e2rem*cnt + frandom();
235 greg 2.62 for (n = 1; n <= nss && ambsample(hp,i,j,n); n++)
236 greg 2.77 if (!--cnt) goto done;
237 greg 2.61 e2rem -= *ep++; /* update remainder */
238 greg 2.41 }
239 greg 2.55 done:
240 greg 2.41 free(earr);
241     }
242    
243    
244 greg 2.61 static AMBHEMI *
245     samp_hemi( /* sample indirect hemisphere */
246     COLOR rcol,
247     RAY *r,
248     double wt
249     )
250     {
251     AMBHEMI *hp;
252     double d;
253     int n, i, j;
254 greg 2.77 /* insignificance check */
255     if (bright(rcol) <= FTINY)
256     return(NULL);
257 greg 2.61 /* set number of divisions */
258     if (ambacc <= FTINY &&
259     wt > (d = 0.8*intens(rcol)*r->rweight/(ambdiv*minweight)))
260     wt = d; /* avoid ray termination */
261     n = sqrt(ambdiv * wt) + 0.5;
262 greg 2.68 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
263 greg 2.61 if (n < i)
264     n = i;
265     /* allocate sampling array */
266     hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
267     if (hp == NULL)
268     error(SYSTEM, "out of memory in samp_hemi");
269     hp->rp = r;
270     hp->ns = n;
271     hp->acol[RED] = hp->acol[GRN] = hp->acol[BLU] = 0.0;
272 greg 2.62 memset(hp->sa, 0, sizeof(AMBSAMP)*n*n);
273 greg 2.61 hp->sampOK = 0;
274     /* assign coefficient */
275     copycolor(hp->acoef, rcol);
276     d = 1.0/(n*n);
277     scalecolor(hp->acoef, d);
278     /* make tangent plane axes */
279 greg 2.70 if (!getperpendicular(hp->ux, r->ron, 1))
280 greg 2.61 error(CONSISTENCY, "bad ray direction in samp_hemi");
281     VCROSS(hp->uy, r->ron, hp->ux);
282     /* sample divisions */
283     for (i = hp->ns; i--; )
284     for (j = hp->ns; j--; )
285     hp->sampOK += ambsample(hp, i, j, 0);
286     copycolor(rcol, hp->acol);
287     if (!hp->sampOK) { /* utter failure? */
288     free(hp);
289     return(NULL);
290     }
291     if (hp->sampOK < hp->ns*hp->ns) {
292     hp->sampOK *= -1; /* soft failure */
293     return(hp);
294     }
295     n = ambssamp*wt + 0.5;
296     if (n > 8) { /* perform super-sampling? */
297     ambsupersamp(hp, n);
298     copycolor(rcol, hp->acol);
299     }
300     return(hp); /* all is well */
301     }
302    
303    
304 greg 2.46 /* Return brightness of farthest ambient sample */
305     static double
306 greg 2.56 back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3)
307 greg 2.46 {
308 greg 2.56 if (hp->sa[n1].d <= hp->sa[n2].d) {
309     if (hp->sa[n1].d <= hp->sa[n3].d)
310     return(colval(hp->sa[n1].v,CIEY));
311     return(colval(hp->sa[n3].v,CIEY));
312     }
313     if (hp->sa[n2].d <= hp->sa[n3].d)
314     return(colval(hp->sa[n2].v,CIEY));
315     return(colval(hp->sa[n3].v,CIEY));
316 greg 2.46 }
317    
318    
319 greg 2.27 /* Compute vectors and coefficients for Hessian/gradient calcs */
320     static void
321 greg 2.56 comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1)
322 greg 2.27 {
323 greg 2.56 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
324     int ii;
325    
326     VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop);
327     VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop);
328     VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p);
329 greg 2.35 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
330     rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
331 greg 2.27 dot_e = DOT(ftp->e_i,ftp->e_i);
332     dot_er = DOT(ftp->e_i, ftp->r_i);
333 greg 2.32 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
334     rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
335     ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
336 greg 2.35 sqrt( rdot_cp );
337 greg 2.32 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
338 greg 2.35 dot_e*ftp->I1 )*0.5*rdot_cp;
339 greg 2.32 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
340 greg 2.46 for (ii = 3; ii--; )
341     ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
342 greg 2.27 }
343    
344    
345 greg 2.28 /* Compose 3x3 matrix from two vectors */
346 greg 2.27 static void
347     compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
348     {
349     mat[0][0] = 2.0*va[0]*vb[0];
350     mat[1][1] = 2.0*va[1]*vb[1];
351     mat[2][2] = 2.0*va[2]*vb[2];
352     mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
353     mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
354     mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
355     }
356    
357    
358     /* Compute partial 3x3 Hessian matrix for edge */
359     static void
360     comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
361     {
362 greg 2.35 FVECT ncp;
363 greg 2.27 FVECT m1[3], m2[3], m3[3], m4[3];
364     double d1, d2, d3, d4;
365     double I3, J3, K3;
366     int i, j;
367     /* compute intermediate coefficients */
368     d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
369     d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
370     d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
371     d4 = DOT(ftp->e_i, ftp->r_i);
372 greg 2.35 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
373     / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
374 greg 2.27 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
375     K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
376     /* intermediate matrices */
377 greg 2.35 VCROSS(ncp, nrm, ftp->e_i);
378     compose_matrix(m1, ncp, ftp->rI2_eJ2);
379 greg 2.27 compose_matrix(m2, ftp->r_i, ftp->r_i);
380     compose_matrix(m3, ftp->e_i, ftp->e_i);
381     compose_matrix(m4, ftp->r_i, ftp->e_i);
382 greg 2.35 d1 = DOT(nrm, ftp->rcp);
383 greg 2.27 d2 = -d1*ftp->I2;
384     d1 *= 2.0;
385     for (i = 3; i--; ) /* final matrix sum */
386     for (j = 3; j--; ) {
387     hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
388     2.0*J3*m4[i][j] );
389     hess[i][j] += d2*(i==j);
390 greg 2.46 hess[i][j] *= -1.0/PI;
391 greg 2.27 }
392     }
393    
394    
395     /* Reverse hessian calculation result for edge in other direction */
396     static void
397     rev_hessian(FVECT hess[3])
398     {
399     int i;
400    
401     for (i = 3; i--; ) {
402     hess[i][0] = -hess[i][0];
403     hess[i][1] = -hess[i][1];
404     hess[i][2] = -hess[i][2];
405     }
406     }
407    
408    
409     /* Add to radiometric Hessian from the given triangle */
410     static void
411     add2hessian(FVECT hess[3], FVECT ehess1[3],
412 greg 2.46 FVECT ehess2[3], FVECT ehess3[3], double v)
413 greg 2.27 {
414     int i, j;
415    
416     for (i = 3; i--; )
417     for (j = 3; j--; )
418     hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
419     }
420    
421    
422     /* Compute partial displacement form factor gradient for edge */
423     static void
424     comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
425     {
426 greg 2.35 FVECT ncp;
427 greg 2.27 double f1;
428     int i;
429    
430 greg 2.35 f1 = 2.0*DOT(nrm, ftp->rcp);
431     VCROSS(ncp, nrm, ftp->e_i);
432 greg 2.27 for (i = 3; i--; )
433 greg 2.46 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
434 greg 2.27 }
435    
436    
437     /* Reverse gradient calculation result for edge in other direction */
438     static void
439     rev_gradient(FVECT grad)
440     {
441     grad[0] = -grad[0];
442     grad[1] = -grad[1];
443     grad[2] = -grad[2];
444     }
445    
446    
447     /* Add to displacement gradient from the given triangle */
448     static void
449 greg 2.46 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
450 greg 2.27 {
451     int i;
452    
453     for (i = 3; i--; )
454     grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
455     }
456    
457    
458     /* Compute anisotropic radii and eigenvector directions */
459 greg 2.53 static void
460 greg 2.27 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
461     {
462     double hess2[2][2];
463     FVECT a, b;
464     double evalue[2], slope1, xmag1;
465     int i;
466     /* project Hessian to sample plane */
467     for (i = 3; i--; ) {
468     a[i] = DOT(hessian[i], uv[0]);
469     b[i] = DOT(hessian[i], uv[1]);
470     }
471     hess2[0][0] = DOT(uv[0], a);
472     hess2[0][1] = DOT(uv[0], b);
473     hess2[1][0] = DOT(uv[1], a);
474     hess2[1][1] = DOT(uv[1], b);
475 greg 2.38 /* compute eigenvalue(s) */
476     i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
477     hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
478     if (i == 1) /* double-root (circle) */
479     evalue[1] = evalue[0];
480     if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
481 greg 2.53 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
482     ra[0] = ra[1] = maxarad;
483     return;
484     }
485 greg 2.27 if (evalue[0] > evalue[1]) {
486 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[0]));
487     ra[1] = sqrt(sqrt(4.0/evalue[1]));
488 greg 2.27 slope1 = evalue[1];
489     } else {
490 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[1]));
491     ra[1] = sqrt(sqrt(4.0/evalue[0]));
492 greg 2.27 slope1 = evalue[0];
493     }
494     /* compute unit eigenvectors */
495     if (fabs(hess2[0][1]) <= FTINY)
496     return; /* uv OK as is */
497     slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
498     xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
499     for (i = 3; i--; ) {
500     b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
501     a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
502     }
503     VCOPY(uv[0], a);
504     VCOPY(uv[1], b);
505     }
506    
507    
508 greg 2.26 static void
509     ambHessian( /* anisotropic radii & pos. gradient */
510     AMBHEMI *hp,
511     FVECT uv[2], /* returned */
512 greg 2.28 float ra[2], /* returned (optional) */
513     float pg[2] /* returned (optional) */
514 greg 2.26 )
515     {
516 greg 2.27 static char memerrmsg[] = "out of memory in ambHessian()";
517     FVECT (*hessrow)[3] = NULL;
518     FVECT *gradrow = NULL;
519     FVECT hessian[3];
520     FVECT gradient;
521     FFTRI fftr;
522     int i, j;
523     /* be sure to assign unit vectors */
524     VCOPY(uv[0], hp->ux);
525     VCOPY(uv[1], hp->uy);
526     /* clock-wise vertex traversal from sample POV */
527     if (ra != NULL) { /* initialize Hessian row buffer */
528 greg 2.28 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
529 greg 2.27 if (hessrow == NULL)
530     error(SYSTEM, memerrmsg);
531     memset(hessian, 0, sizeof(hessian));
532     } else if (pg == NULL) /* bogus call? */
533     return;
534     if (pg != NULL) { /* initialize form factor row buffer */
535 greg 2.28 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
536 greg 2.27 if (gradrow == NULL)
537     error(SYSTEM, memerrmsg);
538     memset(gradient, 0, sizeof(gradient));
539     }
540     /* compute first row of edges */
541     for (j = 0; j < hp->ns-1; j++) {
542 greg 2.56 comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
543 greg 2.27 if (hessrow != NULL)
544     comp_hessian(hessrow[j], &fftr, hp->rp->ron);
545     if (gradrow != NULL)
546     comp_gradient(gradrow[j], &fftr, hp->rp->ron);
547     }
548     /* sum each row of triangles */
549     for (i = 0; i < hp->ns-1; i++) {
550     FVECT hesscol[3]; /* compute first vertical edge */
551     FVECT gradcol;
552 greg 2.56 comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
553 greg 2.27 if (hessrow != NULL)
554     comp_hessian(hesscol, &fftr, hp->rp->ron);
555     if (gradrow != NULL)
556     comp_gradient(gradcol, &fftr, hp->rp->ron);
557     for (j = 0; j < hp->ns-1; j++) {
558     FVECT hessdia[3]; /* compute triangle contributions */
559     FVECT graddia;
560 greg 2.46 double backg;
561 greg 2.56 backg = back_ambval(hp, AI(hp,i,j),
562     AI(hp,i,j+1), AI(hp,i+1,j));
563 greg 2.27 /* diagonal (inner) edge */
564 greg 2.56 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
565 greg 2.27 if (hessrow != NULL) {
566     comp_hessian(hessdia, &fftr, hp->rp->ron);
567     rev_hessian(hesscol);
568     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
569     }
570 greg 2.39 if (gradrow != NULL) {
571 greg 2.27 comp_gradient(graddia, &fftr, hp->rp->ron);
572     rev_gradient(gradcol);
573     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
574     }
575     /* initialize edge in next row */
576 greg 2.56 comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
577 greg 2.27 if (hessrow != NULL)
578     comp_hessian(hessrow[j], &fftr, hp->rp->ron);
579     if (gradrow != NULL)
580     comp_gradient(gradrow[j], &fftr, hp->rp->ron);
581     /* new column edge & paired triangle */
582 greg 2.56 backg = back_ambval(hp, AI(hp,i+1,j+1),
583     AI(hp,i+1,j), AI(hp,i,j+1));
584     comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
585 greg 2.27 if (hessrow != NULL) {
586     comp_hessian(hesscol, &fftr, hp->rp->ron);
587     rev_hessian(hessdia);
588     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
589     if (i < hp->ns-2)
590     rev_hessian(hessrow[j]);
591     }
592     if (gradrow != NULL) {
593     comp_gradient(gradcol, &fftr, hp->rp->ron);
594     rev_gradient(graddia);
595     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
596     if (i < hp->ns-2)
597     rev_gradient(gradrow[j]);
598     }
599     }
600     }
601     /* release row buffers */
602     if (hessrow != NULL) free(hessrow);
603     if (gradrow != NULL) free(gradrow);
604    
605     if (ra != NULL) /* extract eigenvectors & radii */
606     eigenvectors(uv, ra, hessian);
607 greg 2.32 if (pg != NULL) { /* tangential position gradient */
608     pg[0] = DOT(gradient, uv[0]);
609     pg[1] = DOT(gradient, uv[1]);
610 greg 2.27 }
611     }
612    
613    
614     /* Compute direction gradient from a hemispherical sampling */
615     static void
616     ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
617     {
618 greg 2.41 AMBSAMP *ap;
619     double dgsum[2];
620     int n;
621     FVECT vd;
622     double gfact;
623 greg 2.27
624 greg 2.29 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
625 greg 2.27 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
626     /* use vector for azimuth + 90deg */
627     VSUB(vd, ap->p, hp->rp->rop);
628 greg 2.29 /* brightness over cosine factor */
629     gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
630 greg 2.40 /* sine = proj_radius/vd_length */
631     dgsum[0] -= DOT(uv[1], vd) * gfact;
632     dgsum[1] += DOT(uv[0], vd) * gfact;
633 greg 2.26 }
634 greg 2.29 dg[0] = dgsum[0] / (hp->ns*hp->ns);
635     dg[1] = dgsum[1] / (hp->ns*hp->ns);
636 greg 2.26 }
637    
638 greg 2.27
639 greg 2.49 /* Compute potential light leak direction flags for cache value */
640     static uint32
641     ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
642 greg 2.47 {
643 greg 2.50 const double max_d = 1.0/(minarad*ambacc + 0.001);
644 greg 2.66 const double ang_res = 0.5*PI/hp->ns;
645     const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01);
646 greg 2.51 double avg_d = 0;
647 greg 2.50 uint32 flgs = 0;
648 greg 2.58 FVECT vec;
649 greg 2.62 double u, v;
650 greg 2.58 double ang, a1;
651 greg 2.50 int i, j;
652 greg 2.52 /* don't bother for a few samples */
653 greg 2.72 if (hp->ns < 8)
654 greg 2.52 return(0);
655     /* check distances overhead */
656 greg 2.51 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
657     for (j = hp->ns*3/4; j-- > hp->ns>>2; )
658     avg_d += ambsam(hp,i,j).d;
659     avg_d *= 4.0/(hp->ns*hp->ns);
660 greg 2.52 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
661     return(0);
662     if (avg_d >= max_d) /* insurance */
663 greg 2.51 return(0);
664     /* else circle around perimeter */
665 greg 2.47 for (i = 0; i < hp->ns; i++)
666     for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
667     AMBSAMP *ap = &ambsam(hp,i,j);
668 greg 2.50 if ((ap->d <= FTINY) | (ap->d >= max_d))
669     continue; /* too far or too near */
670 greg 2.47 VSUB(vec, ap->p, hp->rp->rop);
671 greg 2.62 u = DOT(vec, uv[0]);
672     v = DOT(vec, uv[1]);
673     if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v)
674 greg 2.49 continue; /* occluder outside ellipse */
675     ang = atan2a(v, u); /* else set direction flags */
676 greg 2.66 for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step)
677 greg 2.50 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
678 greg 2.47 }
679 greg 2.49 return(flgs);
680 greg 2.47 }
681    
682    
683 greg 2.26 int
684     doambient( /* compute ambient component */
685     COLOR rcol, /* input/output color */
686     RAY *r,
687     double wt,
688 greg 2.27 FVECT uv[2], /* returned (optional) */
689     float ra[2], /* returned (optional) */
690     float pg[2], /* returned (optional) */
691 greg 2.49 float dg[2], /* returned (optional) */
692     uint32 *crlp /* returned (optional) */
693 greg 2.26 )
694     {
695 greg 2.61 AMBHEMI *hp = samp_hemi(rcol, r, wt);
696 greg 2.41 FVECT my_uv[2];
697 greg 2.61 double d, K;
698 greg 2.41 AMBSAMP *ap;
699 greg 2.61 int i;
700     /* clear return values */
701 greg 2.26 if (uv != NULL)
702     memset(uv, 0, sizeof(FVECT)*2);
703     if (ra != NULL)
704     ra[0] = ra[1] = 0.0;
705     if (pg != NULL)
706     pg[0] = pg[1] = 0.0;
707     if (dg != NULL)
708     dg[0] = dg[1] = 0.0;
709 greg 2.49 if (crlp != NULL)
710     *crlp = 0;
711 greg 2.61 if (hp == NULL) /* sampling falure? */
712     return(0);
713    
714     if ((ra == NULL) & (pg == NULL) & (dg == NULL) ||
715 greg 2.68 (hp->sampOK < 0) | (hp->ns < 6)) {
716 greg 2.61 free(hp); /* Hessian not requested/possible */
717     return(-1); /* value-only return value */
718 greg 2.26 }
719 greg 2.61 if ((d = bright(rcol)) > FTINY) { /* normalize Y values */
720 greg 2.45 d = 0.99*(hp->ns*hp->ns)/d;
721 greg 2.38 K = 0.01;
722 greg 2.45 } else { /* or fall back on geometric Hessian */
723 greg 2.38 K = 1.0;
724     pg = NULL;
725     dg = NULL;
726 greg 2.53 crlp = NULL;
727 greg 2.38 }
728 greg 2.29 ap = hp->sa; /* relative Y channel from here on... */
729 greg 2.26 for (i = hp->ns*hp->ns; i--; ap++)
730 greg 2.38 colval(ap->v,CIEY) = bright(ap->v)*d + K;
731 greg 2.26
732     if (uv == NULL) /* make sure we have axis pointers */
733     uv = my_uv;
734     /* compute radii & pos. gradient */
735     ambHessian(hp, uv, ra, pg);
736 greg 2.29
737 greg 2.26 if (dg != NULL) /* compute direction gradient */
738     ambdirgrad(hp, uv, dg);
739 greg 2.29
740 greg 2.28 if (ra != NULL) { /* scale/clamp radii */
741 greg 2.35 if (pg != NULL) {
742     if (ra[0]*(d = fabs(pg[0])) > 1.0)
743     ra[0] = 1.0/d;
744     if (ra[1]*(d = fabs(pg[1])) > 1.0)
745     ra[1] = 1.0/d;
746 greg 2.48 if (ra[0] > ra[1])
747     ra[0] = ra[1];
748 greg 2.35 }
749 greg 2.29 if (ra[0] < minarad) {
750     ra[0] = minarad;
751     if (ra[1] < minarad)
752     ra[1] = minarad;
753     }
754 greg 2.60 ra[0] *= d = 1.0/sqrt(wt);
755 greg 2.26 if ((ra[1] *= d) > 2.0*ra[0])
756     ra[1] = 2.0*ra[0];
757 greg 2.28 if (ra[1] > maxarad) {
758     ra[1] = maxarad;
759     if (ra[0] > maxarad)
760     ra[0] = maxarad;
761     }
762 greg 2.53 /* flag encroached directions */
763 greg 2.71 if (crlp != NULL)
764 greg 2.49 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
765 greg 2.35 if (pg != NULL) { /* cap gradient if necessary */
766     d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
767     if (d > 1.0) {
768     d = 1.0/sqrt(d);
769     pg[0] *= d;
770     pg[1] *= d;
771     }
772     }
773 greg 2.26 }
774     free(hp); /* clean up and return */
775     return(1);
776     }
777    
778    
779 greg 2.25 #else /* ! NEWAMB */
780 greg 1.1
781    
782 greg 2.15 void
783 greg 2.14 inithemi( /* initialize sampling hemisphere */
784 greg 2.23 AMBHEMI *hp,
785 greg 2.16 COLOR ac,
786 greg 2.14 RAY *r,
787     double wt
788     )
789 greg 1.1 {
790 greg 2.16 double d;
791 greg 2.23 int i;
792 greg 2.14 /* set number of divisions */
793 greg 2.16 if (ambacc <= FTINY &&
794 greg 2.20 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
795 greg 2.16 wt = d; /* avoid ray termination */
796     hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
797 greg 2.14 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
798     if (hp->nt < i)
799     hp->nt = i;
800     hp->np = PI * hp->nt + 0.5;
801     /* set number of super-samples */
802 greg 2.15 hp->ns = ambssamp * wt + 0.5;
803 greg 2.16 /* assign coefficient */
804 greg 2.14 copycolor(hp->acoef, ac);
805 greg 2.16 d = 1.0/(hp->nt*hp->np);
806     scalecolor(hp->acoef, d);
807 greg 2.14 /* make axes */
808     VCOPY(hp->uz, r->ron);
809     hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
810     for (i = 0; i < 3; i++)
811     if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
812     break;
813     if (i >= 3)
814     error(CONSISTENCY, "bad ray direction in inithemi");
815     hp->uy[i] = 1.0;
816     fcross(hp->ux, hp->uy, hp->uz);
817     normalize(hp->ux);
818     fcross(hp->uy, hp->uz, hp->ux);
819 greg 1.1 }
820    
821    
822 greg 2.9 int
823 greg 2.14 divsample( /* sample a division */
824 greg 2.23 AMBSAMP *dp,
825 greg 2.14 AMBHEMI *h,
826     RAY *r
827     )
828 greg 1.1 {
829     RAY ar;
830 greg 1.11 int hlist[3];
831     double spt[2];
832 greg 1.1 double xd, yd, zd;
833     double b2;
834     double phi;
835 greg 2.23 int i;
836 greg 2.15 /* ambient coefficient for weight */
837 greg 2.16 if (ambacc > FTINY)
838     setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
839     else
840     copycolor(ar.rcoef, h->acoef);
841 greg 2.14 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
842 greg 1.4 return(-1);
843 greg 2.17 if (ambacc > FTINY) {
844     multcolor(ar.rcoef, h->acoef);
845     scalecolor(ar.rcoef, 1./AVGREFL);
846     }
847 greg 1.1 hlist[0] = r->rno;
848     hlist[1] = dp->t;
849     hlist[2] = dp->p;
850 greg 1.13 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
851 greg 1.11 zd = sqrt((dp->t + spt[0])/h->nt);
852     phi = 2.0*PI * (dp->p + spt[1])/h->np;
853 gwlarson 2.8 xd = tcos(phi) * zd;
854     yd = tsin(phi) * zd;
855 greg 1.1 zd = sqrt(1.0 - zd*zd);
856 greg 1.2 for (i = 0; i < 3; i++)
857     ar.rdir[i] = xd*h->ux[i] +
858     yd*h->uy[i] +
859     zd*h->uz[i];
860 greg 2.22 checknorm(ar.rdir);
861 greg 1.2 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
862 greg 1.1 rayvalue(&ar);
863     ndims--;
864 greg 2.16 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
865 greg 1.1 addcolor(dp->v, ar.rcol);
866 greg 2.9 /* use rt to improve gradient calc */
867     if (ar.rt > FTINY && ar.rt < FHUGE)
868     dp->r += 1.0/ar.rt;
869 greg 1.1 /* (re)initialize error */
870     if (dp->n++) {
871     b2 = bright(dp->v)/dp->n - bright(ar.rcol);
872     b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
873     dp->k = b2/(dp->n*dp->n);
874     } else
875     dp->k = 0.0;
876 greg 1.4 return(0);
877 greg 1.1 }
878    
879    
880 greg 2.14 static int
881     ambcmp( /* decreasing order */
882     const void *p1,
883     const void *p2
884     )
885     {
886     const AMBSAMP *d1 = (const AMBSAMP *)p1;
887     const AMBSAMP *d2 = (const AMBSAMP *)p2;
888    
889     if (d1->k < d2->k)
890     return(1);
891     if (d1->k > d2->k)
892     return(-1);
893     return(0);
894     }
895    
896    
897     static int
898     ambnorm( /* standard order */
899     const void *p1,
900     const void *p2
901     )
902     {
903     const AMBSAMP *d1 = (const AMBSAMP *)p1;
904     const AMBSAMP *d2 = (const AMBSAMP *)p2;
905 greg 2.23 int c;
906 greg 2.14
907     if ( (c = d1->t - d2->t) )
908     return(c);
909     return(d1->p - d2->p);
910     }
911    
912    
913 greg 1.1 double
914 greg 2.14 doambient( /* compute ambient component */
915 greg 2.23 COLOR rcol,
916 greg 2.14 RAY *r,
917     double wt,
918     FVECT pg,
919     FVECT dg
920     )
921 greg 1.1 {
922 greg 2.24 double b, d=0;
923 greg 1.1 AMBHEMI hemi;
924     AMBSAMP *div;
925     AMBSAMP dnew;
926 greg 2.23 double acol[3];
927     AMBSAMP *dp;
928 greg 1.1 double arad;
929 greg 2.19 int divcnt;
930 greg 2.23 int i, j;
931 greg 1.1 /* initialize hemisphere */
932 greg 2.23 inithemi(&hemi, rcol, r, wt);
933 greg 2.19 divcnt = hemi.nt * hemi.np;
934 greg 2.17 /* initialize */
935     if (pg != NULL)
936     pg[0] = pg[1] = pg[2] = 0.0;
937     if (dg != NULL)
938     dg[0] = dg[1] = dg[2] = 0.0;
939 greg 2.23 setcolor(rcol, 0.0, 0.0, 0.0);
940 greg 2.19 if (divcnt == 0)
941 greg 1.1 return(0.0);
942 greg 2.14 /* allocate super-samples */
943 greg 2.15 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
944 greg 2.19 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
945 greg 1.1 if (div == NULL)
946     error(SYSTEM, "out of memory in doambient");
947     } else
948     div = NULL;
949     /* sample the divisions */
950     arad = 0.0;
951 greg 2.23 acol[0] = acol[1] = acol[2] = 0.0;
952 greg 1.1 if ((dp = div) == NULL)
953     dp = &dnew;
954 greg 2.19 divcnt = 0;
955 greg 1.1 for (i = 0; i < hemi.nt; i++)
956     for (j = 0; j < hemi.np; j++) {
957     dp->t = i; dp->p = j;
958     setcolor(dp->v, 0.0, 0.0, 0.0);
959 greg 1.2 dp->r = 0.0;
960 greg 1.1 dp->n = 0;
961 greg 2.16 if (divsample(dp, &hemi, r) < 0) {
962 greg 2.19 if (div != NULL)
963     dp++;
964 greg 2.16 continue;
965     }
966 greg 2.6 arad += dp->r;
967 greg 2.19 divcnt++;
968 greg 1.1 if (div != NULL)
969     dp++;
970 greg 2.6 else
971 greg 1.1 addcolor(acol, dp->v);
972     }
973 greg 2.21 if (!divcnt) {
974     if (div != NULL)
975     free((void *)div);
976 greg 2.19 return(0.0); /* no samples taken */
977 greg 2.21 }
978 greg 2.19 if (divcnt < hemi.nt*hemi.np) {
979     pg = dg = NULL; /* incomplete sampling */
980     hemi.ns = 0;
981     } else if (arad > FTINY && divcnt/arad < minarad) {
982 greg 2.15 hemi.ns = 0; /* close enough */
983 greg 2.19 } else if (hemi.ns > 0) { /* else perform super-sampling? */
984 greg 1.4 comperrs(div, &hemi); /* compute errors */
985 greg 2.19 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
986 greg 1.1 /* super-sample */
987 greg 2.15 for (i = hemi.ns; i > 0; i--) {
988 schorsch 2.11 dnew = *div;
989 greg 2.16 if (divsample(&dnew, &hemi, r) < 0) {
990     dp++;
991     continue;
992     }
993     dp = div; /* reinsert */
994 greg 2.19 j = divcnt < i ? divcnt : i;
995 greg 1.1 while (--j > 0 && dnew.k < dp[1].k) {
996 schorsch 2.11 *dp = *(dp+1);
997 greg 1.1 dp++;
998     }
999 schorsch 2.11 *dp = dnew;
1000 greg 1.1 }
1001 greg 1.2 if (pg != NULL || dg != NULL) /* restore order */
1002 greg 2.19 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
1003 greg 1.1 }
1004     /* compute returned values */
1005 greg 1.3 if (div != NULL) {
1006 greg 2.19 arad = 0.0; /* note: divcnt may be < nt*np */
1007     for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
1008 greg 1.3 arad += dp->r;
1009     if (dp->n > 1) {
1010     b = 1.0/dp->n;
1011     scalecolor(dp->v, b);
1012     dp->r *= b;
1013     dp->n = 1;
1014     }
1015     addcolor(acol, dp->v);
1016     }
1017 greg 1.5 b = bright(acol);
1018 greg 1.6 if (b > FTINY) {
1019 greg 2.17 b = 1.0/b; /* compute & normalize gradient(s) */
1020 greg 1.6 if (pg != NULL) {
1021     posgradient(pg, div, &hemi);
1022     for (i = 0; i < 3; i++)
1023     pg[i] *= b;
1024     }
1025     if (dg != NULL) {
1026     dirgradient(dg, div, &hemi);
1027     for (i = 0; i < 3; i++)
1028     dg[i] *= b;
1029     }
1030 greg 1.5 }
1031 greg 2.9 free((void *)div);
1032 greg 1.3 }
1033 greg 2.23 copycolor(rcol, acol);
1034 greg 1.1 if (arad <= FTINY)
1035 greg 1.16 arad = maxarad;
1036 greg 2.3 else
1037 greg 2.19 arad = (divcnt+hemi.ns)/arad;
1038 greg 1.15 if (pg != NULL) { /* reduce radius if gradient large */
1039     d = DOT(pg,pg);
1040     if (d*arad*arad > 1.0)
1041     arad = 1.0/sqrt(d);
1042     }
1043 greg 1.16 if (arad < minarad) {
1044 greg 1.1 arad = minarad;
1045 greg 1.16 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
1046     d = 1.0/arad/sqrt(d);
1047     for (i = 0; i < 3; i++)
1048     pg[i] *= d;
1049     }
1050     }
1051 greg 2.3 if ((arad /= sqrt(wt)) > maxarad)
1052     arad = maxarad;
1053     return(arad);
1054 greg 1.1 }
1055    
1056    
1057 greg 2.9 void
1058 greg 2.14 comperrs( /* compute initial error estimates */
1059     AMBSAMP *da, /* assumes standard ordering */
1060 greg 2.23 AMBHEMI *hp
1061 greg 2.14 )
1062 greg 1.1 {
1063     double b, b2;
1064     int i, j;
1065 greg 2.23 AMBSAMP *dp;
1066 greg 1.1 /* sum differences from neighbors */
1067     dp = da;
1068     for (i = 0; i < hp->nt; i++)
1069     for (j = 0; j < hp->np; j++) {
1070 greg 1.6 #ifdef DEBUG
1071     if (dp->t != i || dp->p != j)
1072     error(CONSISTENCY,
1073     "division order in comperrs");
1074     #endif
1075 greg 1.1 b = bright(dp[0].v);
1076     if (i > 0) { /* from above */
1077     b2 = bright(dp[-hp->np].v) - b;
1078     b2 *= b2 * 0.25;
1079     dp[0].k += b2;
1080     dp[-hp->np].k += b2;
1081     }
1082     if (j > 0) { /* from behind */
1083     b2 = bright(dp[-1].v) - b;
1084     b2 *= b2 * 0.25;
1085     dp[0].k += b2;
1086     dp[-1].k += b2;
1087 greg 1.4 } else { /* around */
1088     b2 = bright(dp[hp->np-1].v) - b;
1089 greg 1.1 b2 *= b2 * 0.25;
1090     dp[0].k += b2;
1091 greg 1.4 dp[hp->np-1].k += b2;
1092 greg 1.1 }
1093     dp++;
1094     }
1095     /* divide by number of neighbors */
1096     dp = da;
1097     for (j = 0; j < hp->np; j++) /* top row */
1098     (dp++)->k *= 1.0/3.0;
1099     if (hp->nt < 2)
1100     return;
1101     for (i = 1; i < hp->nt-1; i++) /* central region */
1102     for (j = 0; j < hp->np; j++)
1103     (dp++)->k *= 0.25;
1104     for (j = 0; j < hp->np; j++) /* bottom row */
1105     (dp++)->k *= 1.0/3.0;
1106     }
1107    
1108    
1109 greg 2.9 void
1110 greg 2.14 posgradient( /* compute position gradient */
1111     FVECT gv,
1112     AMBSAMP *da, /* assumes standard ordering */
1113 greg 2.23 AMBHEMI *hp
1114 greg 2.14 )
1115 greg 1.1 {
1116 greg 2.23 int i, j;
1117 greg 2.2 double nextsine, lastsine, b, d;
1118 greg 1.2 double mag0, mag1;
1119     double phi, cosp, sinp, xd, yd;
1120 greg 2.23 AMBSAMP *dp;
1121 greg 1.2
1122     xd = yd = 0.0;
1123     for (j = 0; j < hp->np; j++) {
1124     dp = da + j;
1125     mag0 = mag1 = 0.0;
1126 greg 2.2 lastsine = 0.0;
1127 greg 1.2 for (i = 0; i < hp->nt; i++) {
1128     #ifdef DEBUG
1129     if (dp->t != i || dp->p != j)
1130     error(CONSISTENCY,
1131     "division order in posgradient");
1132     #endif
1133     b = bright(dp->v);
1134     if (i > 0) {
1135     d = dp[-hp->np].r;
1136     if (dp[0].r > d) d = dp[0].r;
1137 greg 2.2 /* sin(t)*cos(t)^2 */
1138     d *= lastsine * (1.0 - (double)i/hp->nt);
1139 greg 1.2 mag0 += d*(b - bright(dp[-hp->np].v));
1140     }
1141 greg 2.2 nextsine = sqrt((double)(i+1)/hp->nt);
1142 greg 1.2 if (j > 0) {
1143     d = dp[-1].r;
1144     if (dp[0].r > d) d = dp[0].r;
1145 greg 2.2 mag1 += d * (nextsine - lastsine) *
1146     (b - bright(dp[-1].v));
1147 greg 1.2 } else {
1148     d = dp[hp->np-1].r;
1149     if (dp[0].r > d) d = dp[0].r;
1150 greg 2.2 mag1 += d * (nextsine - lastsine) *
1151     (b - bright(dp[hp->np-1].v));
1152 greg 1.2 }
1153     dp += hp->np;
1154 greg 2.2 lastsine = nextsine;
1155 greg 1.2 }
1156 greg 2.2 mag0 *= 2.0*PI / hp->np;
1157 greg 1.2 phi = 2.0*PI * (double)j/hp->np;
1158 gwlarson 2.8 cosp = tcos(phi); sinp = tsin(phi);
1159 greg 1.2 xd += mag0*cosp - mag1*sinp;
1160     yd += mag0*sinp + mag1*cosp;
1161     }
1162     for (i = 0; i < 3; i++)
1163 greg 2.16 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
1164 greg 1.1 }
1165    
1166    
1167 greg 2.9 void
1168 greg 2.14 dirgradient( /* compute direction gradient */
1169     FVECT gv,
1170     AMBSAMP *da, /* assumes standard ordering */
1171 greg 2.23 AMBHEMI *hp
1172 greg 2.14 )
1173 greg 1.1 {
1174 greg 2.23 int i, j;
1175 greg 1.2 double mag;
1176     double phi, xd, yd;
1177 greg 2.23 AMBSAMP *dp;
1178 greg 1.2
1179     xd = yd = 0.0;
1180     for (j = 0; j < hp->np; j++) {
1181     dp = da + j;
1182     mag = 0.0;
1183     for (i = 0; i < hp->nt; i++) {
1184     #ifdef DEBUG
1185     if (dp->t != i || dp->p != j)
1186     error(CONSISTENCY,
1187     "division order in dirgradient");
1188     #endif
1189 greg 2.2 /* tan(t) */
1190     mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
1191 greg 1.2 dp += hp->np;
1192     }
1193     phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1194 gwlarson 2.8 xd += mag * tcos(phi);
1195     yd += mag * tsin(phi);
1196 greg 1.2 }
1197     for (i = 0; i < 3; i++)
1198 greg 2.16 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1199 greg 1.1 }
1200 greg 2.25
1201     #endif /* ! NEWAMB */