ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.7
Committed: Wed Jun 24 09:35:00 1998 UTC (25 years, 10 months ago) by gwlarson
Content type: text/plain
Branch: MAIN
Changes since 2.6: +3 -2 lines
Log Message:
changed from using effective ray distance to object distance in divsample()

File Contents

# User Rev Content
1 greg 1.1 /* Copyright (c) 1991 Regents of the University of California */
2    
3     #ifndef lint
4     static char SCCSid[] = "$SunId$ LBL";
5     #endif
6    
7     /*
8     * Routines to compute "ambient" values using Monte Carlo
9     */
10    
11     #include "ray.h"
12    
13     #include "ambient.h"
14    
15     #include "random.h"
16    
17     typedef struct {
18     short t, p; /* theta, phi indices */
19     COLOR v; /* value sum */
20 greg 1.2 float r; /* 1/distance sum */
21     float k; /* variance for this division */
22 greg 1.1 int n; /* number of subsamples */
23 greg 1.2 } AMBSAMP; /* ambient sample division */
24 greg 1.1
25     typedef struct {
26     FVECT ux, uy, uz; /* x, y and z axis directions */
27     short nt, np; /* number of theta and phi directions */
28     } AMBHEMI; /* ambient sample hemisphere */
29    
30    
31     static int
32     ambcmp(d1, d2) /* decreasing order */
33     AMBSAMP *d1, *d2;
34     {
35     if (d1->k < d2->k)
36     return(1);
37     if (d1->k > d2->k)
38     return(-1);
39     return(0);
40     }
41    
42    
43     static int
44     ambnorm(d1, d2) /* standard order */
45     AMBSAMP *d1, *d2;
46     {
47     register int c;
48    
49     if (c = d1->t - d2->t)
50     return(c);
51     return(d1->p - d2->p);
52     }
53    
54    
55     divsample(dp, h, r) /* sample a division */
56     register AMBSAMP *dp;
57     AMBHEMI *h;
58     RAY *r;
59     {
60     RAY ar;
61 greg 1.11 int hlist[3];
62     double spt[2];
63 greg 1.1 double xd, yd, zd;
64     double b2;
65     double phi;
66 greg 1.2 register int i;
67 greg 1.1
68 greg 1.12 if (rayorigin(&ar, r, AMBIENT, AVGREFL) < 0)
69 greg 1.4 return(-1);
70 greg 1.1 hlist[0] = r->rno;
71     hlist[1] = dp->t;
72     hlist[2] = dp->p;
73 greg 1.13 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
74 greg 1.11 zd = sqrt((dp->t + spt[0])/h->nt);
75     phi = 2.0*PI * (dp->p + spt[1])/h->np;
76 greg 1.1 xd = cos(phi) * zd;
77     yd = sin(phi) * zd;
78     zd = sqrt(1.0 - zd*zd);
79 greg 1.2 for (i = 0; i < 3; i++)
80     ar.rdir[i] = xd*h->ux[i] +
81     yd*h->uy[i] +
82     zd*h->uz[i];
83     dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
84 greg 1.1 rayvalue(&ar);
85     ndims--;
86     addcolor(dp->v, ar.rcol);
87 gwlarson 2.7 /* be conservative and use rot */
88     if (ar.rot > FTINY && ar.rot < FHUGE)
89     dp->r += 1.0/ar.rot;
90 greg 1.1 /* (re)initialize error */
91     if (dp->n++) {
92     b2 = bright(dp->v)/dp->n - bright(ar.rcol);
93     b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
94     dp->k = b2/(dp->n*dp->n);
95     } else
96     dp->k = 0.0;
97 greg 1.4 return(0);
98 greg 1.1 }
99    
100    
101     double
102 greg 1.12 doambient(acol, r, wt, pg, dg) /* compute ambient component */
103 greg 1.1 COLOR acol;
104     RAY *r;
105 greg 1.12 double wt;
106 greg 1.1 FVECT pg, dg;
107     {
108     double b, d;
109     AMBHEMI hemi;
110     AMBSAMP *div;
111     AMBSAMP dnew;
112     register AMBSAMP *dp;
113     double arad;
114     int ndivs, ns;
115     register int i, j;
116     /* initialize color */
117     setcolor(acol, 0.0, 0.0, 0.0);
118     /* initialize hemisphere */
119 greg 1.12 inithemi(&hemi, r, wt);
120 greg 1.1 ndivs = hemi.nt * hemi.np;
121     if (ndivs == 0)
122     return(0.0);
123     /* set number of super-samples */
124 greg 1.12 ns = ambssamp * wt + 0.5;
125 greg 1.1 if (ns > 0 || pg != NULL || dg != NULL) {
126     div = (AMBSAMP *)malloc(ndivs*sizeof(AMBSAMP));
127     if (div == NULL)
128     error(SYSTEM, "out of memory in doambient");
129     } else
130     div = NULL;
131     /* sample the divisions */
132     arad = 0.0;
133     if ((dp = div) == NULL)
134     dp = &dnew;
135     for (i = 0; i < hemi.nt; i++)
136     for (j = 0; j < hemi.np; j++) {
137     dp->t = i; dp->p = j;
138     setcolor(dp->v, 0.0, 0.0, 0.0);
139 greg 1.2 dp->r = 0.0;
140 greg 1.1 dp->n = 0;
141 greg 1.4 if (divsample(dp, &hemi, r) < 0)
142 greg 1.1 goto oopsy;
143 greg 2.6 arad += dp->r;
144 greg 1.1 if (div != NULL)
145     dp++;
146 greg 2.6 else
147 greg 1.1 addcolor(acol, dp->v);
148     }
149 greg 2.5 if (ns > 0 && arad > FTINY && ndivs/arad < minarad)
150     ns = 0; /* close enough */
151     else if (ns > 0) { /* else perform super-sampling */
152 greg 1.4 comperrs(div, &hemi); /* compute errors */
153 greg 1.1 qsort(div, ndivs, sizeof(AMBSAMP), ambcmp); /* sort divs */
154     /* super-sample */
155     for (i = ns; i > 0; i--) {
156     copystruct(&dnew, div);
157 greg 1.4 if (divsample(&dnew, &hemi, r) < 0)
158 greg 1.1 goto oopsy;
159     /* reinsert */
160     dp = div;
161     j = ndivs < i ? ndivs : i;
162     while (--j > 0 && dnew.k < dp[1].k) {
163     copystruct(dp, dp+1);
164     dp++;
165     }
166     copystruct(dp, &dnew);
167     }
168 greg 1.2 if (pg != NULL || dg != NULL) /* restore order */
169 greg 1.1 qsort(div, ndivs, sizeof(AMBSAMP), ambnorm);
170     }
171     /* compute returned values */
172 greg 1.3 if (div != NULL) {
173 greg 2.6 arad = 0.0;
174 greg 1.3 for (i = ndivs, dp = div; i-- > 0; dp++) {
175     arad += dp->r;
176     if (dp->n > 1) {
177     b = 1.0/dp->n;
178     scalecolor(dp->v, b);
179     dp->r *= b;
180     dp->n = 1;
181     }
182     addcolor(acol, dp->v);
183     }
184 greg 1.5 b = bright(acol);
185 greg 1.6 if (b > FTINY) {
186 greg 1.5 b = ndivs/b;
187 greg 1.6 if (pg != NULL) {
188     posgradient(pg, div, &hemi);
189     for (i = 0; i < 3; i++)
190     pg[i] *= b;
191     }
192     if (dg != NULL) {
193     dirgradient(dg, div, &hemi);
194     for (i = 0; i < 3; i++)
195     dg[i] *= b;
196     }
197     } else {
198     if (pg != NULL)
199     for (i = 0; i < 3; i++)
200     pg[i] = 0.0;
201     if (dg != NULL)
202     for (i = 0; i < 3; i++)
203     dg[i] = 0.0;
204 greg 1.5 }
205 greg 1.1 free((char *)div);
206 greg 1.3 }
207 greg 1.1 b = 1.0/ndivs;
208     scalecolor(acol, b);
209     if (arad <= FTINY)
210 greg 1.16 arad = maxarad;
211 greg 2.3 else
212 greg 1.1 arad = (ndivs+ns)/arad;
213 greg 1.15 if (pg != NULL) { /* reduce radius if gradient large */
214     d = DOT(pg,pg);
215     if (d*arad*arad > 1.0)
216     arad = 1.0/sqrt(d);
217     }
218 greg 1.16 if (arad < minarad) {
219 greg 1.1 arad = minarad;
220 greg 1.16 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
221     d = 1.0/arad/sqrt(d);
222     for (i = 0; i < 3; i++)
223     pg[i] *= d;
224     }
225     }
226 greg 2.3 if ((arad /= sqrt(wt)) > maxarad)
227     arad = maxarad;
228     return(arad);
229 greg 1.1 oopsy:
230     if (div != NULL)
231     free((char *)div);
232     return(0.0);
233     }
234    
235    
236 greg 1.12 inithemi(hp, r, wt) /* initialize sampling hemisphere */
237 greg 1.1 register AMBHEMI *hp;
238     RAY *r;
239 greg 1.12 double wt;
240 greg 1.1 {
241 greg 1.2 register int i;
242 greg 1.1 /* set number of divisions */
243 greg 1.14 if (wt < (.25*PI)/ambdiv+FTINY) {
244     hp->nt = hp->np = 0;
245     return; /* zero samples */
246     }
247 greg 1.12 hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
248 greg 1.14 hp->np = PI * hp->nt + 0.5;
249 greg 1.1 /* make axes */
250     VCOPY(hp->uz, r->ron);
251     hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
252 greg 1.2 for (i = 0; i < 3; i++)
253     if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
254 greg 1.1 break;
255 greg 1.2 if (i >= 3)
256 greg 1.1 error(CONSISTENCY, "bad ray direction in inithemi");
257 greg 1.2 hp->uy[i] = 1.0;
258 greg 1.3 fcross(hp->ux, hp->uy, hp->uz);
259     normalize(hp->ux);
260     fcross(hp->uy, hp->uz, hp->ux);
261 greg 1.1 }
262    
263    
264     comperrs(da, hp) /* compute initial error estimates */
265 greg 1.2 AMBSAMP *da; /* assumes standard ordering */
266 greg 1.1 register AMBHEMI *hp;
267     {
268     double b, b2;
269     int i, j;
270     register AMBSAMP *dp;
271     /* sum differences from neighbors */
272     dp = da;
273     for (i = 0; i < hp->nt; i++)
274     for (j = 0; j < hp->np; j++) {
275 greg 1.6 #ifdef DEBUG
276     if (dp->t != i || dp->p != j)
277     error(CONSISTENCY,
278     "division order in comperrs");
279     #endif
280 greg 1.1 b = bright(dp[0].v);
281     if (i > 0) { /* from above */
282     b2 = bright(dp[-hp->np].v) - b;
283     b2 *= b2 * 0.25;
284     dp[0].k += b2;
285     dp[-hp->np].k += b2;
286     }
287     if (j > 0) { /* from behind */
288     b2 = bright(dp[-1].v) - b;
289     b2 *= b2 * 0.25;
290     dp[0].k += b2;
291     dp[-1].k += b2;
292 greg 1.4 } else { /* around */
293     b2 = bright(dp[hp->np-1].v) - b;
294 greg 1.1 b2 *= b2 * 0.25;
295     dp[0].k += b2;
296 greg 1.4 dp[hp->np-1].k += b2;
297 greg 1.1 }
298     dp++;
299     }
300     /* divide by number of neighbors */
301     dp = da;
302     for (j = 0; j < hp->np; j++) /* top row */
303     (dp++)->k *= 1.0/3.0;
304     if (hp->nt < 2)
305     return;
306     for (i = 1; i < hp->nt-1; i++) /* central region */
307     for (j = 0; j < hp->np; j++)
308     (dp++)->k *= 0.25;
309     for (j = 0; j < hp->np; j++) /* bottom row */
310     (dp++)->k *= 1.0/3.0;
311     }
312    
313    
314     posgradient(gv, da, hp) /* compute position gradient */
315     FVECT gv;
316 greg 1.2 AMBSAMP *da; /* assumes standard ordering */
317 greg 2.2 register AMBHEMI *hp;
318 greg 1.1 {
319 greg 1.2 register int i, j;
320 greg 2.2 double nextsine, lastsine, b, d;
321 greg 1.2 double mag0, mag1;
322     double phi, cosp, sinp, xd, yd;
323     register AMBSAMP *dp;
324    
325     xd = yd = 0.0;
326     for (j = 0; j < hp->np; j++) {
327     dp = da + j;
328     mag0 = mag1 = 0.0;
329 greg 2.2 lastsine = 0.0;
330 greg 1.2 for (i = 0; i < hp->nt; i++) {
331     #ifdef DEBUG
332     if (dp->t != i || dp->p != j)
333     error(CONSISTENCY,
334     "division order in posgradient");
335     #endif
336     b = bright(dp->v);
337     if (i > 0) {
338     d = dp[-hp->np].r;
339     if (dp[0].r > d) d = dp[0].r;
340 greg 2.2 /* sin(t)*cos(t)^2 */
341     d *= lastsine * (1.0 - (double)i/hp->nt);
342 greg 1.2 mag0 += d*(b - bright(dp[-hp->np].v));
343     }
344 greg 2.2 nextsine = sqrt((double)(i+1)/hp->nt);
345 greg 1.2 if (j > 0) {
346     d = dp[-1].r;
347     if (dp[0].r > d) d = dp[0].r;
348 greg 2.2 mag1 += d * (nextsine - lastsine) *
349     (b - bright(dp[-1].v));
350 greg 1.2 } else {
351     d = dp[hp->np-1].r;
352     if (dp[0].r > d) d = dp[0].r;
353 greg 2.2 mag1 += d * (nextsine - lastsine) *
354     (b - bright(dp[hp->np-1].v));
355 greg 1.2 }
356     dp += hp->np;
357 greg 2.2 lastsine = nextsine;
358 greg 1.2 }
359 greg 2.2 mag0 *= 2.0*PI / hp->np;
360 greg 1.2 phi = 2.0*PI * (double)j/hp->np;
361     cosp = cos(phi); sinp = sin(phi);
362     xd += mag0*cosp - mag1*sinp;
363     yd += mag0*sinp + mag1*cosp;
364     }
365     for (i = 0; i < 3; i++)
366 greg 1.5 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])/PI;
367 greg 1.1 }
368    
369    
370     dirgradient(gv, da, hp) /* compute direction gradient */
371     FVECT gv;
372 greg 1.2 AMBSAMP *da; /* assumes standard ordering */
373 greg 2.2 register AMBHEMI *hp;
374 greg 1.1 {
375 greg 1.2 register int i, j;
376     double mag;
377     double phi, xd, yd;
378     register AMBSAMP *dp;
379    
380     xd = yd = 0.0;
381     for (j = 0; j < hp->np; j++) {
382     dp = da + j;
383     mag = 0.0;
384     for (i = 0; i < hp->nt; i++) {
385     #ifdef DEBUG
386     if (dp->t != i || dp->p != j)
387     error(CONSISTENCY,
388     "division order in dirgradient");
389     #endif
390 greg 2.2 /* tan(t) */
391     mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
392 greg 1.2 dp += hp->np;
393     }
394     phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
395     xd += mag * cos(phi);
396     yd += mag * sin(phi);
397     }
398     for (i = 0; i < 3; i++)
399 greg 2.2 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])/(hp->nt*hp->np);
400 greg 1.1 }