ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.55
Committed: Fri May 9 16:05:09 2014 UTC (9 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.54: +29 -21 lines
Log Message:
Better fix for previous bug and include diagonals in error est. (NEWAMB)

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.55 static const char RCSid[] = "$Id: ambcomp.c,v 2.54 2014/05/09 04:55:19 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * Routines to compute "ambient" values using Monte Carlo
6 greg 2.9 *
7 greg 2.27 * Hessian calculations based on "Practical Hessian-Based Error Control
8     * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9     * from ACM SIGGRAPH Asia 2012 conference proceedings.
10     *
11 greg 2.46 * Added book-keeping optimization to avoid calculations that would
12     * cancel due to traversal both directions on edges that are adjacent
13     * to same-valued triangles. This cuts about half of Hessian math.
14     *
15 greg 2.9 * Declarations of external symbols in ambient.h
16     */
17    
18 greg 2.10 #include "copyright.h"
19 greg 1.1
20     #include "ray.h"
21 greg 2.25 #include "ambient.h"
22     #include "random.h"
23 greg 1.1
24 greg 2.25 #ifdef NEWAMB
25 greg 1.1
26 greg 2.26 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
27    
28 greg 2.46 /* vertex direction bit positions */
29     #define VDB_xy 0
30     #define VDB_y 01
31     #define VDB_x 02
32     #define VDB_Xy 03
33     #define VDB_xY 04
34     #define VDB_X 05
35     #define VDB_Y 06
36     #define VDB_XY 07
37     /* get opposite vertex direction bit */
38     #define VDB_OPP(f) (~(f) & 07)
39     /* adjacent triangle vertex flags */
40     static const int adjacent_trifl[8] = {
41     0, /* forbidden diagonal */
42     1<<VDB_x|1<<VDB_y|1<<VDB_Xy,
43     1<<VDB_y|1<<VDB_x|1<<VDB_xY,
44     1<<VDB_y|1<<VDB_Xy|1<<VDB_X,
45     1<<VDB_x|1<<VDB_xY|1<<VDB_Y,
46     1<<VDB_Xy|1<<VDB_X|1<<VDB_Y,
47     1<<VDB_xY|1<<VDB_Y|1<<VDB_X,
48     0, /* forbidden diagonal */
49     };
50    
51 greg 2.26 typedef struct {
52 greg 2.44 COLOR v; /* hemisphere sample value */
53 greg 2.47 float d; /* reciprocal distance (1/rt) */
54 greg 2.44 FVECT p; /* intersection point */
55     } AMBSAMP; /* sample value */
56    
57     typedef struct {
58 greg 2.26 RAY *rp; /* originating ray sample */
59 greg 2.27 FVECT ux, uy; /* tangent axis unit vectors */
60 greg 2.26 int ns; /* number of samples per axis */
61     COLOR acoef; /* division contribution coefficient */
62 greg 2.44 AMBSAMP sa[1]; /* sample array (extends struct) */
63 greg 2.26 } AMBHEMI; /* ambient sample hemisphere */
64    
65 greg 2.46 #define ambndx(h,i,j) ((i)*(h)->ns + (j))
66     #define ambsam(h,i,j) (h)->sa[ambndx(h,i,j)]
67 greg 2.26
68 greg 2.27 typedef struct {
69 greg 2.35 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
70     double I1, I2;
71 greg 2.46 int valid;
72 greg 2.27 } FFTRI; /* vectors and coefficients for Hessian calculation */
73    
74 greg 2.26
75 greg 2.46 /* Get index for adjacent vertex */
76     static int
77     adjacent_verti(AMBHEMI *hp, int i, int j, int dbit)
78     {
79     int i0 = i*hp->ns + j;
80    
81     switch (dbit) {
82     case VDB_y: return(i0 - hp->ns);
83     case VDB_x: return(i0 - 1);
84     case VDB_Xy: return(i0 - hp->ns + 1);
85     case VDB_xY: return(i0 + hp->ns - 1);
86     case VDB_X: return(i0 + 1);
87     case VDB_Y: return(i0 + hp->ns);
88     /* the following should never occur */
89     case VDB_xy: return(i0 - hp->ns - 1);
90     case VDB_XY: return(i0 + hp->ns + 1);
91     }
92     return(-1);
93     }
94    
95    
96     /* Get vertex direction bit for the opposite edge to complete triangle */
97     static int
98     vdb_edge(int db1, int db2)
99     {
100     switch (db1) {
101     case VDB_x: return(db2==VDB_y ? VDB_Xy : VDB_Y);
102     case VDB_y: return(db2==VDB_x ? VDB_xY : VDB_X);
103     case VDB_X: return(db2==VDB_Xy ? VDB_y : VDB_xY);
104     case VDB_Y: return(db2==VDB_xY ? VDB_x : VDB_Xy);
105     case VDB_xY: return(db2==VDB_x ? VDB_y : VDB_X);
106     case VDB_Xy: return(db2==VDB_y ? VDB_x : VDB_Y);
107     }
108 greg 2.53 error(CONSISTENCY, "forbidden diagonal in vdb_edge()");
109 greg 2.46 return(-1);
110     }
111    
112    
113 greg 2.26 static AMBHEMI *
114     inithemi( /* initialize sampling hemisphere */
115     COLOR ac,
116     RAY *r,
117     double wt
118     )
119     {
120     AMBHEMI *hp;
121     double d;
122     int n, i;
123     /* set number of divisions */
124     if (ambacc <= FTINY &&
125     wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
126     wt = d; /* avoid ray termination */
127     n = sqrt(ambdiv * wt) + 0.5;
128 greg 2.27 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
129 greg 2.26 if (n < i)
130     n = i;
131     /* allocate sampling array */
132 greg 2.41 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
133 greg 2.26 if (hp == NULL)
134     return(NULL);
135     hp->rp = r;
136     hp->ns = n;
137     /* assign coefficient */
138     copycolor(hp->acoef, ac);
139     d = 1.0/(n*n);
140     scalecolor(hp->acoef, d);
141 greg 2.28 /* make tangent plane axes */
142 greg 2.38 hp->uy[0] = 0.5 - frandom();
143     hp->uy[1] = 0.5 - frandom();
144     hp->uy[2] = 0.5 - frandom();
145 greg 2.36 for (i = 3; i--; )
146 greg 2.37 if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6))
147     break;
148     if (i < 0)
149     error(CONSISTENCY, "bad ray direction in inithemi");
150     hp->uy[i] = 1.0;
151 greg 2.27 VCROSS(hp->ux, hp->uy, r->ron);
152 greg 2.26 normalize(hp->ux);
153 greg 2.27 VCROSS(hp->uy, r->ron, hp->ux);
154 greg 2.26 /* we're ready to sample */
155     return(hp);
156     }
157    
158    
159 greg 2.43 /* Sample ambient division and apply weighting coefficient */
160 greg 2.41 static int
161 greg 2.43 getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n)
162 greg 2.26 {
163 greg 2.41 int hlist[3], ii;
164     double spt[2], zd;
165 greg 2.26 /* ambient coefficient for weight */
166     if (ambacc > FTINY)
167 greg 2.41 setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL);
168 greg 2.26 else
169 greg 2.41 copycolor(arp->rcoef, hp->acoef);
170     if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0)
171     return(0);
172 greg 2.26 if (ambacc > FTINY) {
173 greg 2.41 multcolor(arp->rcoef, hp->acoef);
174     scalecolor(arp->rcoef, 1./AVGREFL);
175     }
176     hlist[0] = hp->rp->rno;
177 greg 2.46 hlist[1] = j;
178     hlist[2] = i;
179 greg 2.41 multisamp(spt, 2, urand(ilhash(hlist,3)+n));
180     if (!n) { /* avoid border samples for n==0 */
181 greg 2.46 if ((spt[0] < 0.1) | (spt[0] >= 0.9))
182 greg 2.41 spt[0] = 0.1 + 0.8*frandom();
183 greg 2.46 if ((spt[1] < 0.1) | (spt[1] >= 0.9))
184 greg 2.41 spt[1] = 0.1 + 0.8*frandom();
185 greg 2.26 }
186 greg 2.46 SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
187 greg 2.26 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
188     for (ii = 3; ii--; )
189 greg 2.41 arp->rdir[ii] = spt[0]*hp->ux[ii] +
190 greg 2.26 spt[1]*hp->uy[ii] +
191     zd*hp->rp->ron[ii];
192 greg 2.41 checknorm(arp->rdir);
193 greg 2.46 dimlist[ndims++] = ambndx(hp,i,j) + 90171;
194 greg 2.43 rayvalue(arp); /* evaluate ray */
195     ndims--; /* apply coefficient */
196     multcolor(arp->rcol, arp->rcoef);
197 greg 2.41 return(1);
198     }
199    
200    
201     static AMBSAMP *
202 greg 2.43 ambsample( /* initial ambient division sample */
203 greg 2.41 AMBHEMI *hp,
204     int i,
205     int j
206     )
207     {
208 greg 2.43 AMBSAMP *ap = &ambsam(hp,i,j);
209 greg 2.41 RAY ar;
210     /* generate hemispherical sample */
211 greg 2.47 if (!getambsamp(&ar, hp, i, j, 0) || ar.rt <= FTINY) {
212     memset(ap, 0, sizeof(AMBSAMP));
213     return(NULL);
214     }
215     ap->d = 1.0/ar.rt; /* limit vertex distance */
216 greg 2.34 if (ar.rt > 10.0*thescene.cusize)
217     ar.rt = 10.0*thescene.cusize;
218 greg 2.31 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
219 greg 2.26 copycolor(ap->v, ar.rcol);
220 greg 2.28 return(ap);
221 greg 2.26 }
222    
223    
224 greg 2.41 /* Estimate errors based on ambient division differences */
225     static float *
226     getambdiffs(AMBHEMI *hp)
227     {
228 greg 2.55 float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
229 greg 2.41 float *ep;
230 greg 2.42 AMBSAMP *ap;
231 greg 2.41 double b, d2;
232     int i, j;
233    
234     if (earr == NULL) /* out of memory? */
235     return(NULL);
236     /* compute squared neighbor diffs */
237 greg 2.42 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
238     for (j = 0; j < hp->ns; j++, ap++, ep++) {
239     b = bright(ap[0].v);
240 greg 2.41 if (i) { /* from above */
241 greg 2.42 d2 = b - bright(ap[-hp->ns].v);
242 greg 2.41 d2 *= d2;
243     ep[0] += d2;
244     ep[-hp->ns] += d2;
245     }
246 greg 2.55 if (!j) continue;
247     /* from behind */
248     d2 = b - bright(ap[-1].v);
249     d2 *= d2;
250     ep[0] += d2;
251     ep[-1] += d2;
252     if (!i) continue;
253     /* diagonal */
254     d2 = b - bright(ap[-hp->ns-1].v);
255     d2 *= d2;
256     ep[0] += d2;
257     ep[-hp->ns-1] += d2;
258 greg 2.41 }
259     /* correct for number of neighbors */
260 greg 2.55 earr[0] *= 8./3.;
261     earr[hp->ns-1] *= 8./3.;
262     earr[(hp->ns-1)*hp->ns] *= 8./3.;
263     earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 8./3.;
264 greg 2.41 for (i = 1; i < hp->ns-1; i++) {
265 greg 2.55 earr[i*hp->ns] *= 8./5.;
266     earr[i*hp->ns + hp->ns-1] *= 8./5.;
267 greg 2.41 }
268     for (j = 1; j < hp->ns-1; j++) {
269 greg 2.55 earr[j] *= 8./5.;
270     earr[(hp->ns-1)*hp->ns + j] *= 8./5.;
271 greg 2.41 }
272     return(earr);
273     }
274    
275    
276 greg 2.43 /* Perform super-sampling on hemisphere (introduces bias) */
277 greg 2.41 static void
278     ambsupersamp(double acol[3], AMBHEMI *hp, int cnt)
279     {
280     float *earr = getambdiffs(hp);
281 greg 2.54 double e2rem = 0;
282 greg 2.41 AMBSAMP *ap;
283     RAY ar;
284 greg 2.50 double asum[3];
285 greg 2.41 float *ep;
286 greg 2.55 int i, j, n, nss;
287 greg 2.41
288     if (earr == NULL) /* just skip calc. if no memory */
289     return;
290 greg 2.54 /* accumulate estimated variances */
291 greg 2.55 for (ep = earr + hp->ns*hp->ns; ep > earr; )
292     e2rem += *--ep;
293 greg 2.41 ep = earr; /* perform super-sampling */
294     for (ap = hp->sa, i = 0; i < hp->ns; i++)
295     for (j = 0; j < hp->ns; j++, ap++) {
296 greg 2.55 if (e2rem <= FTINY)
297     goto done; /* nothing left to do */
298     nss = *ep/e2rem*cnt + frandom();
299 greg 2.50 asum[0] = asum[1] = asum[2] = 0.0;
300 greg 2.41 for (n = 1; n <= nss; n++) {
301 greg 2.43 if (!getambsamp(&ar, hp, i, j, n)) {
302 greg 2.41 nss = n-1;
303     break;
304     }
305     addcolor(asum, ar.rcol);
306     }
307     if (nss) { /* update returned ambient value */
308 greg 2.54 const double ssf = 1./(nss + 1.);
309 greg 2.41 for (n = 3; n--; )
310 greg 2.50 acol[n] += ssf*asum[n] +
311 greg 2.41 (ssf - 1.)*colval(ap->v,n);
312     }
313 greg 2.54 e2rem -= *ep++; /* update remainders */
314 greg 2.41 cnt -= nss;
315     }
316 greg 2.55 done:
317 greg 2.41 free(earr);
318     }
319    
320    
321 greg 2.46 /* Compute vertex flags, indicating farthest in each direction */
322     static uby8 *
323     vertex_flags(AMBHEMI *hp)
324     {
325     uby8 *vflags = (uby8 *)calloc(hp->ns*hp->ns, sizeof(uby8));
326     uby8 *vf;
327 greg 2.47 AMBSAMP *ap;
328 greg 2.46 int i, j;
329    
330 greg 2.47 if (vflags == NULL)
331 greg 2.46 error(SYSTEM, "out of memory in vertex_flags()");
332 greg 2.47 vf = vflags;
333     ap = hp->sa; /* compute farthest along first row */
334     for (j = 0; j < hp->ns-1; j++, vf++, ap++)
335     if (ap[0].d <= ap[1].d)
336     vf[0] |= 1<<VDB_X;
337 greg 2.46 else
338 greg 2.47 vf[1] |= 1<<VDB_x;
339     ++vf; ++ap;
340 greg 2.46 /* flag subsequent rows */
341     for (i = 1; i < hp->ns; i++) {
342 greg 2.47 for (j = 0; j < hp->ns-1; j++, vf++, ap++) {
343     if (ap[0].d <= ap[-hp->ns].d) /* row before */
344 greg 2.46 vf[0] |= 1<<VDB_y;
345     else
346     vf[-hp->ns] |= 1<<VDB_Y;
347 greg 2.47 if (ap[0].d <= ap[1-hp->ns].d) /* diagonal we care about */
348 greg 2.46 vf[0] |= 1<<VDB_Xy;
349     else
350     vf[1-hp->ns] |= 1<<VDB_xY;
351 greg 2.47 if (ap[0].d <= ap[1].d) /* column after */
352 greg 2.46 vf[0] |= 1<<VDB_X;
353     else
354     vf[1] |= 1<<VDB_x;
355     }
356 greg 2.47 if (ap[0].d <= ap[-hp->ns].d) /* final column edge */
357 greg 2.46 vf[0] |= 1<<VDB_y;
358     else
359     vf[-hp->ns] |= 1<<VDB_Y;
360 greg 2.47 ++vf; ++ap;
361 greg 2.46 }
362     return(vflags);
363     }
364    
365    
366     /* Return brightness of farthest ambient sample */
367     static double
368     back_ambval(AMBHEMI *hp, int i, int j, int dbit1, int dbit2, const uby8 *vflags)
369     {
370     const int v0 = ambndx(hp,i,j);
371     const int tflags = (1<<dbit1 | 1<<dbit2);
372     int v1, v2;
373    
374     if ((vflags[v0] & tflags) == tflags) /* is v0 the farthest? */
375     return(colval(hp->sa[v0].v,CIEY));
376     v1 = adjacent_verti(hp, i, j, dbit1);
377     if (vflags[v0] & 1<<dbit2) /* v1 farthest if v0>v2 */
378     return(colval(hp->sa[v1].v,CIEY));
379     v2 = adjacent_verti(hp, i, j, dbit2);
380     if (vflags[v0] & 1<<dbit1) /* v2 farthest if v0>v1 */
381     return(colval(hp->sa[v2].v,CIEY));
382     /* else check if v1>v2 */
383     if (vflags[v1] & 1<<vdb_edge(dbit1,dbit2))
384     return(colval(hp->sa[v1].v,CIEY));
385     return(colval(hp->sa[v2].v,CIEY));
386     }
387    
388    
389 greg 2.27 /* Compute vectors and coefficients for Hessian/gradient calcs */
390     static void
391 greg 2.46 comp_fftri(FFTRI *ftp, AMBHEMI *hp, int i, int j, int dbit, const uby8 *vflags)
392 greg 2.27 {
393 greg 2.46 const int i0 = ambndx(hp,i,j);
394     double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
395     int i1, ii;
396    
397     ftp->valid = 0; /* check if we can skip this edge */
398     ii = adjacent_trifl[dbit];
399     if ((vflags[i0] & ii) == ii) /* cancels if vertex used as value */
400     return;
401     i1 = adjacent_verti(hp, i, j, dbit);
402     ii = adjacent_trifl[VDB_OPP(dbit)];
403     if ((vflags[i1] & ii) == ii) /* on either end (for both triangles) */
404     return;
405     /* else go ahead with calculation */
406     VSUB(ftp->r_i, hp->sa[i0].p, hp->rp->rop);
407     VSUB(ftp->r_i1, hp->sa[i1].p, hp->rp->rop);
408     VSUB(ftp->e_i, hp->sa[i1].p, hp->sa[i0].p);
409 greg 2.35 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
410     rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
411 greg 2.27 dot_e = DOT(ftp->e_i,ftp->e_i);
412     dot_er = DOT(ftp->e_i, ftp->r_i);
413 greg 2.32 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
414     rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
415     ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
416 greg 2.35 sqrt( rdot_cp );
417 greg 2.32 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
418 greg 2.35 dot_e*ftp->I1 )*0.5*rdot_cp;
419 greg 2.32 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
420 greg 2.46 for (ii = 3; ii--; )
421     ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
422     ftp->valid++;
423 greg 2.27 }
424    
425    
426 greg 2.28 /* Compose 3x3 matrix from two vectors */
427 greg 2.27 static void
428     compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
429     {
430     mat[0][0] = 2.0*va[0]*vb[0];
431     mat[1][1] = 2.0*va[1]*vb[1];
432     mat[2][2] = 2.0*va[2]*vb[2];
433     mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
434     mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
435     mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
436     }
437    
438    
439     /* Compute partial 3x3 Hessian matrix for edge */
440     static void
441     comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
442     {
443 greg 2.35 FVECT ncp;
444 greg 2.27 FVECT m1[3], m2[3], m3[3], m4[3];
445     double d1, d2, d3, d4;
446     double I3, J3, K3;
447     int i, j;
448 greg 2.46
449     if (!ftp->valid) { /* preemptive test */
450     memset(hess, 0, sizeof(FVECT)*3);
451     return;
452     }
453 greg 2.27 /* compute intermediate coefficients */
454     d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
455     d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
456     d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
457     d4 = DOT(ftp->e_i, ftp->r_i);
458 greg 2.35 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
459     / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
460 greg 2.27 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
461     K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
462     /* intermediate matrices */
463 greg 2.35 VCROSS(ncp, nrm, ftp->e_i);
464     compose_matrix(m1, ncp, ftp->rI2_eJ2);
465 greg 2.27 compose_matrix(m2, ftp->r_i, ftp->r_i);
466     compose_matrix(m3, ftp->e_i, ftp->e_i);
467     compose_matrix(m4, ftp->r_i, ftp->e_i);
468 greg 2.35 d1 = DOT(nrm, ftp->rcp);
469 greg 2.27 d2 = -d1*ftp->I2;
470     d1 *= 2.0;
471     for (i = 3; i--; ) /* final matrix sum */
472     for (j = 3; j--; ) {
473     hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
474     2.0*J3*m4[i][j] );
475     hess[i][j] += d2*(i==j);
476 greg 2.46 hess[i][j] *= -1.0/PI;
477 greg 2.27 }
478     }
479    
480    
481     /* Reverse hessian calculation result for edge in other direction */
482     static void
483     rev_hessian(FVECT hess[3])
484     {
485     int i;
486    
487     for (i = 3; i--; ) {
488     hess[i][0] = -hess[i][0];
489     hess[i][1] = -hess[i][1];
490     hess[i][2] = -hess[i][2];
491     }
492     }
493    
494    
495     /* Add to radiometric Hessian from the given triangle */
496     static void
497     add2hessian(FVECT hess[3], FVECT ehess1[3],
498 greg 2.46 FVECT ehess2[3], FVECT ehess3[3], double v)
499 greg 2.27 {
500     int i, j;
501    
502     for (i = 3; i--; )
503     for (j = 3; j--; )
504     hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
505     }
506    
507    
508     /* Compute partial displacement form factor gradient for edge */
509     static void
510     comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
511     {
512 greg 2.35 FVECT ncp;
513 greg 2.27 double f1;
514     int i;
515    
516 greg 2.46 if (!ftp->valid) { /* preemptive test */
517     memset(grad, 0, sizeof(FVECT));
518     return;
519     }
520 greg 2.35 f1 = 2.0*DOT(nrm, ftp->rcp);
521     VCROSS(ncp, nrm, ftp->e_i);
522 greg 2.27 for (i = 3; i--; )
523 greg 2.46 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
524 greg 2.27 }
525    
526    
527     /* Reverse gradient calculation result for edge in other direction */
528     static void
529     rev_gradient(FVECT grad)
530     {
531     grad[0] = -grad[0];
532     grad[1] = -grad[1];
533     grad[2] = -grad[2];
534     }
535    
536    
537     /* Add to displacement gradient from the given triangle */
538     static void
539 greg 2.46 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
540 greg 2.27 {
541     int i;
542    
543     for (i = 3; i--; )
544     grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
545     }
546    
547    
548     /* Compute anisotropic radii and eigenvector directions */
549 greg 2.53 static void
550 greg 2.27 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
551     {
552     double hess2[2][2];
553     FVECT a, b;
554     double evalue[2], slope1, xmag1;
555     int i;
556     /* project Hessian to sample plane */
557     for (i = 3; i--; ) {
558     a[i] = DOT(hessian[i], uv[0]);
559     b[i] = DOT(hessian[i], uv[1]);
560     }
561     hess2[0][0] = DOT(uv[0], a);
562     hess2[0][1] = DOT(uv[0], b);
563     hess2[1][0] = DOT(uv[1], a);
564     hess2[1][1] = DOT(uv[1], b);
565 greg 2.38 /* compute eigenvalue(s) */
566     i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
567     hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
568     if (i == 1) /* double-root (circle) */
569     evalue[1] = evalue[0];
570     if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
571 greg 2.53 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
572     ra[0] = ra[1] = maxarad;
573     return;
574     }
575 greg 2.27 if (evalue[0] > evalue[1]) {
576 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[0]));
577     ra[1] = sqrt(sqrt(4.0/evalue[1]));
578 greg 2.27 slope1 = evalue[1];
579     } else {
580 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[1]));
581     ra[1] = sqrt(sqrt(4.0/evalue[0]));
582 greg 2.27 slope1 = evalue[0];
583     }
584     /* compute unit eigenvectors */
585     if (fabs(hess2[0][1]) <= FTINY)
586     return; /* uv OK as is */
587     slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
588     xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
589     for (i = 3; i--; ) {
590     b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
591     a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
592     }
593     VCOPY(uv[0], a);
594     VCOPY(uv[1], b);
595     }
596    
597    
598 greg 2.26 static void
599     ambHessian( /* anisotropic radii & pos. gradient */
600     AMBHEMI *hp,
601     FVECT uv[2], /* returned */
602 greg 2.28 float ra[2], /* returned (optional) */
603     float pg[2] /* returned (optional) */
604 greg 2.26 )
605     {
606 greg 2.27 static char memerrmsg[] = "out of memory in ambHessian()";
607     FVECT (*hessrow)[3] = NULL;
608     FVECT *gradrow = NULL;
609 greg 2.46 uby8 *vflags;
610 greg 2.27 FVECT hessian[3];
611     FVECT gradient;
612     FFTRI fftr;
613     int i, j;
614     /* be sure to assign unit vectors */
615     VCOPY(uv[0], hp->ux);
616     VCOPY(uv[1], hp->uy);
617     /* clock-wise vertex traversal from sample POV */
618     if (ra != NULL) { /* initialize Hessian row buffer */
619 greg 2.28 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
620 greg 2.27 if (hessrow == NULL)
621     error(SYSTEM, memerrmsg);
622     memset(hessian, 0, sizeof(hessian));
623     } else if (pg == NULL) /* bogus call? */
624     return;
625     if (pg != NULL) { /* initialize form factor row buffer */
626 greg 2.28 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
627 greg 2.27 if (gradrow == NULL)
628     error(SYSTEM, memerrmsg);
629     memset(gradient, 0, sizeof(gradient));
630     }
631 greg 2.46 /* get vertex position flags */
632     vflags = vertex_flags(hp);
633 greg 2.27 /* compute first row of edges */
634     for (j = 0; j < hp->ns-1; j++) {
635 greg 2.46 comp_fftri(&fftr, hp, 0, j, VDB_X, vflags);
636 greg 2.27 if (hessrow != NULL)
637     comp_hessian(hessrow[j], &fftr, hp->rp->ron);
638     if (gradrow != NULL)
639     comp_gradient(gradrow[j], &fftr, hp->rp->ron);
640     }
641     /* sum each row of triangles */
642     for (i = 0; i < hp->ns-1; i++) {
643     FVECT hesscol[3]; /* compute first vertical edge */
644     FVECT gradcol;
645 greg 2.46 comp_fftri(&fftr, hp, i, 0, VDB_Y, vflags);
646 greg 2.27 if (hessrow != NULL)
647     comp_hessian(hesscol, &fftr, hp->rp->ron);
648     if (gradrow != NULL)
649     comp_gradient(gradcol, &fftr, hp->rp->ron);
650     for (j = 0; j < hp->ns-1; j++) {
651     FVECT hessdia[3]; /* compute triangle contributions */
652     FVECT graddia;
653 greg 2.46 double backg;
654     backg = back_ambval(hp, i, j, VDB_X, VDB_Y, vflags);
655 greg 2.27 /* diagonal (inner) edge */
656 greg 2.46 comp_fftri(&fftr, hp, i, j+1, VDB_xY, vflags);
657 greg 2.27 if (hessrow != NULL) {
658     comp_hessian(hessdia, &fftr, hp->rp->ron);
659     rev_hessian(hesscol);
660     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
661     }
662 greg 2.39 if (gradrow != NULL) {
663 greg 2.27 comp_gradient(graddia, &fftr, hp->rp->ron);
664     rev_gradient(gradcol);
665     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
666     }
667     /* initialize edge in next row */
668 greg 2.46 comp_fftri(&fftr, hp, i+1, j+1, VDB_x, vflags);
669 greg 2.27 if (hessrow != NULL)
670     comp_hessian(hessrow[j], &fftr, hp->rp->ron);
671     if (gradrow != NULL)
672     comp_gradient(gradrow[j], &fftr, hp->rp->ron);
673     /* new column edge & paired triangle */
674 greg 2.46 backg = back_ambval(hp, i+1, j+1, VDB_x, VDB_y, vflags);
675     comp_fftri(&fftr, hp, i, j+1, VDB_Y, vflags);
676 greg 2.27 if (hessrow != NULL) {
677     comp_hessian(hesscol, &fftr, hp->rp->ron);
678     rev_hessian(hessdia);
679     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
680     if (i < hp->ns-2)
681     rev_hessian(hessrow[j]);
682     }
683     if (gradrow != NULL) {
684     comp_gradient(gradcol, &fftr, hp->rp->ron);
685     rev_gradient(graddia);
686     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
687     if (i < hp->ns-2)
688     rev_gradient(gradrow[j]);
689     }
690     }
691     }
692     /* release row buffers */
693     if (hessrow != NULL) free(hessrow);
694     if (gradrow != NULL) free(gradrow);
695 greg 2.46 free(vflags);
696 greg 2.27
697     if (ra != NULL) /* extract eigenvectors & radii */
698     eigenvectors(uv, ra, hessian);
699 greg 2.32 if (pg != NULL) { /* tangential position gradient */
700     pg[0] = DOT(gradient, uv[0]);
701     pg[1] = DOT(gradient, uv[1]);
702 greg 2.27 }
703     }
704    
705    
706     /* Compute direction gradient from a hemispherical sampling */
707     static void
708     ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
709     {
710 greg 2.41 AMBSAMP *ap;
711     double dgsum[2];
712     int n;
713     FVECT vd;
714     double gfact;
715 greg 2.27
716 greg 2.29 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
717 greg 2.27 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
718     /* use vector for azimuth + 90deg */
719     VSUB(vd, ap->p, hp->rp->rop);
720 greg 2.29 /* brightness over cosine factor */
721     gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
722 greg 2.40 /* sine = proj_radius/vd_length */
723     dgsum[0] -= DOT(uv[1], vd) * gfact;
724     dgsum[1] += DOT(uv[0], vd) * gfact;
725 greg 2.26 }
726 greg 2.29 dg[0] = dgsum[0] / (hp->ns*hp->ns);
727     dg[1] = dgsum[1] / (hp->ns*hp->ns);
728 greg 2.26 }
729    
730 greg 2.27
731 greg 2.49 /* Compute potential light leak direction flags for cache value */
732     static uint32
733     ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
734 greg 2.47 {
735 greg 2.50 const double max_d = 1.0/(minarad*ambacc + 0.001);
736     const double ang_res = 0.5*PI/(hp->ns-1);
737     const double ang_step = ang_res/((int)(16/PI*ang_res) + (1+FTINY));
738 greg 2.51 double avg_d = 0;
739 greg 2.50 uint32 flgs = 0;
740     int i, j;
741 greg 2.52 /* don't bother for a few samples */
742     if (hp->ns < 12)
743     return(0);
744     /* check distances overhead */
745 greg 2.51 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
746     for (j = hp->ns*3/4; j-- > hp->ns>>2; )
747     avg_d += ambsam(hp,i,j).d;
748     avg_d *= 4.0/(hp->ns*hp->ns);
749 greg 2.52 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
750     return(0);
751     if (avg_d >= max_d) /* insurance */
752 greg 2.51 return(0);
753     /* else circle around perimeter */
754 greg 2.47 for (i = 0; i < hp->ns; i++)
755     for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
756     AMBSAMP *ap = &ambsam(hp,i,j);
757     FVECT vec;
758 greg 2.49 double u, v;
759 greg 2.50 double ang, a1;
760 greg 2.49 int abp;
761 greg 2.50 if ((ap->d <= FTINY) | (ap->d >= max_d))
762     continue; /* too far or too near */
763 greg 2.47 VSUB(vec, ap->p, hp->rp->rop);
764 greg 2.49 u = DOT(vec, uv[0]) * ap->d;
765     v = DOT(vec, uv[1]) * ap->d;
766     if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= 1.0)
767     continue; /* occluder outside ellipse */
768     ang = atan2a(v, u); /* else set direction flags */
769 greg 2.50 for (a1 = ang-.5*ang_res; a1 <= ang+.5*ang_res; a1 += ang_step)
770     flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
771 greg 2.47 }
772 greg 2.49 return(flgs);
773 greg 2.47 }
774    
775    
776 greg 2.26 int
777     doambient( /* compute ambient component */
778     COLOR rcol, /* input/output color */
779     RAY *r,
780     double wt,
781 greg 2.27 FVECT uv[2], /* returned (optional) */
782     float ra[2], /* returned (optional) */
783     float pg[2], /* returned (optional) */
784 greg 2.49 float dg[2], /* returned (optional) */
785     uint32 *crlp /* returned (optional) */
786 greg 2.26 )
787     {
788 greg 2.41 AMBHEMI *hp = inithemi(rcol, r, wt);
789 greg 2.45 int cnt;
790 greg 2.41 FVECT my_uv[2];
791     double d, K, acol[3];
792     AMBSAMP *ap;
793     int i, j;
794 greg 2.28 /* check/initialize */
795     if (hp == NULL)
796 greg 2.26 return(0);
797     if (uv != NULL)
798     memset(uv, 0, sizeof(FVECT)*2);
799     if (ra != NULL)
800     ra[0] = ra[1] = 0.0;
801     if (pg != NULL)
802     pg[0] = pg[1] = 0.0;
803     if (dg != NULL)
804     dg[0] = dg[1] = 0.0;
805 greg 2.49 if (crlp != NULL)
806     *crlp = 0;
807 greg 2.26 /* sample the hemisphere */
808     acol[0] = acol[1] = acol[2] = 0.0;
809 greg 2.45 cnt = 0;
810 greg 2.27 for (i = hp->ns; i--; )
811     for (j = hp->ns; j--; )
812 greg 2.28 if ((ap = ambsample(hp, i, j)) != NULL) {
813 greg 2.26 addcolor(acol, ap->v);
814     ++cnt;
815     }
816     if (!cnt) {
817     setcolor(rcol, 0.0, 0.0, 0.0);
818     free(hp);
819     return(0); /* no valid samples */
820     }
821 greg 2.41 if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */
822     copycolor(rcol, acol);
823     free(hp);
824     return(-1); /* return value w/o Hessian */
825     }
826     cnt = ambssamp*wt + 0.5; /* perform super-sampling? */
827 greg 2.50 if (cnt > 8)
828 greg 2.41 ambsupersamp(acol, hp, cnt);
829 greg 2.29 copycolor(rcol, acol); /* final indirect irradiance/PI */
830 greg 2.41 if ((ra == NULL) & (pg == NULL) & (dg == NULL)) {
831 greg 2.26 free(hp);
832     return(-1); /* no radius or gradient calc. */
833     }
834 greg 2.45 if ((d = bright(acol)) > FTINY) { /* normalize Y values */
835     d = 0.99*(hp->ns*hp->ns)/d;
836 greg 2.38 K = 0.01;
837 greg 2.45 } else { /* or fall back on geometric Hessian */
838 greg 2.38 K = 1.0;
839     pg = NULL;
840     dg = NULL;
841 greg 2.53 crlp = NULL;
842 greg 2.38 }
843 greg 2.29 ap = hp->sa; /* relative Y channel from here on... */
844 greg 2.26 for (i = hp->ns*hp->ns; i--; ap++)
845 greg 2.38 colval(ap->v,CIEY) = bright(ap->v)*d + K;
846 greg 2.26
847     if (uv == NULL) /* make sure we have axis pointers */
848     uv = my_uv;
849     /* compute radii & pos. gradient */
850     ambHessian(hp, uv, ra, pg);
851 greg 2.29
852 greg 2.26 if (dg != NULL) /* compute direction gradient */
853     ambdirgrad(hp, uv, dg);
854 greg 2.29
855 greg 2.28 if (ra != NULL) { /* scale/clamp radii */
856 greg 2.35 if (pg != NULL) {
857     if (ra[0]*(d = fabs(pg[0])) > 1.0)
858     ra[0] = 1.0/d;
859     if (ra[1]*(d = fabs(pg[1])) > 1.0)
860     ra[1] = 1.0/d;
861 greg 2.48 if (ra[0] > ra[1])
862     ra[0] = ra[1];
863 greg 2.35 }
864 greg 2.29 if (ra[0] < minarad) {
865     ra[0] = minarad;
866     if (ra[1] < minarad)
867     ra[1] = minarad;
868     }
869     ra[0] *= d = 1.0/sqrt(sqrt(wt));
870 greg 2.26 if ((ra[1] *= d) > 2.0*ra[0])
871     ra[1] = 2.0*ra[0];
872 greg 2.28 if (ra[1] > maxarad) {
873     ra[1] = maxarad;
874     if (ra[0] > maxarad)
875     ra[0] = maxarad;
876     }
877 greg 2.53 /* flag encroached directions */
878     if ((wt >= 0.5-FTINY) & (crlp != NULL))
879 greg 2.49 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
880 greg 2.35 if (pg != NULL) { /* cap gradient if necessary */
881     d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
882     if (d > 1.0) {
883     d = 1.0/sqrt(d);
884     pg[0] *= d;
885     pg[1] *= d;
886     }
887     }
888 greg 2.26 }
889     free(hp); /* clean up and return */
890     return(1);
891     }
892    
893    
894 greg 2.25 #else /* ! NEWAMB */
895 greg 1.1
896    
897 greg 2.15 void
898 greg 2.14 inithemi( /* initialize sampling hemisphere */
899 greg 2.23 AMBHEMI *hp,
900 greg 2.16 COLOR ac,
901 greg 2.14 RAY *r,
902     double wt
903     )
904 greg 1.1 {
905 greg 2.16 double d;
906 greg 2.23 int i;
907 greg 2.14 /* set number of divisions */
908 greg 2.16 if (ambacc <= FTINY &&
909 greg 2.20 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
910 greg 2.16 wt = d; /* avoid ray termination */
911     hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
912 greg 2.14 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
913     if (hp->nt < i)
914     hp->nt = i;
915     hp->np = PI * hp->nt + 0.5;
916     /* set number of super-samples */
917 greg 2.15 hp->ns = ambssamp * wt + 0.5;
918 greg 2.16 /* assign coefficient */
919 greg 2.14 copycolor(hp->acoef, ac);
920 greg 2.16 d = 1.0/(hp->nt*hp->np);
921     scalecolor(hp->acoef, d);
922 greg 2.14 /* make axes */
923     VCOPY(hp->uz, r->ron);
924     hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
925     for (i = 0; i < 3; i++)
926     if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
927     break;
928     if (i >= 3)
929     error(CONSISTENCY, "bad ray direction in inithemi");
930     hp->uy[i] = 1.0;
931     fcross(hp->ux, hp->uy, hp->uz);
932     normalize(hp->ux);
933     fcross(hp->uy, hp->uz, hp->ux);
934 greg 1.1 }
935    
936    
937 greg 2.9 int
938 greg 2.14 divsample( /* sample a division */
939 greg 2.23 AMBSAMP *dp,
940 greg 2.14 AMBHEMI *h,
941     RAY *r
942     )
943 greg 1.1 {
944     RAY ar;
945 greg 1.11 int hlist[3];
946     double spt[2];
947 greg 1.1 double xd, yd, zd;
948     double b2;
949     double phi;
950 greg 2.23 int i;
951 greg 2.15 /* ambient coefficient for weight */
952 greg 2.16 if (ambacc > FTINY)
953     setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
954     else
955     copycolor(ar.rcoef, h->acoef);
956 greg 2.14 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
957 greg 1.4 return(-1);
958 greg 2.17 if (ambacc > FTINY) {
959     multcolor(ar.rcoef, h->acoef);
960     scalecolor(ar.rcoef, 1./AVGREFL);
961     }
962 greg 1.1 hlist[0] = r->rno;
963     hlist[1] = dp->t;
964     hlist[2] = dp->p;
965 greg 1.13 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
966 greg 1.11 zd = sqrt((dp->t + spt[0])/h->nt);
967     phi = 2.0*PI * (dp->p + spt[1])/h->np;
968 gwlarson 2.8 xd = tcos(phi) * zd;
969     yd = tsin(phi) * zd;
970 greg 1.1 zd = sqrt(1.0 - zd*zd);
971 greg 1.2 for (i = 0; i < 3; i++)
972     ar.rdir[i] = xd*h->ux[i] +
973     yd*h->uy[i] +
974     zd*h->uz[i];
975 greg 2.22 checknorm(ar.rdir);
976 greg 1.2 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
977 greg 1.1 rayvalue(&ar);
978     ndims--;
979 greg 2.16 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
980 greg 1.1 addcolor(dp->v, ar.rcol);
981 greg 2.9 /* use rt to improve gradient calc */
982     if (ar.rt > FTINY && ar.rt < FHUGE)
983     dp->r += 1.0/ar.rt;
984 greg 1.1 /* (re)initialize error */
985     if (dp->n++) {
986     b2 = bright(dp->v)/dp->n - bright(ar.rcol);
987     b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
988     dp->k = b2/(dp->n*dp->n);
989     } else
990     dp->k = 0.0;
991 greg 1.4 return(0);
992 greg 1.1 }
993    
994    
995 greg 2.14 static int
996     ambcmp( /* decreasing order */
997     const void *p1,
998     const void *p2
999     )
1000     {
1001     const AMBSAMP *d1 = (const AMBSAMP *)p1;
1002     const AMBSAMP *d2 = (const AMBSAMP *)p2;
1003    
1004     if (d1->k < d2->k)
1005     return(1);
1006     if (d1->k > d2->k)
1007     return(-1);
1008     return(0);
1009     }
1010    
1011    
1012     static int
1013     ambnorm( /* standard order */
1014     const void *p1,
1015     const void *p2
1016     )
1017     {
1018     const AMBSAMP *d1 = (const AMBSAMP *)p1;
1019     const AMBSAMP *d2 = (const AMBSAMP *)p2;
1020 greg 2.23 int c;
1021 greg 2.14
1022     if ( (c = d1->t - d2->t) )
1023     return(c);
1024     return(d1->p - d2->p);
1025     }
1026    
1027    
1028 greg 1.1 double
1029 greg 2.14 doambient( /* compute ambient component */
1030 greg 2.23 COLOR rcol,
1031 greg 2.14 RAY *r,
1032     double wt,
1033     FVECT pg,
1034     FVECT dg
1035     )
1036 greg 1.1 {
1037 greg 2.24 double b, d=0;
1038 greg 1.1 AMBHEMI hemi;
1039     AMBSAMP *div;
1040     AMBSAMP dnew;
1041 greg 2.23 double acol[3];
1042     AMBSAMP *dp;
1043 greg 1.1 double arad;
1044 greg 2.19 int divcnt;
1045 greg 2.23 int i, j;
1046 greg 1.1 /* initialize hemisphere */
1047 greg 2.23 inithemi(&hemi, rcol, r, wt);
1048 greg 2.19 divcnt = hemi.nt * hemi.np;
1049 greg 2.17 /* initialize */
1050     if (pg != NULL)
1051     pg[0] = pg[1] = pg[2] = 0.0;
1052     if (dg != NULL)
1053     dg[0] = dg[1] = dg[2] = 0.0;
1054 greg 2.23 setcolor(rcol, 0.0, 0.0, 0.0);
1055 greg 2.19 if (divcnt == 0)
1056 greg 1.1 return(0.0);
1057 greg 2.14 /* allocate super-samples */
1058 greg 2.15 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
1059 greg 2.19 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
1060 greg 1.1 if (div == NULL)
1061     error(SYSTEM, "out of memory in doambient");
1062     } else
1063     div = NULL;
1064     /* sample the divisions */
1065     arad = 0.0;
1066 greg 2.23 acol[0] = acol[1] = acol[2] = 0.0;
1067 greg 1.1 if ((dp = div) == NULL)
1068     dp = &dnew;
1069 greg 2.19 divcnt = 0;
1070 greg 1.1 for (i = 0; i < hemi.nt; i++)
1071     for (j = 0; j < hemi.np; j++) {
1072     dp->t = i; dp->p = j;
1073     setcolor(dp->v, 0.0, 0.0, 0.0);
1074 greg 1.2 dp->r = 0.0;
1075 greg 1.1 dp->n = 0;
1076 greg 2.16 if (divsample(dp, &hemi, r) < 0) {
1077 greg 2.19 if (div != NULL)
1078     dp++;
1079 greg 2.16 continue;
1080     }
1081 greg 2.6 arad += dp->r;
1082 greg 2.19 divcnt++;
1083 greg 1.1 if (div != NULL)
1084     dp++;
1085 greg 2.6 else
1086 greg 1.1 addcolor(acol, dp->v);
1087     }
1088 greg 2.21 if (!divcnt) {
1089     if (div != NULL)
1090     free((void *)div);
1091 greg 2.19 return(0.0); /* no samples taken */
1092 greg 2.21 }
1093 greg 2.19 if (divcnt < hemi.nt*hemi.np) {
1094     pg = dg = NULL; /* incomplete sampling */
1095     hemi.ns = 0;
1096     } else if (arad > FTINY && divcnt/arad < minarad) {
1097 greg 2.15 hemi.ns = 0; /* close enough */
1098 greg 2.19 } else if (hemi.ns > 0) { /* else perform super-sampling? */
1099 greg 1.4 comperrs(div, &hemi); /* compute errors */
1100 greg 2.19 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
1101 greg 1.1 /* super-sample */
1102 greg 2.15 for (i = hemi.ns; i > 0; i--) {
1103 schorsch 2.11 dnew = *div;
1104 greg 2.16 if (divsample(&dnew, &hemi, r) < 0) {
1105     dp++;
1106     continue;
1107     }
1108     dp = div; /* reinsert */
1109 greg 2.19 j = divcnt < i ? divcnt : i;
1110 greg 1.1 while (--j > 0 && dnew.k < dp[1].k) {
1111 schorsch 2.11 *dp = *(dp+1);
1112 greg 1.1 dp++;
1113     }
1114 schorsch 2.11 *dp = dnew;
1115 greg 1.1 }
1116 greg 1.2 if (pg != NULL || dg != NULL) /* restore order */
1117 greg 2.19 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
1118 greg 1.1 }
1119     /* compute returned values */
1120 greg 1.3 if (div != NULL) {
1121 greg 2.19 arad = 0.0; /* note: divcnt may be < nt*np */
1122     for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
1123 greg 1.3 arad += dp->r;
1124     if (dp->n > 1) {
1125     b = 1.0/dp->n;
1126     scalecolor(dp->v, b);
1127     dp->r *= b;
1128     dp->n = 1;
1129     }
1130     addcolor(acol, dp->v);
1131     }
1132 greg 1.5 b = bright(acol);
1133 greg 1.6 if (b > FTINY) {
1134 greg 2.17 b = 1.0/b; /* compute & normalize gradient(s) */
1135 greg 1.6 if (pg != NULL) {
1136     posgradient(pg, div, &hemi);
1137     for (i = 0; i < 3; i++)
1138     pg[i] *= b;
1139     }
1140     if (dg != NULL) {
1141     dirgradient(dg, div, &hemi);
1142     for (i = 0; i < 3; i++)
1143     dg[i] *= b;
1144     }
1145 greg 1.5 }
1146 greg 2.9 free((void *)div);
1147 greg 1.3 }
1148 greg 2.23 copycolor(rcol, acol);
1149 greg 1.1 if (arad <= FTINY)
1150 greg 1.16 arad = maxarad;
1151 greg 2.3 else
1152 greg 2.19 arad = (divcnt+hemi.ns)/arad;
1153 greg 1.15 if (pg != NULL) { /* reduce radius if gradient large */
1154     d = DOT(pg,pg);
1155     if (d*arad*arad > 1.0)
1156     arad = 1.0/sqrt(d);
1157     }
1158 greg 1.16 if (arad < minarad) {
1159 greg 1.1 arad = minarad;
1160 greg 1.16 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
1161     d = 1.0/arad/sqrt(d);
1162     for (i = 0; i < 3; i++)
1163     pg[i] *= d;
1164     }
1165     }
1166 greg 2.3 if ((arad /= sqrt(wt)) > maxarad)
1167     arad = maxarad;
1168     return(arad);
1169 greg 1.1 }
1170    
1171    
1172 greg 2.9 void
1173 greg 2.14 comperrs( /* compute initial error estimates */
1174     AMBSAMP *da, /* assumes standard ordering */
1175 greg 2.23 AMBHEMI *hp
1176 greg 2.14 )
1177 greg 1.1 {
1178     double b, b2;
1179     int i, j;
1180 greg 2.23 AMBSAMP *dp;
1181 greg 1.1 /* sum differences from neighbors */
1182     dp = da;
1183     for (i = 0; i < hp->nt; i++)
1184     for (j = 0; j < hp->np; j++) {
1185 greg 1.6 #ifdef DEBUG
1186     if (dp->t != i || dp->p != j)
1187     error(CONSISTENCY,
1188     "division order in comperrs");
1189     #endif
1190 greg 1.1 b = bright(dp[0].v);
1191     if (i > 0) { /* from above */
1192     b2 = bright(dp[-hp->np].v) - b;
1193     b2 *= b2 * 0.25;
1194     dp[0].k += b2;
1195     dp[-hp->np].k += b2;
1196     }
1197     if (j > 0) { /* from behind */
1198     b2 = bright(dp[-1].v) - b;
1199     b2 *= b2 * 0.25;
1200     dp[0].k += b2;
1201     dp[-1].k += b2;
1202 greg 1.4 } else { /* around */
1203     b2 = bright(dp[hp->np-1].v) - b;
1204 greg 1.1 b2 *= b2 * 0.25;
1205     dp[0].k += b2;
1206 greg 1.4 dp[hp->np-1].k += b2;
1207 greg 1.1 }
1208     dp++;
1209     }
1210     /* divide by number of neighbors */
1211     dp = da;
1212     for (j = 0; j < hp->np; j++) /* top row */
1213     (dp++)->k *= 1.0/3.0;
1214     if (hp->nt < 2)
1215     return;
1216     for (i = 1; i < hp->nt-1; i++) /* central region */
1217     for (j = 0; j < hp->np; j++)
1218     (dp++)->k *= 0.25;
1219     for (j = 0; j < hp->np; j++) /* bottom row */
1220     (dp++)->k *= 1.0/3.0;
1221     }
1222    
1223    
1224 greg 2.9 void
1225 greg 2.14 posgradient( /* compute position gradient */
1226     FVECT gv,
1227     AMBSAMP *da, /* assumes standard ordering */
1228 greg 2.23 AMBHEMI *hp
1229 greg 2.14 )
1230 greg 1.1 {
1231 greg 2.23 int i, j;
1232 greg 2.2 double nextsine, lastsine, b, d;
1233 greg 1.2 double mag0, mag1;
1234     double phi, cosp, sinp, xd, yd;
1235 greg 2.23 AMBSAMP *dp;
1236 greg 1.2
1237     xd = yd = 0.0;
1238     for (j = 0; j < hp->np; j++) {
1239     dp = da + j;
1240     mag0 = mag1 = 0.0;
1241 greg 2.2 lastsine = 0.0;
1242 greg 1.2 for (i = 0; i < hp->nt; i++) {
1243     #ifdef DEBUG
1244     if (dp->t != i || dp->p != j)
1245     error(CONSISTENCY,
1246     "division order in posgradient");
1247     #endif
1248     b = bright(dp->v);
1249     if (i > 0) {
1250     d = dp[-hp->np].r;
1251     if (dp[0].r > d) d = dp[0].r;
1252 greg 2.2 /* sin(t)*cos(t)^2 */
1253     d *= lastsine * (1.0 - (double)i/hp->nt);
1254 greg 1.2 mag0 += d*(b - bright(dp[-hp->np].v));
1255     }
1256 greg 2.2 nextsine = sqrt((double)(i+1)/hp->nt);
1257 greg 1.2 if (j > 0) {
1258     d = dp[-1].r;
1259     if (dp[0].r > d) d = dp[0].r;
1260 greg 2.2 mag1 += d * (nextsine - lastsine) *
1261     (b - bright(dp[-1].v));
1262 greg 1.2 } else {
1263     d = dp[hp->np-1].r;
1264     if (dp[0].r > d) d = dp[0].r;
1265 greg 2.2 mag1 += d * (nextsine - lastsine) *
1266     (b - bright(dp[hp->np-1].v));
1267 greg 1.2 }
1268     dp += hp->np;
1269 greg 2.2 lastsine = nextsine;
1270 greg 1.2 }
1271 greg 2.2 mag0 *= 2.0*PI / hp->np;
1272 greg 1.2 phi = 2.0*PI * (double)j/hp->np;
1273 gwlarson 2.8 cosp = tcos(phi); sinp = tsin(phi);
1274 greg 1.2 xd += mag0*cosp - mag1*sinp;
1275     yd += mag0*sinp + mag1*cosp;
1276     }
1277     for (i = 0; i < 3; i++)
1278 greg 2.16 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
1279 greg 1.1 }
1280    
1281    
1282 greg 2.9 void
1283 greg 2.14 dirgradient( /* compute direction gradient */
1284     FVECT gv,
1285     AMBSAMP *da, /* assumes standard ordering */
1286 greg 2.23 AMBHEMI *hp
1287 greg 2.14 )
1288 greg 1.1 {
1289 greg 2.23 int i, j;
1290 greg 1.2 double mag;
1291     double phi, xd, yd;
1292 greg 2.23 AMBSAMP *dp;
1293 greg 1.2
1294     xd = yd = 0.0;
1295     for (j = 0; j < hp->np; j++) {
1296     dp = da + j;
1297     mag = 0.0;
1298     for (i = 0; i < hp->nt; i++) {
1299     #ifdef DEBUG
1300     if (dp->t != i || dp->p != j)
1301     error(CONSISTENCY,
1302     "division order in dirgradient");
1303     #endif
1304 greg 2.2 /* tan(t) */
1305     mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
1306 greg 1.2 dp += hp->np;
1307     }
1308     phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1309 gwlarson 2.8 xd += mag * tcos(phi);
1310     yd += mag * tsin(phi);
1311 greg 1.2 }
1312     for (i = 0; i < 3; i++)
1313 greg 2.16 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1314 greg 1.1 }
1315 greg 2.25
1316     #endif /* ! NEWAMB */