ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.54
Committed: Fri May 9 04:55:19 2014 UTC (9 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.53: +9 -8 lines
Log Message:
Fixed bug in ambient super-sampling for scenes with uniform areas (NEWAMB)

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.54 static const char RCSid[] = "$Id: ambcomp.c,v 2.53 2014/05/08 04:02:40 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * Routines to compute "ambient" values using Monte Carlo
6 greg 2.9 *
7 greg 2.27 * Hessian calculations based on "Practical Hessian-Based Error Control
8     * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9     * from ACM SIGGRAPH Asia 2012 conference proceedings.
10     *
11 greg 2.46 * Added book-keeping optimization to avoid calculations that would
12     * cancel due to traversal both directions on edges that are adjacent
13     * to same-valued triangles. This cuts about half of Hessian math.
14     *
15 greg 2.9 * Declarations of external symbols in ambient.h
16     */
17    
18 greg 2.10 #include "copyright.h"
19 greg 1.1
20     #include "ray.h"
21 greg 2.25 #include "ambient.h"
22     #include "random.h"
23 greg 1.1
24 greg 2.25 #ifdef NEWAMB
25 greg 1.1
26 greg 2.26 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
27    
28 greg 2.46 /* vertex direction bit positions */
29     #define VDB_xy 0
30     #define VDB_y 01
31     #define VDB_x 02
32     #define VDB_Xy 03
33     #define VDB_xY 04
34     #define VDB_X 05
35     #define VDB_Y 06
36     #define VDB_XY 07
37     /* get opposite vertex direction bit */
38     #define VDB_OPP(f) (~(f) & 07)
39     /* adjacent triangle vertex flags */
40     static const int adjacent_trifl[8] = {
41     0, /* forbidden diagonal */
42     1<<VDB_x|1<<VDB_y|1<<VDB_Xy,
43     1<<VDB_y|1<<VDB_x|1<<VDB_xY,
44     1<<VDB_y|1<<VDB_Xy|1<<VDB_X,
45     1<<VDB_x|1<<VDB_xY|1<<VDB_Y,
46     1<<VDB_Xy|1<<VDB_X|1<<VDB_Y,
47     1<<VDB_xY|1<<VDB_Y|1<<VDB_X,
48     0, /* forbidden diagonal */
49     };
50    
51 greg 2.26 typedef struct {
52 greg 2.44 COLOR v; /* hemisphere sample value */
53 greg 2.47 float d; /* reciprocal distance (1/rt) */
54 greg 2.44 FVECT p; /* intersection point */
55     } AMBSAMP; /* sample value */
56    
57     typedef struct {
58 greg 2.26 RAY *rp; /* originating ray sample */
59 greg 2.27 FVECT ux, uy; /* tangent axis unit vectors */
60 greg 2.26 int ns; /* number of samples per axis */
61     COLOR acoef; /* division contribution coefficient */
62 greg 2.44 AMBSAMP sa[1]; /* sample array (extends struct) */
63 greg 2.26 } AMBHEMI; /* ambient sample hemisphere */
64    
65 greg 2.46 #define ambndx(h,i,j) ((i)*(h)->ns + (j))
66     #define ambsam(h,i,j) (h)->sa[ambndx(h,i,j)]
67 greg 2.26
68 greg 2.27 typedef struct {
69 greg 2.35 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
70     double I1, I2;
71 greg 2.46 int valid;
72 greg 2.27 } FFTRI; /* vectors and coefficients for Hessian calculation */
73    
74 greg 2.26
75 greg 2.46 /* Get index for adjacent vertex */
76     static int
77     adjacent_verti(AMBHEMI *hp, int i, int j, int dbit)
78     {
79     int i0 = i*hp->ns + j;
80    
81     switch (dbit) {
82     case VDB_y: return(i0 - hp->ns);
83     case VDB_x: return(i0 - 1);
84     case VDB_Xy: return(i0 - hp->ns + 1);
85     case VDB_xY: return(i0 + hp->ns - 1);
86     case VDB_X: return(i0 + 1);
87     case VDB_Y: return(i0 + hp->ns);
88     /* the following should never occur */
89     case VDB_xy: return(i0 - hp->ns - 1);
90     case VDB_XY: return(i0 + hp->ns + 1);
91     }
92     return(-1);
93     }
94    
95    
96     /* Get vertex direction bit for the opposite edge to complete triangle */
97     static int
98     vdb_edge(int db1, int db2)
99     {
100     switch (db1) {
101     case VDB_x: return(db2==VDB_y ? VDB_Xy : VDB_Y);
102     case VDB_y: return(db2==VDB_x ? VDB_xY : VDB_X);
103     case VDB_X: return(db2==VDB_Xy ? VDB_y : VDB_xY);
104     case VDB_Y: return(db2==VDB_xY ? VDB_x : VDB_Xy);
105     case VDB_xY: return(db2==VDB_x ? VDB_y : VDB_X);
106     case VDB_Xy: return(db2==VDB_y ? VDB_x : VDB_Y);
107     }
108 greg 2.53 error(CONSISTENCY, "forbidden diagonal in vdb_edge()");
109 greg 2.46 return(-1);
110     }
111    
112    
113 greg 2.26 static AMBHEMI *
114     inithemi( /* initialize sampling hemisphere */
115     COLOR ac,
116     RAY *r,
117     double wt
118     )
119     {
120     AMBHEMI *hp;
121     double d;
122     int n, i;
123     /* set number of divisions */
124     if (ambacc <= FTINY &&
125     wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
126     wt = d; /* avoid ray termination */
127     n = sqrt(ambdiv * wt) + 0.5;
128 greg 2.27 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
129 greg 2.26 if (n < i)
130     n = i;
131     /* allocate sampling array */
132 greg 2.41 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
133 greg 2.26 if (hp == NULL)
134     return(NULL);
135     hp->rp = r;
136     hp->ns = n;
137     /* assign coefficient */
138     copycolor(hp->acoef, ac);
139     d = 1.0/(n*n);
140     scalecolor(hp->acoef, d);
141 greg 2.28 /* make tangent plane axes */
142 greg 2.38 hp->uy[0] = 0.5 - frandom();
143     hp->uy[1] = 0.5 - frandom();
144     hp->uy[2] = 0.5 - frandom();
145 greg 2.36 for (i = 3; i--; )
146 greg 2.37 if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6))
147     break;
148     if (i < 0)
149     error(CONSISTENCY, "bad ray direction in inithemi");
150     hp->uy[i] = 1.0;
151 greg 2.27 VCROSS(hp->ux, hp->uy, r->ron);
152 greg 2.26 normalize(hp->ux);
153 greg 2.27 VCROSS(hp->uy, r->ron, hp->ux);
154 greg 2.26 /* we're ready to sample */
155     return(hp);
156     }
157    
158    
159 greg 2.43 /* Sample ambient division and apply weighting coefficient */
160 greg 2.41 static int
161 greg 2.43 getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n)
162 greg 2.26 {
163 greg 2.41 int hlist[3], ii;
164     double spt[2], zd;
165 greg 2.26 /* ambient coefficient for weight */
166     if (ambacc > FTINY)
167 greg 2.41 setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL);
168 greg 2.26 else
169 greg 2.41 copycolor(arp->rcoef, hp->acoef);
170     if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0)
171     return(0);
172 greg 2.26 if (ambacc > FTINY) {
173 greg 2.41 multcolor(arp->rcoef, hp->acoef);
174     scalecolor(arp->rcoef, 1./AVGREFL);
175     }
176     hlist[0] = hp->rp->rno;
177 greg 2.46 hlist[1] = j;
178     hlist[2] = i;
179 greg 2.41 multisamp(spt, 2, urand(ilhash(hlist,3)+n));
180     if (!n) { /* avoid border samples for n==0 */
181 greg 2.46 if ((spt[0] < 0.1) | (spt[0] >= 0.9))
182 greg 2.41 spt[0] = 0.1 + 0.8*frandom();
183 greg 2.46 if ((spt[1] < 0.1) | (spt[1] >= 0.9))
184 greg 2.41 spt[1] = 0.1 + 0.8*frandom();
185 greg 2.26 }
186 greg 2.46 SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
187 greg 2.26 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
188     for (ii = 3; ii--; )
189 greg 2.41 arp->rdir[ii] = spt[0]*hp->ux[ii] +
190 greg 2.26 spt[1]*hp->uy[ii] +
191     zd*hp->rp->ron[ii];
192 greg 2.41 checknorm(arp->rdir);
193 greg 2.46 dimlist[ndims++] = ambndx(hp,i,j) + 90171;
194 greg 2.43 rayvalue(arp); /* evaluate ray */
195     ndims--; /* apply coefficient */
196     multcolor(arp->rcol, arp->rcoef);
197 greg 2.41 return(1);
198     }
199    
200    
201     static AMBSAMP *
202 greg 2.43 ambsample( /* initial ambient division sample */
203 greg 2.41 AMBHEMI *hp,
204     int i,
205     int j
206     )
207     {
208 greg 2.43 AMBSAMP *ap = &ambsam(hp,i,j);
209 greg 2.41 RAY ar;
210     /* generate hemispherical sample */
211 greg 2.47 if (!getambsamp(&ar, hp, i, j, 0) || ar.rt <= FTINY) {
212     memset(ap, 0, sizeof(AMBSAMP));
213     return(NULL);
214     }
215     ap->d = 1.0/ar.rt; /* limit vertex distance */
216 greg 2.34 if (ar.rt > 10.0*thescene.cusize)
217     ar.rt = 10.0*thescene.cusize;
218 greg 2.31 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
219 greg 2.26 copycolor(ap->v, ar.rcol);
220 greg 2.28 return(ap);
221 greg 2.26 }
222    
223    
224 greg 2.41 /* Estimate errors based on ambient division differences */
225     static float *
226     getambdiffs(AMBHEMI *hp)
227     {
228 greg 2.54 float *earr = (float *)malloc(sizeof(float)*hp->ns*hp->ns);
229 greg 2.41 float *ep;
230 greg 2.42 AMBSAMP *ap;
231 greg 2.41 double b, d2;
232     int i, j;
233    
234     if (earr == NULL) /* out of memory? */
235     return(NULL);
236     /* compute squared neighbor diffs */
237 greg 2.42 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
238     for (j = 0; j < hp->ns; j++, ap++, ep++) {
239 greg 2.54 ep[0] = FTINY;
240 greg 2.42 b = bright(ap[0].v);
241 greg 2.41 if (i) { /* from above */
242 greg 2.42 d2 = b - bright(ap[-hp->ns].v);
243 greg 2.41 d2 *= d2;
244     ep[0] += d2;
245     ep[-hp->ns] += d2;
246     }
247     if (j) { /* from behind */
248 greg 2.42 d2 = b - bright(ap[-1].v);
249 greg 2.41 d2 *= d2;
250     ep[0] += d2;
251     ep[-1] += d2;
252     }
253     }
254     /* correct for number of neighbors */
255     earr[0] *= 2.f;
256     earr[hp->ns-1] *= 2.f;
257     earr[(hp->ns-1)*hp->ns] *= 2.f;
258     earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f;
259     for (i = 1; i < hp->ns-1; i++) {
260     earr[i*hp->ns] *= 4./3.;
261     earr[i*hp->ns + hp->ns-1] *= 4./3.;
262     }
263     for (j = 1; j < hp->ns-1; j++) {
264     earr[j] *= 4./3.;
265     earr[(hp->ns-1)*hp->ns + j] *= 4./3.;
266     }
267     return(earr);
268     }
269    
270    
271 greg 2.43 /* Perform super-sampling on hemisphere (introduces bias) */
272 greg 2.41 static void
273     ambsupersamp(double acol[3], AMBHEMI *hp, int cnt)
274     {
275     float *earr = getambdiffs(hp);
276 greg 2.54 double e2rem = 0;
277 greg 2.41 AMBSAMP *ap;
278     RAY ar;
279 greg 2.50 double asum[3];
280 greg 2.41 float *ep;
281     int i, j, n;
282    
283     if (earr == NULL) /* just skip calc. if no memory */
284     return;
285 greg 2.54 /* accumulate estimated variances */
286 greg 2.41 for (ep = earr + hp->ns*hp->ns; ep-- > earr; )
287 greg 2.54 e2rem += *ep;
288 greg 2.41 ep = earr; /* perform super-sampling */
289     for (ap = hp->sa, i = 0; i < hp->ns; i++)
290     for (j = 0; j < hp->ns; j++, ap++) {
291 greg 2.54 int nss = *ep/e2rem*cnt + frandom();
292 greg 2.50 asum[0] = asum[1] = asum[2] = 0.0;
293 greg 2.41 for (n = 1; n <= nss; n++) {
294 greg 2.43 if (!getambsamp(&ar, hp, i, j, n)) {
295 greg 2.41 nss = n-1;
296     break;
297     }
298     addcolor(asum, ar.rcol);
299     }
300     if (nss) { /* update returned ambient value */
301 greg 2.54 const double ssf = 1./(nss + 1.);
302 greg 2.41 for (n = 3; n--; )
303 greg 2.50 acol[n] += ssf*asum[n] +
304 greg 2.41 (ssf - 1.)*colval(ap->v,n);
305     }
306 greg 2.54 e2rem -= *ep++; /* update remainders */
307 greg 2.41 cnt -= nss;
308     }
309     free(earr);
310     }
311    
312    
313 greg 2.46 /* Compute vertex flags, indicating farthest in each direction */
314     static uby8 *
315     vertex_flags(AMBHEMI *hp)
316     {
317     uby8 *vflags = (uby8 *)calloc(hp->ns*hp->ns, sizeof(uby8));
318     uby8 *vf;
319 greg 2.47 AMBSAMP *ap;
320 greg 2.46 int i, j;
321    
322 greg 2.47 if (vflags == NULL)
323 greg 2.46 error(SYSTEM, "out of memory in vertex_flags()");
324 greg 2.47 vf = vflags;
325     ap = hp->sa; /* compute farthest along first row */
326     for (j = 0; j < hp->ns-1; j++, vf++, ap++)
327     if (ap[0].d <= ap[1].d)
328     vf[0] |= 1<<VDB_X;
329 greg 2.46 else
330 greg 2.47 vf[1] |= 1<<VDB_x;
331     ++vf; ++ap;
332 greg 2.46 /* flag subsequent rows */
333     for (i = 1; i < hp->ns; i++) {
334 greg 2.47 for (j = 0; j < hp->ns-1; j++, vf++, ap++) {
335     if (ap[0].d <= ap[-hp->ns].d) /* row before */
336 greg 2.46 vf[0] |= 1<<VDB_y;
337     else
338     vf[-hp->ns] |= 1<<VDB_Y;
339 greg 2.47 if (ap[0].d <= ap[1-hp->ns].d) /* diagonal we care about */
340 greg 2.46 vf[0] |= 1<<VDB_Xy;
341     else
342     vf[1-hp->ns] |= 1<<VDB_xY;
343 greg 2.47 if (ap[0].d <= ap[1].d) /* column after */
344 greg 2.46 vf[0] |= 1<<VDB_X;
345     else
346     vf[1] |= 1<<VDB_x;
347     }
348 greg 2.47 if (ap[0].d <= ap[-hp->ns].d) /* final column edge */
349 greg 2.46 vf[0] |= 1<<VDB_y;
350     else
351     vf[-hp->ns] |= 1<<VDB_Y;
352 greg 2.47 ++vf; ++ap;
353 greg 2.46 }
354     return(vflags);
355     }
356    
357    
358     /* Return brightness of farthest ambient sample */
359     static double
360     back_ambval(AMBHEMI *hp, int i, int j, int dbit1, int dbit2, const uby8 *vflags)
361     {
362     const int v0 = ambndx(hp,i,j);
363     const int tflags = (1<<dbit1 | 1<<dbit2);
364     int v1, v2;
365    
366     if ((vflags[v0] & tflags) == tflags) /* is v0 the farthest? */
367     return(colval(hp->sa[v0].v,CIEY));
368     v1 = adjacent_verti(hp, i, j, dbit1);
369     if (vflags[v0] & 1<<dbit2) /* v1 farthest if v0>v2 */
370     return(colval(hp->sa[v1].v,CIEY));
371     v2 = adjacent_verti(hp, i, j, dbit2);
372     if (vflags[v0] & 1<<dbit1) /* v2 farthest if v0>v1 */
373     return(colval(hp->sa[v2].v,CIEY));
374     /* else check if v1>v2 */
375     if (vflags[v1] & 1<<vdb_edge(dbit1,dbit2))
376     return(colval(hp->sa[v1].v,CIEY));
377     return(colval(hp->sa[v2].v,CIEY));
378     }
379    
380    
381 greg 2.27 /* Compute vectors and coefficients for Hessian/gradient calcs */
382     static void
383 greg 2.46 comp_fftri(FFTRI *ftp, AMBHEMI *hp, int i, int j, int dbit, const uby8 *vflags)
384 greg 2.27 {
385 greg 2.46 const int i0 = ambndx(hp,i,j);
386     double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
387     int i1, ii;
388    
389     ftp->valid = 0; /* check if we can skip this edge */
390     ii = adjacent_trifl[dbit];
391     if ((vflags[i0] & ii) == ii) /* cancels if vertex used as value */
392     return;
393     i1 = adjacent_verti(hp, i, j, dbit);
394     ii = adjacent_trifl[VDB_OPP(dbit)];
395     if ((vflags[i1] & ii) == ii) /* on either end (for both triangles) */
396     return;
397     /* else go ahead with calculation */
398     VSUB(ftp->r_i, hp->sa[i0].p, hp->rp->rop);
399     VSUB(ftp->r_i1, hp->sa[i1].p, hp->rp->rop);
400     VSUB(ftp->e_i, hp->sa[i1].p, hp->sa[i0].p);
401 greg 2.35 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
402     rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
403 greg 2.27 dot_e = DOT(ftp->e_i,ftp->e_i);
404     dot_er = DOT(ftp->e_i, ftp->r_i);
405 greg 2.32 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
406     rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
407     ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
408 greg 2.35 sqrt( rdot_cp );
409 greg 2.32 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
410 greg 2.35 dot_e*ftp->I1 )*0.5*rdot_cp;
411 greg 2.32 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
412 greg 2.46 for (ii = 3; ii--; )
413     ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
414     ftp->valid++;
415 greg 2.27 }
416    
417    
418 greg 2.28 /* Compose 3x3 matrix from two vectors */
419 greg 2.27 static void
420     compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
421     {
422     mat[0][0] = 2.0*va[0]*vb[0];
423     mat[1][1] = 2.0*va[1]*vb[1];
424     mat[2][2] = 2.0*va[2]*vb[2];
425     mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
426     mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
427     mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
428     }
429    
430    
431     /* Compute partial 3x3 Hessian matrix for edge */
432     static void
433     comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
434     {
435 greg 2.35 FVECT ncp;
436 greg 2.27 FVECT m1[3], m2[3], m3[3], m4[3];
437     double d1, d2, d3, d4;
438     double I3, J3, K3;
439     int i, j;
440 greg 2.46
441     if (!ftp->valid) { /* preemptive test */
442     memset(hess, 0, sizeof(FVECT)*3);
443     return;
444     }
445 greg 2.27 /* compute intermediate coefficients */
446     d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
447     d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
448     d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
449     d4 = DOT(ftp->e_i, ftp->r_i);
450 greg 2.35 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
451     / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
452 greg 2.27 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
453     K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
454     /* intermediate matrices */
455 greg 2.35 VCROSS(ncp, nrm, ftp->e_i);
456     compose_matrix(m1, ncp, ftp->rI2_eJ2);
457 greg 2.27 compose_matrix(m2, ftp->r_i, ftp->r_i);
458     compose_matrix(m3, ftp->e_i, ftp->e_i);
459     compose_matrix(m4, ftp->r_i, ftp->e_i);
460 greg 2.35 d1 = DOT(nrm, ftp->rcp);
461 greg 2.27 d2 = -d1*ftp->I2;
462     d1 *= 2.0;
463     for (i = 3; i--; ) /* final matrix sum */
464     for (j = 3; j--; ) {
465     hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
466     2.0*J3*m4[i][j] );
467     hess[i][j] += d2*(i==j);
468 greg 2.46 hess[i][j] *= -1.0/PI;
469 greg 2.27 }
470     }
471    
472    
473     /* Reverse hessian calculation result for edge in other direction */
474     static void
475     rev_hessian(FVECT hess[3])
476     {
477     int i;
478    
479     for (i = 3; i--; ) {
480     hess[i][0] = -hess[i][0];
481     hess[i][1] = -hess[i][1];
482     hess[i][2] = -hess[i][2];
483     }
484     }
485    
486    
487     /* Add to radiometric Hessian from the given triangle */
488     static void
489     add2hessian(FVECT hess[3], FVECT ehess1[3],
490 greg 2.46 FVECT ehess2[3], FVECT ehess3[3], double v)
491 greg 2.27 {
492     int i, j;
493    
494     for (i = 3; i--; )
495     for (j = 3; j--; )
496     hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
497     }
498    
499    
500     /* Compute partial displacement form factor gradient for edge */
501     static void
502     comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
503     {
504 greg 2.35 FVECT ncp;
505 greg 2.27 double f1;
506     int i;
507    
508 greg 2.46 if (!ftp->valid) { /* preemptive test */
509     memset(grad, 0, sizeof(FVECT));
510     return;
511     }
512 greg 2.35 f1 = 2.0*DOT(nrm, ftp->rcp);
513     VCROSS(ncp, nrm, ftp->e_i);
514 greg 2.27 for (i = 3; i--; )
515 greg 2.46 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
516 greg 2.27 }
517    
518    
519     /* Reverse gradient calculation result for edge in other direction */
520     static void
521     rev_gradient(FVECT grad)
522     {
523     grad[0] = -grad[0];
524     grad[1] = -grad[1];
525     grad[2] = -grad[2];
526     }
527    
528    
529     /* Add to displacement gradient from the given triangle */
530     static void
531 greg 2.46 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
532 greg 2.27 {
533     int i;
534    
535     for (i = 3; i--; )
536     grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
537     }
538    
539    
540     /* Compute anisotropic radii and eigenvector directions */
541 greg 2.53 static void
542 greg 2.27 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
543     {
544     double hess2[2][2];
545     FVECT a, b;
546     double evalue[2], slope1, xmag1;
547     int i;
548     /* project Hessian to sample plane */
549     for (i = 3; i--; ) {
550     a[i] = DOT(hessian[i], uv[0]);
551     b[i] = DOT(hessian[i], uv[1]);
552     }
553     hess2[0][0] = DOT(uv[0], a);
554     hess2[0][1] = DOT(uv[0], b);
555     hess2[1][0] = DOT(uv[1], a);
556     hess2[1][1] = DOT(uv[1], b);
557 greg 2.38 /* compute eigenvalue(s) */
558     i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
559     hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
560     if (i == 1) /* double-root (circle) */
561     evalue[1] = evalue[0];
562     if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
563 greg 2.53 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
564     ra[0] = ra[1] = maxarad;
565     return;
566     }
567 greg 2.27 if (evalue[0] > evalue[1]) {
568 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[0]));
569     ra[1] = sqrt(sqrt(4.0/evalue[1]));
570 greg 2.27 slope1 = evalue[1];
571     } else {
572 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[1]));
573     ra[1] = sqrt(sqrt(4.0/evalue[0]));
574 greg 2.27 slope1 = evalue[0];
575     }
576     /* compute unit eigenvectors */
577     if (fabs(hess2[0][1]) <= FTINY)
578     return; /* uv OK as is */
579     slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
580     xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
581     for (i = 3; i--; ) {
582     b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
583     a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
584     }
585     VCOPY(uv[0], a);
586     VCOPY(uv[1], b);
587     }
588    
589    
590 greg 2.26 static void
591     ambHessian( /* anisotropic radii & pos. gradient */
592     AMBHEMI *hp,
593     FVECT uv[2], /* returned */
594 greg 2.28 float ra[2], /* returned (optional) */
595     float pg[2] /* returned (optional) */
596 greg 2.26 )
597     {
598 greg 2.27 static char memerrmsg[] = "out of memory in ambHessian()";
599     FVECT (*hessrow)[3] = NULL;
600     FVECT *gradrow = NULL;
601 greg 2.46 uby8 *vflags;
602 greg 2.27 FVECT hessian[3];
603     FVECT gradient;
604     FFTRI fftr;
605     int i, j;
606     /* be sure to assign unit vectors */
607     VCOPY(uv[0], hp->ux);
608     VCOPY(uv[1], hp->uy);
609     /* clock-wise vertex traversal from sample POV */
610     if (ra != NULL) { /* initialize Hessian row buffer */
611 greg 2.28 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
612 greg 2.27 if (hessrow == NULL)
613     error(SYSTEM, memerrmsg);
614     memset(hessian, 0, sizeof(hessian));
615     } else if (pg == NULL) /* bogus call? */
616     return;
617     if (pg != NULL) { /* initialize form factor row buffer */
618 greg 2.28 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
619 greg 2.27 if (gradrow == NULL)
620     error(SYSTEM, memerrmsg);
621     memset(gradient, 0, sizeof(gradient));
622     }
623 greg 2.46 /* get vertex position flags */
624     vflags = vertex_flags(hp);
625 greg 2.27 /* compute first row of edges */
626     for (j = 0; j < hp->ns-1; j++) {
627 greg 2.46 comp_fftri(&fftr, hp, 0, j, VDB_X, vflags);
628 greg 2.27 if (hessrow != NULL)
629     comp_hessian(hessrow[j], &fftr, hp->rp->ron);
630     if (gradrow != NULL)
631     comp_gradient(gradrow[j], &fftr, hp->rp->ron);
632     }
633     /* sum each row of triangles */
634     for (i = 0; i < hp->ns-1; i++) {
635     FVECT hesscol[3]; /* compute first vertical edge */
636     FVECT gradcol;
637 greg 2.46 comp_fftri(&fftr, hp, i, 0, VDB_Y, vflags);
638 greg 2.27 if (hessrow != NULL)
639     comp_hessian(hesscol, &fftr, hp->rp->ron);
640     if (gradrow != NULL)
641     comp_gradient(gradcol, &fftr, hp->rp->ron);
642     for (j = 0; j < hp->ns-1; j++) {
643     FVECT hessdia[3]; /* compute triangle contributions */
644     FVECT graddia;
645 greg 2.46 double backg;
646     backg = back_ambval(hp, i, j, VDB_X, VDB_Y, vflags);
647 greg 2.27 /* diagonal (inner) edge */
648 greg 2.46 comp_fftri(&fftr, hp, i, j+1, VDB_xY, vflags);
649 greg 2.27 if (hessrow != NULL) {
650     comp_hessian(hessdia, &fftr, hp->rp->ron);
651     rev_hessian(hesscol);
652     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
653     }
654 greg 2.39 if (gradrow != NULL) {
655 greg 2.27 comp_gradient(graddia, &fftr, hp->rp->ron);
656     rev_gradient(gradcol);
657     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
658     }
659     /* initialize edge in next row */
660 greg 2.46 comp_fftri(&fftr, hp, i+1, j+1, VDB_x, vflags);
661 greg 2.27 if (hessrow != NULL)
662     comp_hessian(hessrow[j], &fftr, hp->rp->ron);
663     if (gradrow != NULL)
664     comp_gradient(gradrow[j], &fftr, hp->rp->ron);
665     /* new column edge & paired triangle */
666 greg 2.46 backg = back_ambval(hp, i+1, j+1, VDB_x, VDB_y, vflags);
667     comp_fftri(&fftr, hp, i, j+1, VDB_Y, vflags);
668 greg 2.27 if (hessrow != NULL) {
669     comp_hessian(hesscol, &fftr, hp->rp->ron);
670     rev_hessian(hessdia);
671     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
672     if (i < hp->ns-2)
673     rev_hessian(hessrow[j]);
674     }
675     if (gradrow != NULL) {
676     comp_gradient(gradcol, &fftr, hp->rp->ron);
677     rev_gradient(graddia);
678     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
679     if (i < hp->ns-2)
680     rev_gradient(gradrow[j]);
681     }
682     }
683     }
684     /* release row buffers */
685     if (hessrow != NULL) free(hessrow);
686     if (gradrow != NULL) free(gradrow);
687 greg 2.46 free(vflags);
688 greg 2.27
689     if (ra != NULL) /* extract eigenvectors & radii */
690     eigenvectors(uv, ra, hessian);
691 greg 2.32 if (pg != NULL) { /* tangential position gradient */
692     pg[0] = DOT(gradient, uv[0]);
693     pg[1] = DOT(gradient, uv[1]);
694 greg 2.27 }
695     }
696    
697    
698     /* Compute direction gradient from a hemispherical sampling */
699     static void
700     ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
701     {
702 greg 2.41 AMBSAMP *ap;
703     double dgsum[2];
704     int n;
705     FVECT vd;
706     double gfact;
707 greg 2.27
708 greg 2.29 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
709 greg 2.27 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
710     /* use vector for azimuth + 90deg */
711     VSUB(vd, ap->p, hp->rp->rop);
712 greg 2.29 /* brightness over cosine factor */
713     gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
714 greg 2.40 /* sine = proj_radius/vd_length */
715     dgsum[0] -= DOT(uv[1], vd) * gfact;
716     dgsum[1] += DOT(uv[0], vd) * gfact;
717 greg 2.26 }
718 greg 2.29 dg[0] = dgsum[0] / (hp->ns*hp->ns);
719     dg[1] = dgsum[1] / (hp->ns*hp->ns);
720 greg 2.26 }
721    
722 greg 2.27
723 greg 2.49 /* Compute potential light leak direction flags for cache value */
724     static uint32
725     ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
726 greg 2.47 {
727 greg 2.50 const double max_d = 1.0/(minarad*ambacc + 0.001);
728     const double ang_res = 0.5*PI/(hp->ns-1);
729     const double ang_step = ang_res/((int)(16/PI*ang_res) + (1+FTINY));
730 greg 2.51 double avg_d = 0;
731 greg 2.50 uint32 flgs = 0;
732     int i, j;
733 greg 2.52 /* don't bother for a few samples */
734     if (hp->ns < 12)
735     return(0);
736     /* check distances overhead */
737 greg 2.51 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
738     for (j = hp->ns*3/4; j-- > hp->ns>>2; )
739     avg_d += ambsam(hp,i,j).d;
740     avg_d *= 4.0/(hp->ns*hp->ns);
741 greg 2.52 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
742     return(0);
743     if (avg_d >= max_d) /* insurance */
744 greg 2.51 return(0);
745     /* else circle around perimeter */
746 greg 2.47 for (i = 0; i < hp->ns; i++)
747     for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
748     AMBSAMP *ap = &ambsam(hp,i,j);
749     FVECT vec;
750 greg 2.49 double u, v;
751 greg 2.50 double ang, a1;
752 greg 2.49 int abp;
753 greg 2.50 if ((ap->d <= FTINY) | (ap->d >= max_d))
754     continue; /* too far or too near */
755 greg 2.47 VSUB(vec, ap->p, hp->rp->rop);
756 greg 2.49 u = DOT(vec, uv[0]) * ap->d;
757     v = DOT(vec, uv[1]) * ap->d;
758     if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= 1.0)
759     continue; /* occluder outside ellipse */
760     ang = atan2a(v, u); /* else set direction flags */
761 greg 2.50 for (a1 = ang-.5*ang_res; a1 <= ang+.5*ang_res; a1 += ang_step)
762     flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
763 greg 2.47 }
764 greg 2.49 return(flgs);
765 greg 2.47 }
766    
767    
768 greg 2.26 int
769     doambient( /* compute ambient component */
770     COLOR rcol, /* input/output color */
771     RAY *r,
772     double wt,
773 greg 2.27 FVECT uv[2], /* returned (optional) */
774     float ra[2], /* returned (optional) */
775     float pg[2], /* returned (optional) */
776 greg 2.49 float dg[2], /* returned (optional) */
777     uint32 *crlp /* returned (optional) */
778 greg 2.26 )
779     {
780 greg 2.41 AMBHEMI *hp = inithemi(rcol, r, wt);
781 greg 2.45 int cnt;
782 greg 2.41 FVECT my_uv[2];
783     double d, K, acol[3];
784     AMBSAMP *ap;
785     int i, j;
786 greg 2.28 /* check/initialize */
787     if (hp == NULL)
788 greg 2.26 return(0);
789     if (uv != NULL)
790     memset(uv, 0, sizeof(FVECT)*2);
791     if (ra != NULL)
792     ra[0] = ra[1] = 0.0;
793     if (pg != NULL)
794     pg[0] = pg[1] = 0.0;
795     if (dg != NULL)
796     dg[0] = dg[1] = 0.0;
797 greg 2.49 if (crlp != NULL)
798     *crlp = 0;
799 greg 2.26 /* sample the hemisphere */
800     acol[0] = acol[1] = acol[2] = 0.0;
801 greg 2.45 cnt = 0;
802 greg 2.27 for (i = hp->ns; i--; )
803     for (j = hp->ns; j--; )
804 greg 2.28 if ((ap = ambsample(hp, i, j)) != NULL) {
805 greg 2.26 addcolor(acol, ap->v);
806     ++cnt;
807     }
808     if (!cnt) {
809     setcolor(rcol, 0.0, 0.0, 0.0);
810     free(hp);
811     return(0); /* no valid samples */
812     }
813 greg 2.41 if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */
814     copycolor(rcol, acol);
815     free(hp);
816     return(-1); /* return value w/o Hessian */
817     }
818     cnt = ambssamp*wt + 0.5; /* perform super-sampling? */
819 greg 2.50 if (cnt > 8)
820 greg 2.41 ambsupersamp(acol, hp, cnt);
821 greg 2.29 copycolor(rcol, acol); /* final indirect irradiance/PI */
822 greg 2.41 if ((ra == NULL) & (pg == NULL) & (dg == NULL)) {
823 greg 2.26 free(hp);
824     return(-1); /* no radius or gradient calc. */
825     }
826 greg 2.45 if ((d = bright(acol)) > FTINY) { /* normalize Y values */
827     d = 0.99*(hp->ns*hp->ns)/d;
828 greg 2.38 K = 0.01;
829 greg 2.45 } else { /* or fall back on geometric Hessian */
830 greg 2.38 K = 1.0;
831     pg = NULL;
832     dg = NULL;
833 greg 2.53 crlp = NULL;
834 greg 2.38 }
835 greg 2.29 ap = hp->sa; /* relative Y channel from here on... */
836 greg 2.26 for (i = hp->ns*hp->ns; i--; ap++)
837 greg 2.38 colval(ap->v,CIEY) = bright(ap->v)*d + K;
838 greg 2.26
839     if (uv == NULL) /* make sure we have axis pointers */
840     uv = my_uv;
841     /* compute radii & pos. gradient */
842     ambHessian(hp, uv, ra, pg);
843 greg 2.29
844 greg 2.26 if (dg != NULL) /* compute direction gradient */
845     ambdirgrad(hp, uv, dg);
846 greg 2.29
847 greg 2.28 if (ra != NULL) { /* scale/clamp radii */
848 greg 2.35 if (pg != NULL) {
849     if (ra[0]*(d = fabs(pg[0])) > 1.0)
850     ra[0] = 1.0/d;
851     if (ra[1]*(d = fabs(pg[1])) > 1.0)
852     ra[1] = 1.0/d;
853 greg 2.48 if (ra[0] > ra[1])
854     ra[0] = ra[1];
855 greg 2.35 }
856 greg 2.29 if (ra[0] < minarad) {
857     ra[0] = minarad;
858     if (ra[1] < minarad)
859     ra[1] = minarad;
860     }
861     ra[0] *= d = 1.0/sqrt(sqrt(wt));
862 greg 2.26 if ((ra[1] *= d) > 2.0*ra[0])
863     ra[1] = 2.0*ra[0];
864 greg 2.28 if (ra[1] > maxarad) {
865     ra[1] = maxarad;
866     if (ra[0] > maxarad)
867     ra[0] = maxarad;
868     }
869 greg 2.53 /* flag encroached directions */
870     if ((wt >= 0.5-FTINY) & (crlp != NULL))
871 greg 2.49 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
872 greg 2.35 if (pg != NULL) { /* cap gradient if necessary */
873     d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
874     if (d > 1.0) {
875     d = 1.0/sqrt(d);
876     pg[0] *= d;
877     pg[1] *= d;
878     }
879     }
880 greg 2.26 }
881     free(hp); /* clean up and return */
882     return(1);
883     }
884    
885    
886 greg 2.25 #else /* ! NEWAMB */
887 greg 1.1
888    
889 greg 2.15 void
890 greg 2.14 inithemi( /* initialize sampling hemisphere */
891 greg 2.23 AMBHEMI *hp,
892 greg 2.16 COLOR ac,
893 greg 2.14 RAY *r,
894     double wt
895     )
896 greg 1.1 {
897 greg 2.16 double d;
898 greg 2.23 int i;
899 greg 2.14 /* set number of divisions */
900 greg 2.16 if (ambacc <= FTINY &&
901 greg 2.20 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
902 greg 2.16 wt = d; /* avoid ray termination */
903     hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
904 greg 2.14 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
905     if (hp->nt < i)
906     hp->nt = i;
907     hp->np = PI * hp->nt + 0.5;
908     /* set number of super-samples */
909 greg 2.15 hp->ns = ambssamp * wt + 0.5;
910 greg 2.16 /* assign coefficient */
911 greg 2.14 copycolor(hp->acoef, ac);
912 greg 2.16 d = 1.0/(hp->nt*hp->np);
913     scalecolor(hp->acoef, d);
914 greg 2.14 /* make axes */
915     VCOPY(hp->uz, r->ron);
916     hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
917     for (i = 0; i < 3; i++)
918     if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
919     break;
920     if (i >= 3)
921     error(CONSISTENCY, "bad ray direction in inithemi");
922     hp->uy[i] = 1.0;
923     fcross(hp->ux, hp->uy, hp->uz);
924     normalize(hp->ux);
925     fcross(hp->uy, hp->uz, hp->ux);
926 greg 1.1 }
927    
928    
929 greg 2.9 int
930 greg 2.14 divsample( /* sample a division */
931 greg 2.23 AMBSAMP *dp,
932 greg 2.14 AMBHEMI *h,
933     RAY *r
934     )
935 greg 1.1 {
936     RAY ar;
937 greg 1.11 int hlist[3];
938     double spt[2];
939 greg 1.1 double xd, yd, zd;
940     double b2;
941     double phi;
942 greg 2.23 int i;
943 greg 2.15 /* ambient coefficient for weight */
944 greg 2.16 if (ambacc > FTINY)
945     setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
946     else
947     copycolor(ar.rcoef, h->acoef);
948 greg 2.14 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
949 greg 1.4 return(-1);
950 greg 2.17 if (ambacc > FTINY) {
951     multcolor(ar.rcoef, h->acoef);
952     scalecolor(ar.rcoef, 1./AVGREFL);
953     }
954 greg 1.1 hlist[0] = r->rno;
955     hlist[1] = dp->t;
956     hlist[2] = dp->p;
957 greg 1.13 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
958 greg 1.11 zd = sqrt((dp->t + spt[0])/h->nt);
959     phi = 2.0*PI * (dp->p + spt[1])/h->np;
960 gwlarson 2.8 xd = tcos(phi) * zd;
961     yd = tsin(phi) * zd;
962 greg 1.1 zd = sqrt(1.0 - zd*zd);
963 greg 1.2 for (i = 0; i < 3; i++)
964     ar.rdir[i] = xd*h->ux[i] +
965     yd*h->uy[i] +
966     zd*h->uz[i];
967 greg 2.22 checknorm(ar.rdir);
968 greg 1.2 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
969 greg 1.1 rayvalue(&ar);
970     ndims--;
971 greg 2.16 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
972 greg 1.1 addcolor(dp->v, ar.rcol);
973 greg 2.9 /* use rt to improve gradient calc */
974     if (ar.rt > FTINY && ar.rt < FHUGE)
975     dp->r += 1.0/ar.rt;
976 greg 1.1 /* (re)initialize error */
977     if (dp->n++) {
978     b2 = bright(dp->v)/dp->n - bright(ar.rcol);
979     b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
980     dp->k = b2/(dp->n*dp->n);
981     } else
982     dp->k = 0.0;
983 greg 1.4 return(0);
984 greg 1.1 }
985    
986    
987 greg 2.14 static int
988     ambcmp( /* decreasing order */
989     const void *p1,
990     const void *p2
991     )
992     {
993     const AMBSAMP *d1 = (const AMBSAMP *)p1;
994     const AMBSAMP *d2 = (const AMBSAMP *)p2;
995    
996     if (d1->k < d2->k)
997     return(1);
998     if (d1->k > d2->k)
999     return(-1);
1000     return(0);
1001     }
1002    
1003    
1004     static int
1005     ambnorm( /* standard order */
1006     const void *p1,
1007     const void *p2
1008     )
1009     {
1010     const AMBSAMP *d1 = (const AMBSAMP *)p1;
1011     const AMBSAMP *d2 = (const AMBSAMP *)p2;
1012 greg 2.23 int c;
1013 greg 2.14
1014     if ( (c = d1->t - d2->t) )
1015     return(c);
1016     return(d1->p - d2->p);
1017     }
1018    
1019    
1020 greg 1.1 double
1021 greg 2.14 doambient( /* compute ambient component */
1022 greg 2.23 COLOR rcol,
1023 greg 2.14 RAY *r,
1024     double wt,
1025     FVECT pg,
1026     FVECT dg
1027     )
1028 greg 1.1 {
1029 greg 2.24 double b, d=0;
1030 greg 1.1 AMBHEMI hemi;
1031     AMBSAMP *div;
1032     AMBSAMP dnew;
1033 greg 2.23 double acol[3];
1034     AMBSAMP *dp;
1035 greg 1.1 double arad;
1036 greg 2.19 int divcnt;
1037 greg 2.23 int i, j;
1038 greg 1.1 /* initialize hemisphere */
1039 greg 2.23 inithemi(&hemi, rcol, r, wt);
1040 greg 2.19 divcnt = hemi.nt * hemi.np;
1041 greg 2.17 /* initialize */
1042     if (pg != NULL)
1043     pg[0] = pg[1] = pg[2] = 0.0;
1044     if (dg != NULL)
1045     dg[0] = dg[1] = dg[2] = 0.0;
1046 greg 2.23 setcolor(rcol, 0.0, 0.0, 0.0);
1047 greg 2.19 if (divcnt == 0)
1048 greg 1.1 return(0.0);
1049 greg 2.14 /* allocate super-samples */
1050 greg 2.15 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
1051 greg 2.19 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
1052 greg 1.1 if (div == NULL)
1053     error(SYSTEM, "out of memory in doambient");
1054     } else
1055     div = NULL;
1056     /* sample the divisions */
1057     arad = 0.0;
1058 greg 2.23 acol[0] = acol[1] = acol[2] = 0.0;
1059 greg 1.1 if ((dp = div) == NULL)
1060     dp = &dnew;
1061 greg 2.19 divcnt = 0;
1062 greg 1.1 for (i = 0; i < hemi.nt; i++)
1063     for (j = 0; j < hemi.np; j++) {
1064     dp->t = i; dp->p = j;
1065     setcolor(dp->v, 0.0, 0.0, 0.0);
1066 greg 1.2 dp->r = 0.0;
1067 greg 1.1 dp->n = 0;
1068 greg 2.16 if (divsample(dp, &hemi, r) < 0) {
1069 greg 2.19 if (div != NULL)
1070     dp++;
1071 greg 2.16 continue;
1072     }
1073 greg 2.6 arad += dp->r;
1074 greg 2.19 divcnt++;
1075 greg 1.1 if (div != NULL)
1076     dp++;
1077 greg 2.6 else
1078 greg 1.1 addcolor(acol, dp->v);
1079     }
1080 greg 2.21 if (!divcnt) {
1081     if (div != NULL)
1082     free((void *)div);
1083 greg 2.19 return(0.0); /* no samples taken */
1084 greg 2.21 }
1085 greg 2.19 if (divcnt < hemi.nt*hemi.np) {
1086     pg = dg = NULL; /* incomplete sampling */
1087     hemi.ns = 0;
1088     } else if (arad > FTINY && divcnt/arad < minarad) {
1089 greg 2.15 hemi.ns = 0; /* close enough */
1090 greg 2.19 } else if (hemi.ns > 0) { /* else perform super-sampling? */
1091 greg 1.4 comperrs(div, &hemi); /* compute errors */
1092 greg 2.19 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
1093 greg 1.1 /* super-sample */
1094 greg 2.15 for (i = hemi.ns; i > 0; i--) {
1095 schorsch 2.11 dnew = *div;
1096 greg 2.16 if (divsample(&dnew, &hemi, r) < 0) {
1097     dp++;
1098     continue;
1099     }
1100     dp = div; /* reinsert */
1101 greg 2.19 j = divcnt < i ? divcnt : i;
1102 greg 1.1 while (--j > 0 && dnew.k < dp[1].k) {
1103 schorsch 2.11 *dp = *(dp+1);
1104 greg 1.1 dp++;
1105     }
1106 schorsch 2.11 *dp = dnew;
1107 greg 1.1 }
1108 greg 1.2 if (pg != NULL || dg != NULL) /* restore order */
1109 greg 2.19 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
1110 greg 1.1 }
1111     /* compute returned values */
1112 greg 1.3 if (div != NULL) {
1113 greg 2.19 arad = 0.0; /* note: divcnt may be < nt*np */
1114     for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
1115 greg 1.3 arad += dp->r;
1116     if (dp->n > 1) {
1117     b = 1.0/dp->n;
1118     scalecolor(dp->v, b);
1119     dp->r *= b;
1120     dp->n = 1;
1121     }
1122     addcolor(acol, dp->v);
1123     }
1124 greg 1.5 b = bright(acol);
1125 greg 1.6 if (b > FTINY) {
1126 greg 2.17 b = 1.0/b; /* compute & normalize gradient(s) */
1127 greg 1.6 if (pg != NULL) {
1128     posgradient(pg, div, &hemi);
1129     for (i = 0; i < 3; i++)
1130     pg[i] *= b;
1131     }
1132     if (dg != NULL) {
1133     dirgradient(dg, div, &hemi);
1134     for (i = 0; i < 3; i++)
1135     dg[i] *= b;
1136     }
1137 greg 1.5 }
1138 greg 2.9 free((void *)div);
1139 greg 1.3 }
1140 greg 2.23 copycolor(rcol, acol);
1141 greg 1.1 if (arad <= FTINY)
1142 greg 1.16 arad = maxarad;
1143 greg 2.3 else
1144 greg 2.19 arad = (divcnt+hemi.ns)/arad;
1145 greg 1.15 if (pg != NULL) { /* reduce radius if gradient large */
1146     d = DOT(pg,pg);
1147     if (d*arad*arad > 1.0)
1148     arad = 1.0/sqrt(d);
1149     }
1150 greg 1.16 if (arad < minarad) {
1151 greg 1.1 arad = minarad;
1152 greg 1.16 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
1153     d = 1.0/arad/sqrt(d);
1154     for (i = 0; i < 3; i++)
1155     pg[i] *= d;
1156     }
1157     }
1158 greg 2.3 if ((arad /= sqrt(wt)) > maxarad)
1159     arad = maxarad;
1160     return(arad);
1161 greg 1.1 }
1162    
1163    
1164 greg 2.9 void
1165 greg 2.14 comperrs( /* compute initial error estimates */
1166     AMBSAMP *da, /* assumes standard ordering */
1167 greg 2.23 AMBHEMI *hp
1168 greg 2.14 )
1169 greg 1.1 {
1170     double b, b2;
1171     int i, j;
1172 greg 2.23 AMBSAMP *dp;
1173 greg 1.1 /* sum differences from neighbors */
1174     dp = da;
1175     for (i = 0; i < hp->nt; i++)
1176     for (j = 0; j < hp->np; j++) {
1177 greg 1.6 #ifdef DEBUG
1178     if (dp->t != i || dp->p != j)
1179     error(CONSISTENCY,
1180     "division order in comperrs");
1181     #endif
1182 greg 1.1 b = bright(dp[0].v);
1183     if (i > 0) { /* from above */
1184     b2 = bright(dp[-hp->np].v) - b;
1185     b2 *= b2 * 0.25;
1186     dp[0].k += b2;
1187     dp[-hp->np].k += b2;
1188     }
1189     if (j > 0) { /* from behind */
1190     b2 = bright(dp[-1].v) - b;
1191     b2 *= b2 * 0.25;
1192     dp[0].k += b2;
1193     dp[-1].k += b2;
1194 greg 1.4 } else { /* around */
1195     b2 = bright(dp[hp->np-1].v) - b;
1196 greg 1.1 b2 *= b2 * 0.25;
1197     dp[0].k += b2;
1198 greg 1.4 dp[hp->np-1].k += b2;
1199 greg 1.1 }
1200     dp++;
1201     }
1202     /* divide by number of neighbors */
1203     dp = da;
1204     for (j = 0; j < hp->np; j++) /* top row */
1205     (dp++)->k *= 1.0/3.0;
1206     if (hp->nt < 2)
1207     return;
1208     for (i = 1; i < hp->nt-1; i++) /* central region */
1209     for (j = 0; j < hp->np; j++)
1210     (dp++)->k *= 0.25;
1211     for (j = 0; j < hp->np; j++) /* bottom row */
1212     (dp++)->k *= 1.0/3.0;
1213     }
1214    
1215    
1216 greg 2.9 void
1217 greg 2.14 posgradient( /* compute position gradient */
1218     FVECT gv,
1219     AMBSAMP *da, /* assumes standard ordering */
1220 greg 2.23 AMBHEMI *hp
1221 greg 2.14 )
1222 greg 1.1 {
1223 greg 2.23 int i, j;
1224 greg 2.2 double nextsine, lastsine, b, d;
1225 greg 1.2 double mag0, mag1;
1226     double phi, cosp, sinp, xd, yd;
1227 greg 2.23 AMBSAMP *dp;
1228 greg 1.2
1229     xd = yd = 0.0;
1230     for (j = 0; j < hp->np; j++) {
1231     dp = da + j;
1232     mag0 = mag1 = 0.0;
1233 greg 2.2 lastsine = 0.0;
1234 greg 1.2 for (i = 0; i < hp->nt; i++) {
1235     #ifdef DEBUG
1236     if (dp->t != i || dp->p != j)
1237     error(CONSISTENCY,
1238     "division order in posgradient");
1239     #endif
1240     b = bright(dp->v);
1241     if (i > 0) {
1242     d = dp[-hp->np].r;
1243     if (dp[0].r > d) d = dp[0].r;
1244 greg 2.2 /* sin(t)*cos(t)^2 */
1245     d *= lastsine * (1.0 - (double)i/hp->nt);
1246 greg 1.2 mag0 += d*(b - bright(dp[-hp->np].v));
1247     }
1248 greg 2.2 nextsine = sqrt((double)(i+1)/hp->nt);
1249 greg 1.2 if (j > 0) {
1250     d = dp[-1].r;
1251     if (dp[0].r > d) d = dp[0].r;
1252 greg 2.2 mag1 += d * (nextsine - lastsine) *
1253     (b - bright(dp[-1].v));
1254 greg 1.2 } else {
1255     d = dp[hp->np-1].r;
1256     if (dp[0].r > d) d = dp[0].r;
1257 greg 2.2 mag1 += d * (nextsine - lastsine) *
1258     (b - bright(dp[hp->np-1].v));
1259 greg 1.2 }
1260     dp += hp->np;
1261 greg 2.2 lastsine = nextsine;
1262 greg 1.2 }
1263 greg 2.2 mag0 *= 2.0*PI / hp->np;
1264 greg 1.2 phi = 2.0*PI * (double)j/hp->np;
1265 gwlarson 2.8 cosp = tcos(phi); sinp = tsin(phi);
1266 greg 1.2 xd += mag0*cosp - mag1*sinp;
1267     yd += mag0*sinp + mag1*cosp;
1268     }
1269     for (i = 0; i < 3; i++)
1270 greg 2.16 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
1271 greg 1.1 }
1272    
1273    
1274 greg 2.9 void
1275 greg 2.14 dirgradient( /* compute direction gradient */
1276     FVECT gv,
1277     AMBSAMP *da, /* assumes standard ordering */
1278 greg 2.23 AMBHEMI *hp
1279 greg 2.14 )
1280 greg 1.1 {
1281 greg 2.23 int i, j;
1282 greg 1.2 double mag;
1283     double phi, xd, yd;
1284 greg 2.23 AMBSAMP *dp;
1285 greg 1.2
1286     xd = yd = 0.0;
1287     for (j = 0; j < hp->np; j++) {
1288     dp = da + j;
1289     mag = 0.0;
1290     for (i = 0; i < hp->nt; i++) {
1291     #ifdef DEBUG
1292     if (dp->t != i || dp->p != j)
1293     error(CONSISTENCY,
1294     "division order in dirgradient");
1295     #endif
1296 greg 2.2 /* tan(t) */
1297     mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
1298 greg 1.2 dp += hp->np;
1299     }
1300     phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1301 gwlarson 2.8 xd += mag * tcos(phi);
1302     yd += mag * tsin(phi);
1303 greg 1.2 }
1304     for (i = 0; i < 3; i++)
1305 greg 2.16 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1306 greg 1.1 }
1307 greg 2.25
1308     #endif /* ! NEWAMB */