ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.51
Committed: Wed May 7 20:20:24 2014 UTC (9 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.50: +10 -2 lines
Log Message:
Another tweak to prevent corraling in tight quarters (-DNEWAMB)

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.51 static const char RCSid[] = "$Id: ambcomp.c,v 2.50 2014/05/07 16:02:26 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * Routines to compute "ambient" values using Monte Carlo
6 greg 2.9 *
7 greg 2.27 * Hessian calculations based on "Practical Hessian-Based Error Control
8     * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9     * from ACM SIGGRAPH Asia 2012 conference proceedings.
10     *
11 greg 2.46 * Added book-keeping optimization to avoid calculations that would
12     * cancel due to traversal both directions on edges that are adjacent
13     * to same-valued triangles. This cuts about half of Hessian math.
14     *
15 greg 2.9 * Declarations of external symbols in ambient.h
16     */
17    
18 greg 2.10 #include "copyright.h"
19 greg 1.1
20     #include "ray.h"
21 greg 2.25 #include "ambient.h"
22     #include "random.h"
23 greg 1.1
24 greg 2.25 #ifdef NEWAMB
25 greg 1.1
26 greg 2.26 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
27    
28 greg 2.46 /* vertex direction bit positions */
29     #define VDB_xy 0
30     #define VDB_y 01
31     #define VDB_x 02
32     #define VDB_Xy 03
33     #define VDB_xY 04
34     #define VDB_X 05
35     #define VDB_Y 06
36     #define VDB_XY 07
37     /* get opposite vertex direction bit */
38     #define VDB_OPP(f) (~(f) & 07)
39     /* adjacent triangle vertex flags */
40     static const int adjacent_trifl[8] = {
41     0, /* forbidden diagonal */
42     1<<VDB_x|1<<VDB_y|1<<VDB_Xy,
43     1<<VDB_y|1<<VDB_x|1<<VDB_xY,
44     1<<VDB_y|1<<VDB_Xy|1<<VDB_X,
45     1<<VDB_x|1<<VDB_xY|1<<VDB_Y,
46     1<<VDB_Xy|1<<VDB_X|1<<VDB_Y,
47     1<<VDB_xY|1<<VDB_Y|1<<VDB_X,
48     0, /* forbidden diagonal */
49     };
50    
51 greg 2.26 typedef struct {
52 greg 2.44 COLOR v; /* hemisphere sample value */
53 greg 2.47 float d; /* reciprocal distance (1/rt) */
54 greg 2.44 FVECT p; /* intersection point */
55     } AMBSAMP; /* sample value */
56    
57     typedef struct {
58 greg 2.26 RAY *rp; /* originating ray sample */
59 greg 2.27 FVECT ux, uy; /* tangent axis unit vectors */
60 greg 2.26 int ns; /* number of samples per axis */
61     COLOR acoef; /* division contribution coefficient */
62 greg 2.44 AMBSAMP sa[1]; /* sample array (extends struct) */
63 greg 2.26 } AMBHEMI; /* ambient sample hemisphere */
64    
65 greg 2.46 #define ambndx(h,i,j) ((i)*(h)->ns + (j))
66     #define ambsam(h,i,j) (h)->sa[ambndx(h,i,j)]
67 greg 2.26
68 greg 2.27 typedef struct {
69 greg 2.35 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
70     double I1, I2;
71 greg 2.46 int valid;
72 greg 2.27 } FFTRI; /* vectors and coefficients for Hessian calculation */
73    
74 greg 2.26
75 greg 2.46 /* Get index for adjacent vertex */
76     static int
77     adjacent_verti(AMBHEMI *hp, int i, int j, int dbit)
78     {
79     int i0 = i*hp->ns + j;
80    
81     switch (dbit) {
82     case VDB_y: return(i0 - hp->ns);
83     case VDB_x: return(i0 - 1);
84     case VDB_Xy: return(i0 - hp->ns + 1);
85     case VDB_xY: return(i0 + hp->ns - 1);
86     case VDB_X: return(i0 + 1);
87     case VDB_Y: return(i0 + hp->ns);
88     /* the following should never occur */
89     case VDB_xy: return(i0 - hp->ns - 1);
90     case VDB_XY: return(i0 + hp->ns + 1);
91     }
92     return(-1);
93     }
94    
95    
96     /* Get vertex direction bit for the opposite edge to complete triangle */
97     static int
98     vdb_edge(int db1, int db2)
99     {
100     switch (db1) {
101     case VDB_x: return(db2==VDB_y ? VDB_Xy : VDB_Y);
102     case VDB_y: return(db2==VDB_x ? VDB_xY : VDB_X);
103     case VDB_X: return(db2==VDB_Xy ? VDB_y : VDB_xY);
104     case VDB_Y: return(db2==VDB_xY ? VDB_x : VDB_Xy);
105     case VDB_xY: return(db2==VDB_x ? VDB_y : VDB_X);
106     case VDB_Xy: return(db2==VDB_y ? VDB_x : VDB_Y);
107     }
108     error(INTERNAL, "forbidden diagonal in vdb_edge()");
109     return(-1);
110     }
111    
112    
113 greg 2.26 static AMBHEMI *
114     inithemi( /* initialize sampling hemisphere */
115     COLOR ac,
116     RAY *r,
117     double wt
118     )
119     {
120     AMBHEMI *hp;
121     double d;
122     int n, i;
123     /* set number of divisions */
124     if (ambacc <= FTINY &&
125     wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
126     wt = d; /* avoid ray termination */
127     n = sqrt(ambdiv * wt) + 0.5;
128 greg 2.27 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
129 greg 2.26 if (n < i)
130     n = i;
131     /* allocate sampling array */
132 greg 2.41 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
133 greg 2.26 if (hp == NULL)
134     return(NULL);
135     hp->rp = r;
136     hp->ns = n;
137     /* assign coefficient */
138     copycolor(hp->acoef, ac);
139     d = 1.0/(n*n);
140     scalecolor(hp->acoef, d);
141 greg 2.28 /* make tangent plane axes */
142 greg 2.38 hp->uy[0] = 0.5 - frandom();
143     hp->uy[1] = 0.5 - frandom();
144     hp->uy[2] = 0.5 - frandom();
145 greg 2.36 for (i = 3; i--; )
146 greg 2.37 if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6))
147     break;
148     if (i < 0)
149     error(CONSISTENCY, "bad ray direction in inithemi");
150     hp->uy[i] = 1.0;
151 greg 2.27 VCROSS(hp->ux, hp->uy, r->ron);
152 greg 2.26 normalize(hp->ux);
153 greg 2.27 VCROSS(hp->uy, r->ron, hp->ux);
154 greg 2.26 /* we're ready to sample */
155     return(hp);
156     }
157    
158    
159 greg 2.43 /* Sample ambient division and apply weighting coefficient */
160 greg 2.41 static int
161 greg 2.43 getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n)
162 greg 2.26 {
163 greg 2.41 int hlist[3], ii;
164     double spt[2], zd;
165 greg 2.26 /* ambient coefficient for weight */
166     if (ambacc > FTINY)
167 greg 2.41 setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL);
168 greg 2.26 else
169 greg 2.41 copycolor(arp->rcoef, hp->acoef);
170     if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0)
171     return(0);
172 greg 2.26 if (ambacc > FTINY) {
173 greg 2.41 multcolor(arp->rcoef, hp->acoef);
174     scalecolor(arp->rcoef, 1./AVGREFL);
175     }
176     hlist[0] = hp->rp->rno;
177 greg 2.46 hlist[1] = j;
178     hlist[2] = i;
179 greg 2.41 multisamp(spt, 2, urand(ilhash(hlist,3)+n));
180     if (!n) { /* avoid border samples for n==0 */
181 greg 2.46 if ((spt[0] < 0.1) | (spt[0] >= 0.9))
182 greg 2.41 spt[0] = 0.1 + 0.8*frandom();
183 greg 2.46 if ((spt[1] < 0.1) | (spt[1] >= 0.9))
184 greg 2.41 spt[1] = 0.1 + 0.8*frandom();
185 greg 2.26 }
186 greg 2.46 SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
187 greg 2.26 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
188     for (ii = 3; ii--; )
189 greg 2.41 arp->rdir[ii] = spt[0]*hp->ux[ii] +
190 greg 2.26 spt[1]*hp->uy[ii] +
191     zd*hp->rp->ron[ii];
192 greg 2.41 checknorm(arp->rdir);
193 greg 2.46 dimlist[ndims++] = ambndx(hp,i,j) + 90171;
194 greg 2.43 rayvalue(arp); /* evaluate ray */
195     ndims--; /* apply coefficient */
196     multcolor(arp->rcol, arp->rcoef);
197 greg 2.41 return(1);
198     }
199    
200    
201     static AMBSAMP *
202 greg 2.43 ambsample( /* initial ambient division sample */
203 greg 2.41 AMBHEMI *hp,
204     int i,
205     int j
206     )
207     {
208 greg 2.43 AMBSAMP *ap = &ambsam(hp,i,j);
209 greg 2.41 RAY ar;
210     /* generate hemispherical sample */
211 greg 2.47 if (!getambsamp(&ar, hp, i, j, 0) || ar.rt <= FTINY) {
212     memset(ap, 0, sizeof(AMBSAMP));
213     return(NULL);
214     }
215     ap->d = 1.0/ar.rt; /* limit vertex distance */
216 greg 2.34 if (ar.rt > 10.0*thescene.cusize)
217     ar.rt = 10.0*thescene.cusize;
218 greg 2.31 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
219 greg 2.26 copycolor(ap->v, ar.rcol);
220 greg 2.28 return(ap);
221 greg 2.26 }
222    
223    
224 greg 2.41 /* Estimate errors based on ambient division differences */
225     static float *
226     getambdiffs(AMBHEMI *hp)
227     {
228 greg 2.45 float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
229 greg 2.41 float *ep;
230 greg 2.42 AMBSAMP *ap;
231 greg 2.41 double b, d2;
232     int i, j;
233    
234     if (earr == NULL) /* out of memory? */
235     return(NULL);
236     /* compute squared neighbor diffs */
237 greg 2.42 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
238     for (j = 0; j < hp->ns; j++, ap++, ep++) {
239     b = bright(ap[0].v);
240 greg 2.41 if (i) { /* from above */
241 greg 2.42 d2 = b - bright(ap[-hp->ns].v);
242 greg 2.41 d2 *= d2;
243     ep[0] += d2;
244     ep[-hp->ns] += d2;
245     }
246     if (j) { /* from behind */
247 greg 2.42 d2 = b - bright(ap[-1].v);
248 greg 2.41 d2 *= d2;
249     ep[0] += d2;
250     ep[-1] += d2;
251     }
252     }
253     /* correct for number of neighbors */
254     earr[0] *= 2.f;
255     earr[hp->ns-1] *= 2.f;
256     earr[(hp->ns-1)*hp->ns] *= 2.f;
257     earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f;
258     for (i = 1; i < hp->ns-1; i++) {
259     earr[i*hp->ns] *= 4./3.;
260     earr[i*hp->ns + hp->ns-1] *= 4./3.;
261     }
262     for (j = 1; j < hp->ns-1; j++) {
263     earr[j] *= 4./3.;
264     earr[(hp->ns-1)*hp->ns + j] *= 4./3.;
265     }
266     return(earr);
267     }
268    
269    
270 greg 2.43 /* Perform super-sampling on hemisphere (introduces bias) */
271 greg 2.41 static void
272     ambsupersamp(double acol[3], AMBHEMI *hp, int cnt)
273     {
274     float *earr = getambdiffs(hp);
275 greg 2.50 double e2sum = 0.0;
276 greg 2.41 AMBSAMP *ap;
277     RAY ar;
278 greg 2.50 double asum[3];
279 greg 2.41 float *ep;
280     int i, j, n;
281    
282     if (earr == NULL) /* just skip calc. if no memory */
283     return;
284     /* add up estimated variances */
285     for (ep = earr + hp->ns*hp->ns; ep-- > earr; )
286     e2sum += *ep;
287     ep = earr; /* perform super-sampling */
288     for (ap = hp->sa, i = 0; i < hp->ns; i++)
289     for (j = 0; j < hp->ns; j++, ap++) {
290     int nss = *ep/e2sum*cnt + frandom();
291 greg 2.50 asum[0] = asum[1] = asum[2] = 0.0;
292 greg 2.41 for (n = 1; n <= nss; n++) {
293 greg 2.43 if (!getambsamp(&ar, hp, i, j, n)) {
294 greg 2.41 nss = n-1;
295     break;
296     }
297     addcolor(asum, ar.rcol);
298     }
299     if (nss) { /* update returned ambient value */
300     const double ssf = 1./(nss + 1);
301     for (n = 3; n--; )
302 greg 2.50 acol[n] += ssf*asum[n] +
303 greg 2.41 (ssf - 1.)*colval(ap->v,n);
304     }
305     e2sum -= *ep++; /* update remainders */
306     cnt -= nss;
307     }
308     free(earr);
309     }
310    
311    
312 greg 2.46 /* Compute vertex flags, indicating farthest in each direction */
313     static uby8 *
314     vertex_flags(AMBHEMI *hp)
315     {
316     uby8 *vflags = (uby8 *)calloc(hp->ns*hp->ns, sizeof(uby8));
317     uby8 *vf;
318 greg 2.47 AMBSAMP *ap;
319 greg 2.46 int i, j;
320    
321 greg 2.47 if (vflags == NULL)
322 greg 2.46 error(SYSTEM, "out of memory in vertex_flags()");
323 greg 2.47 vf = vflags;
324     ap = hp->sa; /* compute farthest along first row */
325     for (j = 0; j < hp->ns-1; j++, vf++, ap++)
326     if (ap[0].d <= ap[1].d)
327     vf[0] |= 1<<VDB_X;
328 greg 2.46 else
329 greg 2.47 vf[1] |= 1<<VDB_x;
330     ++vf; ++ap;
331 greg 2.46 /* flag subsequent rows */
332     for (i = 1; i < hp->ns; i++) {
333 greg 2.47 for (j = 0; j < hp->ns-1; j++, vf++, ap++) {
334     if (ap[0].d <= ap[-hp->ns].d) /* row before */
335 greg 2.46 vf[0] |= 1<<VDB_y;
336     else
337     vf[-hp->ns] |= 1<<VDB_Y;
338 greg 2.47 if (ap[0].d <= ap[1-hp->ns].d) /* diagonal we care about */
339 greg 2.46 vf[0] |= 1<<VDB_Xy;
340     else
341     vf[1-hp->ns] |= 1<<VDB_xY;
342 greg 2.47 if (ap[0].d <= ap[1].d) /* column after */
343 greg 2.46 vf[0] |= 1<<VDB_X;
344     else
345     vf[1] |= 1<<VDB_x;
346     }
347 greg 2.47 if (ap[0].d <= ap[-hp->ns].d) /* final column edge */
348 greg 2.46 vf[0] |= 1<<VDB_y;
349     else
350     vf[-hp->ns] |= 1<<VDB_Y;
351 greg 2.47 ++vf; ++ap;
352 greg 2.46 }
353     return(vflags);
354     }
355    
356    
357     /* Return brightness of farthest ambient sample */
358     static double
359     back_ambval(AMBHEMI *hp, int i, int j, int dbit1, int dbit2, const uby8 *vflags)
360     {
361     const int v0 = ambndx(hp,i,j);
362     const int tflags = (1<<dbit1 | 1<<dbit2);
363     int v1, v2;
364    
365     if ((vflags[v0] & tflags) == tflags) /* is v0 the farthest? */
366     return(colval(hp->sa[v0].v,CIEY));
367     v1 = adjacent_verti(hp, i, j, dbit1);
368     if (vflags[v0] & 1<<dbit2) /* v1 farthest if v0>v2 */
369     return(colval(hp->sa[v1].v,CIEY));
370     v2 = adjacent_verti(hp, i, j, dbit2);
371     if (vflags[v0] & 1<<dbit1) /* v2 farthest if v0>v1 */
372     return(colval(hp->sa[v2].v,CIEY));
373     /* else check if v1>v2 */
374     if (vflags[v1] & 1<<vdb_edge(dbit1,dbit2))
375     return(colval(hp->sa[v1].v,CIEY));
376     return(colval(hp->sa[v2].v,CIEY));
377     }
378    
379    
380 greg 2.27 /* Compute vectors and coefficients for Hessian/gradient calcs */
381     static void
382 greg 2.46 comp_fftri(FFTRI *ftp, AMBHEMI *hp, int i, int j, int dbit, const uby8 *vflags)
383 greg 2.27 {
384 greg 2.46 const int i0 = ambndx(hp,i,j);
385     double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
386     int i1, ii;
387    
388     ftp->valid = 0; /* check if we can skip this edge */
389     ii = adjacent_trifl[dbit];
390     if ((vflags[i0] & ii) == ii) /* cancels if vertex used as value */
391     return;
392     i1 = adjacent_verti(hp, i, j, dbit);
393     ii = adjacent_trifl[VDB_OPP(dbit)];
394     if ((vflags[i1] & ii) == ii) /* on either end (for both triangles) */
395     return;
396     /* else go ahead with calculation */
397     VSUB(ftp->r_i, hp->sa[i0].p, hp->rp->rop);
398     VSUB(ftp->r_i1, hp->sa[i1].p, hp->rp->rop);
399     VSUB(ftp->e_i, hp->sa[i1].p, hp->sa[i0].p);
400 greg 2.35 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
401     rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
402 greg 2.27 dot_e = DOT(ftp->e_i,ftp->e_i);
403     dot_er = DOT(ftp->e_i, ftp->r_i);
404 greg 2.32 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
405     rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
406     ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
407 greg 2.35 sqrt( rdot_cp );
408 greg 2.32 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
409 greg 2.35 dot_e*ftp->I1 )*0.5*rdot_cp;
410 greg 2.32 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
411 greg 2.46 for (ii = 3; ii--; )
412     ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
413     ftp->valid++;
414 greg 2.27 }
415    
416    
417 greg 2.28 /* Compose 3x3 matrix from two vectors */
418 greg 2.27 static void
419     compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
420     {
421     mat[0][0] = 2.0*va[0]*vb[0];
422     mat[1][1] = 2.0*va[1]*vb[1];
423     mat[2][2] = 2.0*va[2]*vb[2];
424     mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
425     mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
426     mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
427     }
428    
429    
430     /* Compute partial 3x3 Hessian matrix for edge */
431     static void
432     comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
433     {
434 greg 2.35 FVECT ncp;
435 greg 2.27 FVECT m1[3], m2[3], m3[3], m4[3];
436     double d1, d2, d3, d4;
437     double I3, J3, K3;
438     int i, j;
439 greg 2.46
440     if (!ftp->valid) { /* preemptive test */
441     memset(hess, 0, sizeof(FVECT)*3);
442     return;
443     }
444 greg 2.27 /* compute intermediate coefficients */
445     d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
446     d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
447     d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
448     d4 = DOT(ftp->e_i, ftp->r_i);
449 greg 2.35 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
450     / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
451 greg 2.27 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
452     K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
453     /* intermediate matrices */
454 greg 2.35 VCROSS(ncp, nrm, ftp->e_i);
455     compose_matrix(m1, ncp, ftp->rI2_eJ2);
456 greg 2.27 compose_matrix(m2, ftp->r_i, ftp->r_i);
457     compose_matrix(m3, ftp->e_i, ftp->e_i);
458     compose_matrix(m4, ftp->r_i, ftp->e_i);
459 greg 2.35 d1 = DOT(nrm, ftp->rcp);
460 greg 2.27 d2 = -d1*ftp->I2;
461     d1 *= 2.0;
462     for (i = 3; i--; ) /* final matrix sum */
463     for (j = 3; j--; ) {
464     hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
465     2.0*J3*m4[i][j] );
466     hess[i][j] += d2*(i==j);
467 greg 2.46 hess[i][j] *= -1.0/PI;
468 greg 2.27 }
469     }
470    
471    
472     /* Reverse hessian calculation result for edge in other direction */
473     static void
474     rev_hessian(FVECT hess[3])
475     {
476     int i;
477    
478     for (i = 3; i--; ) {
479     hess[i][0] = -hess[i][0];
480     hess[i][1] = -hess[i][1];
481     hess[i][2] = -hess[i][2];
482     }
483     }
484    
485    
486     /* Add to radiometric Hessian from the given triangle */
487     static void
488     add2hessian(FVECT hess[3], FVECT ehess1[3],
489 greg 2.46 FVECT ehess2[3], FVECT ehess3[3], double v)
490 greg 2.27 {
491     int i, j;
492    
493     for (i = 3; i--; )
494     for (j = 3; j--; )
495     hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
496     }
497    
498    
499     /* Compute partial displacement form factor gradient for edge */
500     static void
501     comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
502     {
503 greg 2.35 FVECT ncp;
504 greg 2.27 double f1;
505     int i;
506    
507 greg 2.46 if (!ftp->valid) { /* preemptive test */
508     memset(grad, 0, sizeof(FVECT));
509     return;
510     }
511 greg 2.35 f1 = 2.0*DOT(nrm, ftp->rcp);
512     VCROSS(ncp, nrm, ftp->e_i);
513 greg 2.27 for (i = 3; i--; )
514 greg 2.46 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
515 greg 2.27 }
516    
517    
518     /* Reverse gradient calculation result for edge in other direction */
519     static void
520     rev_gradient(FVECT grad)
521     {
522     grad[0] = -grad[0];
523     grad[1] = -grad[1];
524     grad[2] = -grad[2];
525     }
526    
527    
528     /* Add to displacement gradient from the given triangle */
529     static void
530 greg 2.46 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
531 greg 2.27 {
532     int i;
533    
534     for (i = 3; i--; )
535     grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
536     }
537    
538    
539     /* Compute anisotropic radii and eigenvector directions */
540     static int
541     eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
542     {
543     double hess2[2][2];
544     FVECT a, b;
545     double evalue[2], slope1, xmag1;
546     int i;
547     /* project Hessian to sample plane */
548     for (i = 3; i--; ) {
549     a[i] = DOT(hessian[i], uv[0]);
550     b[i] = DOT(hessian[i], uv[1]);
551     }
552     hess2[0][0] = DOT(uv[0], a);
553     hess2[0][1] = DOT(uv[0], b);
554     hess2[1][0] = DOT(uv[1], a);
555     hess2[1][1] = DOT(uv[1], b);
556 greg 2.38 /* compute eigenvalue(s) */
557     i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
558     hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
559     if (i == 1) /* double-root (circle) */
560     evalue[1] = evalue[0];
561     if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
562 greg 2.35 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) )
563 greg 2.27 error(INTERNAL, "bad eigenvalue calculation");
564    
565     if (evalue[0] > evalue[1]) {
566 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[0]));
567     ra[1] = sqrt(sqrt(4.0/evalue[1]));
568 greg 2.27 slope1 = evalue[1];
569     } else {
570 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[1]));
571     ra[1] = sqrt(sqrt(4.0/evalue[0]));
572 greg 2.27 slope1 = evalue[0];
573     }
574     /* compute unit eigenvectors */
575     if (fabs(hess2[0][1]) <= FTINY)
576     return; /* uv OK as is */
577     slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
578     xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
579     for (i = 3; i--; ) {
580     b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
581     a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
582     }
583     VCOPY(uv[0], a);
584     VCOPY(uv[1], b);
585     }
586    
587    
588 greg 2.26 static void
589     ambHessian( /* anisotropic radii & pos. gradient */
590     AMBHEMI *hp,
591     FVECT uv[2], /* returned */
592 greg 2.28 float ra[2], /* returned (optional) */
593     float pg[2] /* returned (optional) */
594 greg 2.26 )
595     {
596 greg 2.27 static char memerrmsg[] = "out of memory in ambHessian()";
597     FVECT (*hessrow)[3] = NULL;
598     FVECT *gradrow = NULL;
599 greg 2.46 uby8 *vflags;
600 greg 2.27 FVECT hessian[3];
601     FVECT gradient;
602     FFTRI fftr;
603     int i, j;
604     /* be sure to assign unit vectors */
605     VCOPY(uv[0], hp->ux);
606     VCOPY(uv[1], hp->uy);
607     /* clock-wise vertex traversal from sample POV */
608     if (ra != NULL) { /* initialize Hessian row buffer */
609 greg 2.28 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
610 greg 2.27 if (hessrow == NULL)
611     error(SYSTEM, memerrmsg);
612     memset(hessian, 0, sizeof(hessian));
613     } else if (pg == NULL) /* bogus call? */
614     return;
615     if (pg != NULL) { /* initialize form factor row buffer */
616 greg 2.28 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
617 greg 2.27 if (gradrow == NULL)
618     error(SYSTEM, memerrmsg);
619     memset(gradient, 0, sizeof(gradient));
620     }
621 greg 2.46 /* get vertex position flags */
622     vflags = vertex_flags(hp);
623 greg 2.27 /* compute first row of edges */
624     for (j = 0; j < hp->ns-1; j++) {
625 greg 2.46 comp_fftri(&fftr, hp, 0, j, VDB_X, vflags);
626 greg 2.27 if (hessrow != NULL)
627     comp_hessian(hessrow[j], &fftr, hp->rp->ron);
628     if (gradrow != NULL)
629     comp_gradient(gradrow[j], &fftr, hp->rp->ron);
630     }
631     /* sum each row of triangles */
632     for (i = 0; i < hp->ns-1; i++) {
633     FVECT hesscol[3]; /* compute first vertical edge */
634     FVECT gradcol;
635 greg 2.46 comp_fftri(&fftr, hp, i, 0, VDB_Y, vflags);
636 greg 2.27 if (hessrow != NULL)
637     comp_hessian(hesscol, &fftr, hp->rp->ron);
638     if (gradrow != NULL)
639     comp_gradient(gradcol, &fftr, hp->rp->ron);
640     for (j = 0; j < hp->ns-1; j++) {
641     FVECT hessdia[3]; /* compute triangle contributions */
642     FVECT graddia;
643 greg 2.46 double backg;
644     backg = back_ambval(hp, i, j, VDB_X, VDB_Y, vflags);
645 greg 2.27 /* diagonal (inner) edge */
646 greg 2.46 comp_fftri(&fftr, hp, i, j+1, VDB_xY, vflags);
647 greg 2.27 if (hessrow != NULL) {
648     comp_hessian(hessdia, &fftr, hp->rp->ron);
649     rev_hessian(hesscol);
650     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
651     }
652 greg 2.39 if (gradrow != NULL) {
653 greg 2.27 comp_gradient(graddia, &fftr, hp->rp->ron);
654     rev_gradient(gradcol);
655     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
656     }
657     /* initialize edge in next row */
658 greg 2.46 comp_fftri(&fftr, hp, i+1, j+1, VDB_x, vflags);
659 greg 2.27 if (hessrow != NULL)
660     comp_hessian(hessrow[j], &fftr, hp->rp->ron);
661     if (gradrow != NULL)
662     comp_gradient(gradrow[j], &fftr, hp->rp->ron);
663     /* new column edge & paired triangle */
664 greg 2.46 backg = back_ambval(hp, i+1, j+1, VDB_x, VDB_y, vflags);
665     comp_fftri(&fftr, hp, i, j+1, VDB_Y, vflags);
666 greg 2.27 if (hessrow != NULL) {
667     comp_hessian(hesscol, &fftr, hp->rp->ron);
668     rev_hessian(hessdia);
669     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
670     if (i < hp->ns-2)
671     rev_hessian(hessrow[j]);
672     }
673     if (gradrow != NULL) {
674     comp_gradient(gradcol, &fftr, hp->rp->ron);
675     rev_gradient(graddia);
676     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
677     if (i < hp->ns-2)
678     rev_gradient(gradrow[j]);
679     }
680     }
681     }
682     /* release row buffers */
683     if (hessrow != NULL) free(hessrow);
684     if (gradrow != NULL) free(gradrow);
685 greg 2.46 free(vflags);
686 greg 2.27
687     if (ra != NULL) /* extract eigenvectors & radii */
688     eigenvectors(uv, ra, hessian);
689 greg 2.32 if (pg != NULL) { /* tangential position gradient */
690     pg[0] = DOT(gradient, uv[0]);
691     pg[1] = DOT(gradient, uv[1]);
692 greg 2.27 }
693     }
694    
695    
696     /* Compute direction gradient from a hemispherical sampling */
697     static void
698     ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
699     {
700 greg 2.41 AMBSAMP *ap;
701     double dgsum[2];
702     int n;
703     FVECT vd;
704     double gfact;
705 greg 2.27
706 greg 2.29 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
707 greg 2.27 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
708     /* use vector for azimuth + 90deg */
709     VSUB(vd, ap->p, hp->rp->rop);
710 greg 2.29 /* brightness over cosine factor */
711     gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
712 greg 2.40 /* sine = proj_radius/vd_length */
713     dgsum[0] -= DOT(uv[1], vd) * gfact;
714     dgsum[1] += DOT(uv[0], vd) * gfact;
715 greg 2.26 }
716 greg 2.29 dg[0] = dgsum[0] / (hp->ns*hp->ns);
717     dg[1] = dgsum[1] / (hp->ns*hp->ns);
718 greg 2.26 }
719    
720 greg 2.27
721 greg 2.49 /* Compute potential light leak direction flags for cache value */
722     static uint32
723     ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
724 greg 2.47 {
725 greg 2.50 const double max_d = 1.0/(minarad*ambacc + 0.001);
726     const double ang_res = 0.5*PI/(hp->ns-1);
727     const double ang_step = ang_res/((int)(16/PI*ang_res) + (1+FTINY));
728 greg 2.51 double avg_d = 0;
729 greg 2.50 uint32 flgs = 0;
730     int i, j;
731 greg 2.51 /* check distances above us */
732     for (i = hp->ns*3/4; i-- > hp->ns>>2; )
733     for (j = hp->ns*3/4; j-- > hp->ns>>2; )
734     avg_d += ambsam(hp,i,j).d;
735     avg_d *= 4.0/(hp->ns*hp->ns);
736     if (avg_d >= max_d) /* too close to corral? */
737     return(0);
738     /* else circle around perimeter */
739 greg 2.47 for (i = 0; i < hp->ns; i++)
740     for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
741     AMBSAMP *ap = &ambsam(hp,i,j);
742     FVECT vec;
743 greg 2.49 double u, v;
744 greg 2.50 double ang, a1;
745 greg 2.49 int abp;
746 greg 2.50 if ((ap->d <= FTINY) | (ap->d >= max_d))
747     continue; /* too far or too near */
748 greg 2.47 VSUB(vec, ap->p, hp->rp->rop);
749 greg 2.49 u = DOT(vec, uv[0]) * ap->d;
750     v = DOT(vec, uv[1]) * ap->d;
751     if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= 1.0)
752     continue; /* occluder outside ellipse */
753     ang = atan2a(v, u); /* else set direction flags */
754 greg 2.50 for (a1 = ang-.5*ang_res; a1 <= ang+.5*ang_res; a1 += ang_step)
755     flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
756 greg 2.47 }
757 greg 2.49 return(flgs);
758 greg 2.47 }
759    
760    
761 greg 2.26 int
762     doambient( /* compute ambient component */
763     COLOR rcol, /* input/output color */
764     RAY *r,
765     double wt,
766 greg 2.27 FVECT uv[2], /* returned (optional) */
767     float ra[2], /* returned (optional) */
768     float pg[2], /* returned (optional) */
769 greg 2.49 float dg[2], /* returned (optional) */
770     uint32 *crlp /* returned (optional) */
771 greg 2.26 )
772     {
773 greg 2.41 AMBHEMI *hp = inithemi(rcol, r, wt);
774 greg 2.45 int cnt;
775 greg 2.41 FVECT my_uv[2];
776     double d, K, acol[3];
777     AMBSAMP *ap;
778     int i, j;
779 greg 2.28 /* check/initialize */
780     if (hp == NULL)
781 greg 2.26 return(0);
782     if (uv != NULL)
783     memset(uv, 0, sizeof(FVECT)*2);
784     if (ra != NULL)
785     ra[0] = ra[1] = 0.0;
786     if (pg != NULL)
787     pg[0] = pg[1] = 0.0;
788     if (dg != NULL)
789     dg[0] = dg[1] = 0.0;
790 greg 2.49 if (crlp != NULL)
791     *crlp = 0;
792 greg 2.26 /* sample the hemisphere */
793     acol[0] = acol[1] = acol[2] = 0.0;
794 greg 2.45 cnt = 0;
795 greg 2.27 for (i = hp->ns; i--; )
796     for (j = hp->ns; j--; )
797 greg 2.28 if ((ap = ambsample(hp, i, j)) != NULL) {
798 greg 2.26 addcolor(acol, ap->v);
799     ++cnt;
800     }
801     if (!cnt) {
802     setcolor(rcol, 0.0, 0.0, 0.0);
803     free(hp);
804     return(0); /* no valid samples */
805     }
806 greg 2.41 if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */
807     copycolor(rcol, acol);
808     free(hp);
809     return(-1); /* return value w/o Hessian */
810     }
811     cnt = ambssamp*wt + 0.5; /* perform super-sampling? */
812 greg 2.50 if (cnt > 8)
813 greg 2.41 ambsupersamp(acol, hp, cnt);
814 greg 2.29 copycolor(rcol, acol); /* final indirect irradiance/PI */
815 greg 2.41 if ((ra == NULL) & (pg == NULL) & (dg == NULL)) {
816 greg 2.26 free(hp);
817     return(-1); /* no radius or gradient calc. */
818     }
819 greg 2.45 if ((d = bright(acol)) > FTINY) { /* normalize Y values */
820     d = 0.99*(hp->ns*hp->ns)/d;
821 greg 2.38 K = 0.01;
822 greg 2.45 } else { /* or fall back on geometric Hessian */
823 greg 2.38 K = 1.0;
824     pg = NULL;
825     dg = NULL;
826     }
827 greg 2.29 ap = hp->sa; /* relative Y channel from here on... */
828 greg 2.26 for (i = hp->ns*hp->ns; i--; ap++)
829 greg 2.38 colval(ap->v,CIEY) = bright(ap->v)*d + K;
830 greg 2.26
831     if (uv == NULL) /* make sure we have axis pointers */
832     uv = my_uv;
833     /* compute radii & pos. gradient */
834     ambHessian(hp, uv, ra, pg);
835 greg 2.29
836 greg 2.26 if (dg != NULL) /* compute direction gradient */
837     ambdirgrad(hp, uv, dg);
838 greg 2.29
839 greg 2.28 if (ra != NULL) { /* scale/clamp radii */
840 greg 2.35 if (pg != NULL) {
841     if (ra[0]*(d = fabs(pg[0])) > 1.0)
842     ra[0] = 1.0/d;
843     if (ra[1]*(d = fabs(pg[1])) > 1.0)
844     ra[1] = 1.0/d;
845 greg 2.48 if (ra[0] > ra[1])
846     ra[0] = ra[1];
847 greg 2.35 }
848 greg 2.29 if (ra[0] < minarad) {
849     ra[0] = minarad;
850     if (ra[1] < minarad)
851     ra[1] = minarad;
852     }
853     ra[0] *= d = 1.0/sqrt(sqrt(wt));
854 greg 2.26 if ((ra[1] *= d) > 2.0*ra[0])
855     ra[1] = 2.0*ra[0];
856 greg 2.28 if (ra[1] > maxarad) {
857     ra[1] = maxarad;
858     if (ra[0] > maxarad)
859     ra[0] = maxarad;
860     }
861 greg 2.49 if (crlp != NULL) /* flag encroached directions */
862     *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
863 greg 2.35 if (pg != NULL) { /* cap gradient if necessary */
864     d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
865     if (d > 1.0) {
866     d = 1.0/sqrt(d);
867     pg[0] *= d;
868     pg[1] *= d;
869     }
870     }
871 greg 2.26 }
872     free(hp); /* clean up and return */
873     return(1);
874     }
875    
876    
877 greg 2.25 #else /* ! NEWAMB */
878 greg 1.1
879    
880 greg 2.15 void
881 greg 2.14 inithemi( /* initialize sampling hemisphere */
882 greg 2.23 AMBHEMI *hp,
883 greg 2.16 COLOR ac,
884 greg 2.14 RAY *r,
885     double wt
886     )
887 greg 1.1 {
888 greg 2.16 double d;
889 greg 2.23 int i;
890 greg 2.14 /* set number of divisions */
891 greg 2.16 if (ambacc <= FTINY &&
892 greg 2.20 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
893 greg 2.16 wt = d; /* avoid ray termination */
894     hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
895 greg 2.14 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
896     if (hp->nt < i)
897     hp->nt = i;
898     hp->np = PI * hp->nt + 0.5;
899     /* set number of super-samples */
900 greg 2.15 hp->ns = ambssamp * wt + 0.5;
901 greg 2.16 /* assign coefficient */
902 greg 2.14 copycolor(hp->acoef, ac);
903 greg 2.16 d = 1.0/(hp->nt*hp->np);
904     scalecolor(hp->acoef, d);
905 greg 2.14 /* make axes */
906     VCOPY(hp->uz, r->ron);
907     hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
908     for (i = 0; i < 3; i++)
909     if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
910     break;
911     if (i >= 3)
912     error(CONSISTENCY, "bad ray direction in inithemi");
913     hp->uy[i] = 1.0;
914     fcross(hp->ux, hp->uy, hp->uz);
915     normalize(hp->ux);
916     fcross(hp->uy, hp->uz, hp->ux);
917 greg 1.1 }
918    
919    
920 greg 2.9 int
921 greg 2.14 divsample( /* sample a division */
922 greg 2.23 AMBSAMP *dp,
923 greg 2.14 AMBHEMI *h,
924     RAY *r
925     )
926 greg 1.1 {
927     RAY ar;
928 greg 1.11 int hlist[3];
929     double spt[2];
930 greg 1.1 double xd, yd, zd;
931     double b2;
932     double phi;
933 greg 2.23 int i;
934 greg 2.15 /* ambient coefficient for weight */
935 greg 2.16 if (ambacc > FTINY)
936     setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
937     else
938     copycolor(ar.rcoef, h->acoef);
939 greg 2.14 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
940 greg 1.4 return(-1);
941 greg 2.17 if (ambacc > FTINY) {
942     multcolor(ar.rcoef, h->acoef);
943     scalecolor(ar.rcoef, 1./AVGREFL);
944     }
945 greg 1.1 hlist[0] = r->rno;
946     hlist[1] = dp->t;
947     hlist[2] = dp->p;
948 greg 1.13 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
949 greg 1.11 zd = sqrt((dp->t + spt[0])/h->nt);
950     phi = 2.0*PI * (dp->p + spt[1])/h->np;
951 gwlarson 2.8 xd = tcos(phi) * zd;
952     yd = tsin(phi) * zd;
953 greg 1.1 zd = sqrt(1.0 - zd*zd);
954 greg 1.2 for (i = 0; i < 3; i++)
955     ar.rdir[i] = xd*h->ux[i] +
956     yd*h->uy[i] +
957     zd*h->uz[i];
958 greg 2.22 checknorm(ar.rdir);
959 greg 1.2 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
960 greg 1.1 rayvalue(&ar);
961     ndims--;
962 greg 2.16 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
963 greg 1.1 addcolor(dp->v, ar.rcol);
964 greg 2.9 /* use rt to improve gradient calc */
965     if (ar.rt > FTINY && ar.rt < FHUGE)
966     dp->r += 1.0/ar.rt;
967 greg 1.1 /* (re)initialize error */
968     if (dp->n++) {
969     b2 = bright(dp->v)/dp->n - bright(ar.rcol);
970     b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
971     dp->k = b2/(dp->n*dp->n);
972     } else
973     dp->k = 0.0;
974 greg 1.4 return(0);
975 greg 1.1 }
976    
977    
978 greg 2.14 static int
979     ambcmp( /* decreasing order */
980     const void *p1,
981     const void *p2
982     )
983     {
984     const AMBSAMP *d1 = (const AMBSAMP *)p1;
985     const AMBSAMP *d2 = (const AMBSAMP *)p2;
986    
987     if (d1->k < d2->k)
988     return(1);
989     if (d1->k > d2->k)
990     return(-1);
991     return(0);
992     }
993    
994    
995     static int
996     ambnorm( /* standard order */
997     const void *p1,
998     const void *p2
999     )
1000     {
1001     const AMBSAMP *d1 = (const AMBSAMP *)p1;
1002     const AMBSAMP *d2 = (const AMBSAMP *)p2;
1003 greg 2.23 int c;
1004 greg 2.14
1005     if ( (c = d1->t - d2->t) )
1006     return(c);
1007     return(d1->p - d2->p);
1008     }
1009    
1010    
1011 greg 1.1 double
1012 greg 2.14 doambient( /* compute ambient component */
1013 greg 2.23 COLOR rcol,
1014 greg 2.14 RAY *r,
1015     double wt,
1016     FVECT pg,
1017     FVECT dg
1018     )
1019 greg 1.1 {
1020 greg 2.24 double b, d=0;
1021 greg 1.1 AMBHEMI hemi;
1022     AMBSAMP *div;
1023     AMBSAMP dnew;
1024 greg 2.23 double acol[3];
1025     AMBSAMP *dp;
1026 greg 1.1 double arad;
1027 greg 2.19 int divcnt;
1028 greg 2.23 int i, j;
1029 greg 1.1 /* initialize hemisphere */
1030 greg 2.23 inithemi(&hemi, rcol, r, wt);
1031 greg 2.19 divcnt = hemi.nt * hemi.np;
1032 greg 2.17 /* initialize */
1033     if (pg != NULL)
1034     pg[0] = pg[1] = pg[2] = 0.0;
1035     if (dg != NULL)
1036     dg[0] = dg[1] = dg[2] = 0.0;
1037 greg 2.23 setcolor(rcol, 0.0, 0.0, 0.0);
1038 greg 2.19 if (divcnt == 0)
1039 greg 1.1 return(0.0);
1040 greg 2.14 /* allocate super-samples */
1041 greg 2.15 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
1042 greg 2.19 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
1043 greg 1.1 if (div == NULL)
1044     error(SYSTEM, "out of memory in doambient");
1045     } else
1046     div = NULL;
1047     /* sample the divisions */
1048     arad = 0.0;
1049 greg 2.23 acol[0] = acol[1] = acol[2] = 0.0;
1050 greg 1.1 if ((dp = div) == NULL)
1051     dp = &dnew;
1052 greg 2.19 divcnt = 0;
1053 greg 1.1 for (i = 0; i < hemi.nt; i++)
1054     for (j = 0; j < hemi.np; j++) {
1055     dp->t = i; dp->p = j;
1056     setcolor(dp->v, 0.0, 0.0, 0.0);
1057 greg 1.2 dp->r = 0.0;
1058 greg 1.1 dp->n = 0;
1059 greg 2.16 if (divsample(dp, &hemi, r) < 0) {
1060 greg 2.19 if (div != NULL)
1061     dp++;
1062 greg 2.16 continue;
1063     }
1064 greg 2.6 arad += dp->r;
1065 greg 2.19 divcnt++;
1066 greg 1.1 if (div != NULL)
1067     dp++;
1068 greg 2.6 else
1069 greg 1.1 addcolor(acol, dp->v);
1070     }
1071 greg 2.21 if (!divcnt) {
1072     if (div != NULL)
1073     free((void *)div);
1074 greg 2.19 return(0.0); /* no samples taken */
1075 greg 2.21 }
1076 greg 2.19 if (divcnt < hemi.nt*hemi.np) {
1077     pg = dg = NULL; /* incomplete sampling */
1078     hemi.ns = 0;
1079     } else if (arad > FTINY && divcnt/arad < minarad) {
1080 greg 2.15 hemi.ns = 0; /* close enough */
1081 greg 2.19 } else if (hemi.ns > 0) { /* else perform super-sampling? */
1082 greg 1.4 comperrs(div, &hemi); /* compute errors */
1083 greg 2.19 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
1084 greg 1.1 /* super-sample */
1085 greg 2.15 for (i = hemi.ns; i > 0; i--) {
1086 schorsch 2.11 dnew = *div;
1087 greg 2.16 if (divsample(&dnew, &hemi, r) < 0) {
1088     dp++;
1089     continue;
1090     }
1091     dp = div; /* reinsert */
1092 greg 2.19 j = divcnt < i ? divcnt : i;
1093 greg 1.1 while (--j > 0 && dnew.k < dp[1].k) {
1094 schorsch 2.11 *dp = *(dp+1);
1095 greg 1.1 dp++;
1096     }
1097 schorsch 2.11 *dp = dnew;
1098 greg 1.1 }
1099 greg 1.2 if (pg != NULL || dg != NULL) /* restore order */
1100 greg 2.19 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
1101 greg 1.1 }
1102     /* compute returned values */
1103 greg 1.3 if (div != NULL) {
1104 greg 2.19 arad = 0.0; /* note: divcnt may be < nt*np */
1105     for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
1106 greg 1.3 arad += dp->r;
1107     if (dp->n > 1) {
1108     b = 1.0/dp->n;
1109     scalecolor(dp->v, b);
1110     dp->r *= b;
1111     dp->n = 1;
1112     }
1113     addcolor(acol, dp->v);
1114     }
1115 greg 1.5 b = bright(acol);
1116 greg 1.6 if (b > FTINY) {
1117 greg 2.17 b = 1.0/b; /* compute & normalize gradient(s) */
1118 greg 1.6 if (pg != NULL) {
1119     posgradient(pg, div, &hemi);
1120     for (i = 0; i < 3; i++)
1121     pg[i] *= b;
1122     }
1123     if (dg != NULL) {
1124     dirgradient(dg, div, &hemi);
1125     for (i = 0; i < 3; i++)
1126     dg[i] *= b;
1127     }
1128 greg 1.5 }
1129 greg 2.9 free((void *)div);
1130 greg 1.3 }
1131 greg 2.23 copycolor(rcol, acol);
1132 greg 1.1 if (arad <= FTINY)
1133 greg 1.16 arad = maxarad;
1134 greg 2.3 else
1135 greg 2.19 arad = (divcnt+hemi.ns)/arad;
1136 greg 1.15 if (pg != NULL) { /* reduce radius if gradient large */
1137     d = DOT(pg,pg);
1138     if (d*arad*arad > 1.0)
1139     arad = 1.0/sqrt(d);
1140     }
1141 greg 1.16 if (arad < minarad) {
1142 greg 1.1 arad = minarad;
1143 greg 1.16 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
1144     d = 1.0/arad/sqrt(d);
1145     for (i = 0; i < 3; i++)
1146     pg[i] *= d;
1147     }
1148     }
1149 greg 2.3 if ((arad /= sqrt(wt)) > maxarad)
1150     arad = maxarad;
1151     return(arad);
1152 greg 1.1 }
1153    
1154    
1155 greg 2.9 void
1156 greg 2.14 comperrs( /* compute initial error estimates */
1157     AMBSAMP *da, /* assumes standard ordering */
1158 greg 2.23 AMBHEMI *hp
1159 greg 2.14 )
1160 greg 1.1 {
1161     double b, b2;
1162     int i, j;
1163 greg 2.23 AMBSAMP *dp;
1164 greg 1.1 /* sum differences from neighbors */
1165     dp = da;
1166     for (i = 0; i < hp->nt; i++)
1167     for (j = 0; j < hp->np; j++) {
1168 greg 1.6 #ifdef DEBUG
1169     if (dp->t != i || dp->p != j)
1170     error(CONSISTENCY,
1171     "division order in comperrs");
1172     #endif
1173 greg 1.1 b = bright(dp[0].v);
1174     if (i > 0) { /* from above */
1175     b2 = bright(dp[-hp->np].v) - b;
1176     b2 *= b2 * 0.25;
1177     dp[0].k += b2;
1178     dp[-hp->np].k += b2;
1179     }
1180     if (j > 0) { /* from behind */
1181     b2 = bright(dp[-1].v) - b;
1182     b2 *= b2 * 0.25;
1183     dp[0].k += b2;
1184     dp[-1].k += b2;
1185 greg 1.4 } else { /* around */
1186     b2 = bright(dp[hp->np-1].v) - b;
1187 greg 1.1 b2 *= b2 * 0.25;
1188     dp[0].k += b2;
1189 greg 1.4 dp[hp->np-1].k += b2;
1190 greg 1.1 }
1191     dp++;
1192     }
1193     /* divide by number of neighbors */
1194     dp = da;
1195     for (j = 0; j < hp->np; j++) /* top row */
1196     (dp++)->k *= 1.0/3.0;
1197     if (hp->nt < 2)
1198     return;
1199     for (i = 1; i < hp->nt-1; i++) /* central region */
1200     for (j = 0; j < hp->np; j++)
1201     (dp++)->k *= 0.25;
1202     for (j = 0; j < hp->np; j++) /* bottom row */
1203     (dp++)->k *= 1.0/3.0;
1204     }
1205    
1206    
1207 greg 2.9 void
1208 greg 2.14 posgradient( /* compute position gradient */
1209     FVECT gv,
1210     AMBSAMP *da, /* assumes standard ordering */
1211 greg 2.23 AMBHEMI *hp
1212 greg 2.14 )
1213 greg 1.1 {
1214 greg 2.23 int i, j;
1215 greg 2.2 double nextsine, lastsine, b, d;
1216 greg 1.2 double mag0, mag1;
1217     double phi, cosp, sinp, xd, yd;
1218 greg 2.23 AMBSAMP *dp;
1219 greg 1.2
1220     xd = yd = 0.0;
1221     for (j = 0; j < hp->np; j++) {
1222     dp = da + j;
1223     mag0 = mag1 = 0.0;
1224 greg 2.2 lastsine = 0.0;
1225 greg 1.2 for (i = 0; i < hp->nt; i++) {
1226     #ifdef DEBUG
1227     if (dp->t != i || dp->p != j)
1228     error(CONSISTENCY,
1229     "division order in posgradient");
1230     #endif
1231     b = bright(dp->v);
1232     if (i > 0) {
1233     d = dp[-hp->np].r;
1234     if (dp[0].r > d) d = dp[0].r;
1235 greg 2.2 /* sin(t)*cos(t)^2 */
1236     d *= lastsine * (1.0 - (double)i/hp->nt);
1237 greg 1.2 mag0 += d*(b - bright(dp[-hp->np].v));
1238     }
1239 greg 2.2 nextsine = sqrt((double)(i+1)/hp->nt);
1240 greg 1.2 if (j > 0) {
1241     d = dp[-1].r;
1242     if (dp[0].r > d) d = dp[0].r;
1243 greg 2.2 mag1 += d * (nextsine - lastsine) *
1244     (b - bright(dp[-1].v));
1245 greg 1.2 } else {
1246     d = dp[hp->np-1].r;
1247     if (dp[0].r > d) d = dp[0].r;
1248 greg 2.2 mag1 += d * (nextsine - lastsine) *
1249     (b - bright(dp[hp->np-1].v));
1250 greg 1.2 }
1251     dp += hp->np;
1252 greg 2.2 lastsine = nextsine;
1253 greg 1.2 }
1254 greg 2.2 mag0 *= 2.0*PI / hp->np;
1255 greg 1.2 phi = 2.0*PI * (double)j/hp->np;
1256 gwlarson 2.8 cosp = tcos(phi); sinp = tsin(phi);
1257 greg 1.2 xd += mag0*cosp - mag1*sinp;
1258     yd += mag0*sinp + mag1*cosp;
1259     }
1260     for (i = 0; i < 3; i++)
1261 greg 2.16 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
1262 greg 1.1 }
1263    
1264    
1265 greg 2.9 void
1266 greg 2.14 dirgradient( /* compute direction gradient */
1267     FVECT gv,
1268     AMBSAMP *da, /* assumes standard ordering */
1269 greg 2.23 AMBHEMI *hp
1270 greg 2.14 )
1271 greg 1.1 {
1272 greg 2.23 int i, j;
1273 greg 1.2 double mag;
1274     double phi, xd, yd;
1275 greg 2.23 AMBSAMP *dp;
1276 greg 1.2
1277     xd = yd = 0.0;
1278     for (j = 0; j < hp->np; j++) {
1279     dp = da + j;
1280     mag = 0.0;
1281     for (i = 0; i < hp->nt; i++) {
1282     #ifdef DEBUG
1283     if (dp->t != i || dp->p != j)
1284     error(CONSISTENCY,
1285     "division order in dirgradient");
1286     #endif
1287 greg 2.2 /* tan(t) */
1288     mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
1289 greg 1.2 dp += hp->np;
1290     }
1291     phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1292 gwlarson 2.8 xd += mag * tcos(phi);
1293     yd += mag * tsin(phi);
1294 greg 1.2 }
1295     for (i = 0; i < 3; i++)
1296 greg 2.16 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1297 greg 1.1 }
1298 greg 2.25
1299     #endif /* ! NEWAMB */