ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.48
Committed: Sun May 4 01:02:13 2014 UTC (10 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.47: +38 -25 lines
Log Message:
Changed (unused) algorithm to threshold at 5th percentile instead of average

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.48 static const char RCSid[] = "$Id: ambcomp.c,v 2.47 2014/05/03 05:46:19 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * Routines to compute "ambient" values using Monte Carlo
6 greg 2.9 *
7 greg 2.27 * Hessian calculations based on "Practical Hessian-Based Error Control
8     * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9     * from ACM SIGGRAPH Asia 2012 conference proceedings.
10     *
11 greg 2.46 * Added book-keeping optimization to avoid calculations that would
12     * cancel due to traversal both directions on edges that are adjacent
13     * to same-valued triangles. This cuts about half of Hessian math.
14     *
15 greg 2.9 * Declarations of external symbols in ambient.h
16     */
17    
18 greg 2.10 #include "copyright.h"
19 greg 1.1
20     #include "ray.h"
21 greg 2.25 #include "ambient.h"
22     #include "random.h"
23 greg 1.1
24 greg 2.25 #ifdef NEWAMB
25 greg 1.1
26 greg 2.48 /* #define AHEM_MARG 1.2 /* hem margin */
27 greg 2.47
28 greg 2.26 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
29    
30 greg 2.46 /* vertex direction bit positions */
31     #define VDB_xy 0
32     #define VDB_y 01
33     #define VDB_x 02
34     #define VDB_Xy 03
35     #define VDB_xY 04
36     #define VDB_X 05
37     #define VDB_Y 06
38     #define VDB_XY 07
39     /* get opposite vertex direction bit */
40     #define VDB_OPP(f) (~(f) & 07)
41     /* adjacent triangle vertex flags */
42     static const int adjacent_trifl[8] = {
43     0, /* forbidden diagonal */
44     1<<VDB_x|1<<VDB_y|1<<VDB_Xy,
45     1<<VDB_y|1<<VDB_x|1<<VDB_xY,
46     1<<VDB_y|1<<VDB_Xy|1<<VDB_X,
47     1<<VDB_x|1<<VDB_xY|1<<VDB_Y,
48     1<<VDB_Xy|1<<VDB_X|1<<VDB_Y,
49     1<<VDB_xY|1<<VDB_Y|1<<VDB_X,
50     0, /* forbidden diagonal */
51     };
52    
53 greg 2.26 typedef struct {
54 greg 2.44 COLOR v; /* hemisphere sample value */
55 greg 2.47 float d; /* reciprocal distance (1/rt) */
56 greg 2.44 FVECT p; /* intersection point */
57     } AMBSAMP; /* sample value */
58    
59     typedef struct {
60 greg 2.26 RAY *rp; /* originating ray sample */
61 greg 2.27 FVECT ux, uy; /* tangent axis unit vectors */
62 greg 2.26 int ns; /* number of samples per axis */
63     COLOR acoef; /* division contribution coefficient */
64 greg 2.44 AMBSAMP sa[1]; /* sample array (extends struct) */
65 greg 2.26 } AMBHEMI; /* ambient sample hemisphere */
66    
67 greg 2.46 #define ambndx(h,i,j) ((i)*(h)->ns + (j))
68     #define ambsam(h,i,j) (h)->sa[ambndx(h,i,j)]
69 greg 2.26
70 greg 2.27 typedef struct {
71 greg 2.35 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
72     double I1, I2;
73 greg 2.46 int valid;
74 greg 2.27 } FFTRI; /* vectors and coefficients for Hessian calculation */
75    
76 greg 2.26
77 greg 2.46 /* Get index for adjacent vertex */
78     static int
79     adjacent_verti(AMBHEMI *hp, int i, int j, int dbit)
80     {
81     int i0 = i*hp->ns + j;
82    
83     switch (dbit) {
84     case VDB_y: return(i0 - hp->ns);
85     case VDB_x: return(i0 - 1);
86     case VDB_Xy: return(i0 - hp->ns + 1);
87     case VDB_xY: return(i0 + hp->ns - 1);
88     case VDB_X: return(i0 + 1);
89     case VDB_Y: return(i0 + hp->ns);
90     /* the following should never occur */
91     case VDB_xy: return(i0 - hp->ns - 1);
92     case VDB_XY: return(i0 + hp->ns + 1);
93     }
94     return(-1);
95     }
96    
97    
98     /* Get vertex direction bit for the opposite edge to complete triangle */
99     static int
100     vdb_edge(int db1, int db2)
101     {
102     switch (db1) {
103     case VDB_x: return(db2==VDB_y ? VDB_Xy : VDB_Y);
104     case VDB_y: return(db2==VDB_x ? VDB_xY : VDB_X);
105     case VDB_X: return(db2==VDB_Xy ? VDB_y : VDB_xY);
106     case VDB_Y: return(db2==VDB_xY ? VDB_x : VDB_Xy);
107     case VDB_xY: return(db2==VDB_x ? VDB_y : VDB_X);
108     case VDB_Xy: return(db2==VDB_y ? VDB_x : VDB_Y);
109     }
110     error(INTERNAL, "forbidden diagonal in vdb_edge()");
111     return(-1);
112     }
113    
114    
115 greg 2.26 static AMBHEMI *
116     inithemi( /* initialize sampling hemisphere */
117     COLOR ac,
118     RAY *r,
119     double wt
120     )
121     {
122     AMBHEMI *hp;
123     double d;
124     int n, i;
125     /* set number of divisions */
126     if (ambacc <= FTINY &&
127     wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
128     wt = d; /* avoid ray termination */
129     n = sqrt(ambdiv * wt) + 0.5;
130 greg 2.27 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
131 greg 2.26 if (n < i)
132     n = i;
133     /* allocate sampling array */
134 greg 2.41 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
135 greg 2.26 if (hp == NULL)
136     return(NULL);
137     hp->rp = r;
138     hp->ns = n;
139     /* assign coefficient */
140     copycolor(hp->acoef, ac);
141     d = 1.0/(n*n);
142     scalecolor(hp->acoef, d);
143 greg 2.28 /* make tangent plane axes */
144 greg 2.38 hp->uy[0] = 0.5 - frandom();
145     hp->uy[1] = 0.5 - frandom();
146     hp->uy[2] = 0.5 - frandom();
147 greg 2.36 for (i = 3; i--; )
148 greg 2.37 if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6))
149     break;
150     if (i < 0)
151     error(CONSISTENCY, "bad ray direction in inithemi");
152     hp->uy[i] = 1.0;
153 greg 2.27 VCROSS(hp->ux, hp->uy, r->ron);
154 greg 2.26 normalize(hp->ux);
155 greg 2.27 VCROSS(hp->uy, r->ron, hp->ux);
156 greg 2.26 /* we're ready to sample */
157     return(hp);
158     }
159    
160    
161 greg 2.43 /* Sample ambient division and apply weighting coefficient */
162 greg 2.41 static int
163 greg 2.43 getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n)
164 greg 2.26 {
165 greg 2.41 int hlist[3], ii;
166     double spt[2], zd;
167 greg 2.26 /* ambient coefficient for weight */
168     if (ambacc > FTINY)
169 greg 2.41 setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL);
170 greg 2.26 else
171 greg 2.41 copycolor(arp->rcoef, hp->acoef);
172     if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0)
173     return(0);
174 greg 2.26 if (ambacc > FTINY) {
175 greg 2.41 multcolor(arp->rcoef, hp->acoef);
176     scalecolor(arp->rcoef, 1./AVGREFL);
177     }
178     hlist[0] = hp->rp->rno;
179 greg 2.46 hlist[1] = j;
180     hlist[2] = i;
181 greg 2.41 multisamp(spt, 2, urand(ilhash(hlist,3)+n));
182     if (!n) { /* avoid border samples for n==0 */
183 greg 2.46 if ((spt[0] < 0.1) | (spt[0] >= 0.9))
184 greg 2.41 spt[0] = 0.1 + 0.8*frandom();
185 greg 2.46 if ((spt[1] < 0.1) | (spt[1] >= 0.9))
186 greg 2.41 spt[1] = 0.1 + 0.8*frandom();
187 greg 2.26 }
188 greg 2.46 SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
189 greg 2.26 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
190     for (ii = 3; ii--; )
191 greg 2.41 arp->rdir[ii] = spt[0]*hp->ux[ii] +
192 greg 2.26 spt[1]*hp->uy[ii] +
193     zd*hp->rp->ron[ii];
194 greg 2.41 checknorm(arp->rdir);
195 greg 2.46 dimlist[ndims++] = ambndx(hp,i,j) + 90171;
196 greg 2.43 rayvalue(arp); /* evaluate ray */
197     ndims--; /* apply coefficient */
198     multcolor(arp->rcol, arp->rcoef);
199 greg 2.41 return(1);
200     }
201    
202    
203     static AMBSAMP *
204 greg 2.43 ambsample( /* initial ambient division sample */
205 greg 2.41 AMBHEMI *hp,
206     int i,
207     int j
208     )
209     {
210 greg 2.43 AMBSAMP *ap = &ambsam(hp,i,j);
211 greg 2.41 RAY ar;
212     /* generate hemispherical sample */
213 greg 2.47 if (!getambsamp(&ar, hp, i, j, 0) || ar.rt <= FTINY) {
214     memset(ap, 0, sizeof(AMBSAMP));
215     return(NULL);
216     }
217     ap->d = 1.0/ar.rt; /* limit vertex distance */
218 greg 2.34 if (ar.rt > 10.0*thescene.cusize)
219     ar.rt = 10.0*thescene.cusize;
220 greg 2.31 VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
221 greg 2.26 copycolor(ap->v, ar.rcol);
222 greg 2.28 return(ap);
223 greg 2.26 }
224    
225    
226 greg 2.41 /* Estimate errors based on ambient division differences */
227     static float *
228     getambdiffs(AMBHEMI *hp)
229     {
230 greg 2.45 float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
231 greg 2.41 float *ep;
232 greg 2.42 AMBSAMP *ap;
233 greg 2.41 double b, d2;
234     int i, j;
235    
236     if (earr == NULL) /* out of memory? */
237     return(NULL);
238     /* compute squared neighbor diffs */
239 greg 2.42 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
240     for (j = 0; j < hp->ns; j++, ap++, ep++) {
241     b = bright(ap[0].v);
242 greg 2.41 if (i) { /* from above */
243 greg 2.42 d2 = b - bright(ap[-hp->ns].v);
244 greg 2.41 d2 *= d2;
245     ep[0] += d2;
246     ep[-hp->ns] += d2;
247     }
248     if (j) { /* from behind */
249 greg 2.42 d2 = b - bright(ap[-1].v);
250 greg 2.41 d2 *= d2;
251     ep[0] += d2;
252     ep[-1] += d2;
253     }
254     }
255     /* correct for number of neighbors */
256     earr[0] *= 2.f;
257     earr[hp->ns-1] *= 2.f;
258     earr[(hp->ns-1)*hp->ns] *= 2.f;
259     earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f;
260     for (i = 1; i < hp->ns-1; i++) {
261     earr[i*hp->ns] *= 4./3.;
262     earr[i*hp->ns + hp->ns-1] *= 4./3.;
263     }
264     for (j = 1; j < hp->ns-1; j++) {
265     earr[j] *= 4./3.;
266     earr[(hp->ns-1)*hp->ns + j] *= 4./3.;
267     }
268     return(earr);
269     }
270    
271    
272 greg 2.43 /* Perform super-sampling on hemisphere (introduces bias) */
273 greg 2.41 static void
274     ambsupersamp(double acol[3], AMBHEMI *hp, int cnt)
275     {
276     float *earr = getambdiffs(hp);
277     double e2sum = 0;
278     AMBSAMP *ap;
279     RAY ar;
280     COLOR asum;
281     float *ep;
282     int i, j, n;
283    
284     if (earr == NULL) /* just skip calc. if no memory */
285     return;
286     /* add up estimated variances */
287     for (ep = earr + hp->ns*hp->ns; ep-- > earr; )
288     e2sum += *ep;
289     ep = earr; /* perform super-sampling */
290     for (ap = hp->sa, i = 0; i < hp->ns; i++)
291     for (j = 0; j < hp->ns; j++, ap++) {
292     int nss = *ep/e2sum*cnt + frandom();
293     setcolor(asum, 0., 0., 0.);
294     for (n = 1; n <= nss; n++) {
295 greg 2.43 if (!getambsamp(&ar, hp, i, j, n)) {
296 greg 2.41 nss = n-1;
297     break;
298     }
299     addcolor(asum, ar.rcol);
300     }
301     if (nss) { /* update returned ambient value */
302     const double ssf = 1./(nss + 1);
303     for (n = 3; n--; )
304     acol[n] += ssf*colval(asum,n) +
305     (ssf - 1.)*colval(ap->v,n);
306     }
307     e2sum -= *ep++; /* update remainders */
308     cnt -= nss;
309     }
310     free(earr);
311     }
312    
313    
314 greg 2.46 /* Compute vertex flags, indicating farthest in each direction */
315     static uby8 *
316     vertex_flags(AMBHEMI *hp)
317     {
318     uby8 *vflags = (uby8 *)calloc(hp->ns*hp->ns, sizeof(uby8));
319     uby8 *vf;
320 greg 2.47 AMBSAMP *ap;
321 greg 2.46 int i, j;
322    
323 greg 2.47 if (vflags == NULL)
324 greg 2.46 error(SYSTEM, "out of memory in vertex_flags()");
325 greg 2.47 vf = vflags;
326     ap = hp->sa; /* compute farthest along first row */
327     for (j = 0; j < hp->ns-1; j++, vf++, ap++)
328     if (ap[0].d <= ap[1].d)
329     vf[0] |= 1<<VDB_X;
330 greg 2.46 else
331 greg 2.47 vf[1] |= 1<<VDB_x;
332     ++vf; ++ap;
333 greg 2.46 /* flag subsequent rows */
334     for (i = 1; i < hp->ns; i++) {
335 greg 2.47 for (j = 0; j < hp->ns-1; j++, vf++, ap++) {
336     if (ap[0].d <= ap[-hp->ns].d) /* row before */
337 greg 2.46 vf[0] |= 1<<VDB_y;
338     else
339     vf[-hp->ns] |= 1<<VDB_Y;
340 greg 2.47 if (ap[0].d <= ap[1-hp->ns].d) /* diagonal we care about */
341 greg 2.46 vf[0] |= 1<<VDB_Xy;
342     else
343     vf[1-hp->ns] |= 1<<VDB_xY;
344 greg 2.47 if (ap[0].d <= ap[1].d) /* column after */
345 greg 2.46 vf[0] |= 1<<VDB_X;
346     else
347     vf[1] |= 1<<VDB_x;
348     }
349 greg 2.47 if (ap[0].d <= ap[-hp->ns].d) /* final column edge */
350 greg 2.46 vf[0] |= 1<<VDB_y;
351     else
352     vf[-hp->ns] |= 1<<VDB_Y;
353 greg 2.47 ++vf; ++ap;
354 greg 2.46 }
355     return(vflags);
356     }
357    
358    
359     /* Return brightness of farthest ambient sample */
360     static double
361     back_ambval(AMBHEMI *hp, int i, int j, int dbit1, int dbit2, const uby8 *vflags)
362     {
363     const int v0 = ambndx(hp,i,j);
364     const int tflags = (1<<dbit1 | 1<<dbit2);
365     int v1, v2;
366    
367     if ((vflags[v0] & tflags) == tflags) /* is v0 the farthest? */
368     return(colval(hp->sa[v0].v,CIEY));
369     v1 = adjacent_verti(hp, i, j, dbit1);
370     if (vflags[v0] & 1<<dbit2) /* v1 farthest if v0>v2 */
371     return(colval(hp->sa[v1].v,CIEY));
372     v2 = adjacent_verti(hp, i, j, dbit2);
373     if (vflags[v0] & 1<<dbit1) /* v2 farthest if v0>v1 */
374     return(colval(hp->sa[v2].v,CIEY));
375     /* else check if v1>v2 */
376     if (vflags[v1] & 1<<vdb_edge(dbit1,dbit2))
377     return(colval(hp->sa[v1].v,CIEY));
378     return(colval(hp->sa[v2].v,CIEY));
379     }
380    
381    
382 greg 2.27 /* Compute vectors and coefficients for Hessian/gradient calcs */
383     static void
384 greg 2.46 comp_fftri(FFTRI *ftp, AMBHEMI *hp, int i, int j, int dbit, const uby8 *vflags)
385 greg 2.27 {
386 greg 2.46 const int i0 = ambndx(hp,i,j);
387     double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
388     int i1, ii;
389    
390     ftp->valid = 0; /* check if we can skip this edge */
391     ii = adjacent_trifl[dbit];
392     if ((vflags[i0] & ii) == ii) /* cancels if vertex used as value */
393     return;
394     i1 = adjacent_verti(hp, i, j, dbit);
395     ii = adjacent_trifl[VDB_OPP(dbit)];
396     if ((vflags[i1] & ii) == ii) /* on either end (for both triangles) */
397     return;
398     /* else go ahead with calculation */
399     VSUB(ftp->r_i, hp->sa[i0].p, hp->rp->rop);
400     VSUB(ftp->r_i1, hp->sa[i1].p, hp->rp->rop);
401     VSUB(ftp->e_i, hp->sa[i1].p, hp->sa[i0].p);
402 greg 2.35 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
403     rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
404 greg 2.27 dot_e = DOT(ftp->e_i,ftp->e_i);
405     dot_er = DOT(ftp->e_i, ftp->r_i);
406 greg 2.32 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
407     rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
408     ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
409 greg 2.35 sqrt( rdot_cp );
410 greg 2.32 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
411 greg 2.35 dot_e*ftp->I1 )*0.5*rdot_cp;
412 greg 2.32 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
413 greg 2.46 for (ii = 3; ii--; )
414     ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
415     ftp->valid++;
416 greg 2.27 }
417    
418    
419 greg 2.28 /* Compose 3x3 matrix from two vectors */
420 greg 2.27 static void
421     compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
422     {
423     mat[0][0] = 2.0*va[0]*vb[0];
424     mat[1][1] = 2.0*va[1]*vb[1];
425     mat[2][2] = 2.0*va[2]*vb[2];
426     mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
427     mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
428     mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
429     }
430    
431    
432     /* Compute partial 3x3 Hessian matrix for edge */
433     static void
434     comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
435     {
436 greg 2.35 FVECT ncp;
437 greg 2.27 FVECT m1[3], m2[3], m3[3], m4[3];
438     double d1, d2, d3, d4;
439     double I3, J3, K3;
440     int i, j;
441 greg 2.46
442     if (!ftp->valid) { /* preemptive test */
443     memset(hess, 0, sizeof(FVECT)*3);
444     return;
445     }
446 greg 2.27 /* compute intermediate coefficients */
447     d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
448     d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
449     d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
450     d4 = DOT(ftp->e_i, ftp->r_i);
451 greg 2.35 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
452     / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
453 greg 2.27 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
454     K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
455     /* intermediate matrices */
456 greg 2.35 VCROSS(ncp, nrm, ftp->e_i);
457     compose_matrix(m1, ncp, ftp->rI2_eJ2);
458 greg 2.27 compose_matrix(m2, ftp->r_i, ftp->r_i);
459     compose_matrix(m3, ftp->e_i, ftp->e_i);
460     compose_matrix(m4, ftp->r_i, ftp->e_i);
461 greg 2.35 d1 = DOT(nrm, ftp->rcp);
462 greg 2.27 d2 = -d1*ftp->I2;
463     d1 *= 2.0;
464     for (i = 3; i--; ) /* final matrix sum */
465     for (j = 3; j--; ) {
466     hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
467     2.0*J3*m4[i][j] );
468     hess[i][j] += d2*(i==j);
469 greg 2.46 hess[i][j] *= -1.0/PI;
470 greg 2.27 }
471     }
472    
473    
474     /* Reverse hessian calculation result for edge in other direction */
475     static void
476     rev_hessian(FVECT hess[3])
477     {
478     int i;
479    
480     for (i = 3; i--; ) {
481     hess[i][0] = -hess[i][0];
482     hess[i][1] = -hess[i][1];
483     hess[i][2] = -hess[i][2];
484     }
485     }
486    
487    
488     /* Add to radiometric Hessian from the given triangle */
489     static void
490     add2hessian(FVECT hess[3], FVECT ehess1[3],
491 greg 2.46 FVECT ehess2[3], FVECT ehess3[3], double v)
492 greg 2.27 {
493     int i, j;
494    
495     for (i = 3; i--; )
496     for (j = 3; j--; )
497     hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
498     }
499    
500    
501     /* Compute partial displacement form factor gradient for edge */
502     static void
503     comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
504     {
505 greg 2.35 FVECT ncp;
506 greg 2.27 double f1;
507     int i;
508    
509 greg 2.46 if (!ftp->valid) { /* preemptive test */
510     memset(grad, 0, sizeof(FVECT));
511     return;
512     }
513 greg 2.35 f1 = 2.0*DOT(nrm, ftp->rcp);
514     VCROSS(ncp, nrm, ftp->e_i);
515 greg 2.27 for (i = 3; i--; )
516 greg 2.46 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
517 greg 2.27 }
518    
519    
520     /* Reverse gradient calculation result for edge in other direction */
521     static void
522     rev_gradient(FVECT grad)
523     {
524     grad[0] = -grad[0];
525     grad[1] = -grad[1];
526     grad[2] = -grad[2];
527     }
528    
529    
530     /* Add to displacement gradient from the given triangle */
531     static void
532 greg 2.46 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
533 greg 2.27 {
534     int i;
535    
536     for (i = 3; i--; )
537     grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
538     }
539    
540    
541     /* Compute anisotropic radii and eigenvector directions */
542     static int
543     eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
544     {
545     double hess2[2][2];
546     FVECT a, b;
547     double evalue[2], slope1, xmag1;
548     int i;
549     /* project Hessian to sample plane */
550     for (i = 3; i--; ) {
551     a[i] = DOT(hessian[i], uv[0]);
552     b[i] = DOT(hessian[i], uv[1]);
553     }
554     hess2[0][0] = DOT(uv[0], a);
555     hess2[0][1] = DOT(uv[0], b);
556     hess2[1][0] = DOT(uv[1], a);
557     hess2[1][1] = DOT(uv[1], b);
558 greg 2.38 /* compute eigenvalue(s) */
559     i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
560     hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
561     if (i == 1) /* double-root (circle) */
562     evalue[1] = evalue[0];
563     if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
564 greg 2.35 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) )
565 greg 2.27 error(INTERNAL, "bad eigenvalue calculation");
566    
567     if (evalue[0] > evalue[1]) {
568 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[0]));
569     ra[1] = sqrt(sqrt(4.0/evalue[1]));
570 greg 2.27 slope1 = evalue[1];
571     } else {
572 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[1]));
573     ra[1] = sqrt(sqrt(4.0/evalue[0]));
574 greg 2.27 slope1 = evalue[0];
575     }
576     /* compute unit eigenvectors */
577     if (fabs(hess2[0][1]) <= FTINY)
578     return; /* uv OK as is */
579     slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
580     xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
581     for (i = 3; i--; ) {
582     b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
583     a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
584     }
585     VCOPY(uv[0], a);
586     VCOPY(uv[1], b);
587     }
588    
589    
590 greg 2.26 static void
591     ambHessian( /* anisotropic radii & pos. gradient */
592     AMBHEMI *hp,
593     FVECT uv[2], /* returned */
594 greg 2.28 float ra[2], /* returned (optional) */
595     float pg[2] /* returned (optional) */
596 greg 2.26 )
597     {
598 greg 2.27 static char memerrmsg[] = "out of memory in ambHessian()";
599     FVECT (*hessrow)[3] = NULL;
600     FVECT *gradrow = NULL;
601 greg 2.46 uby8 *vflags;
602 greg 2.27 FVECT hessian[3];
603     FVECT gradient;
604     FFTRI fftr;
605     int i, j;
606     /* be sure to assign unit vectors */
607     VCOPY(uv[0], hp->ux);
608     VCOPY(uv[1], hp->uy);
609     /* clock-wise vertex traversal from sample POV */
610     if (ra != NULL) { /* initialize Hessian row buffer */
611 greg 2.28 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
612 greg 2.27 if (hessrow == NULL)
613     error(SYSTEM, memerrmsg);
614     memset(hessian, 0, sizeof(hessian));
615     } else if (pg == NULL) /* bogus call? */
616     return;
617     if (pg != NULL) { /* initialize form factor row buffer */
618 greg 2.28 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
619 greg 2.27 if (gradrow == NULL)
620     error(SYSTEM, memerrmsg);
621     memset(gradient, 0, sizeof(gradient));
622     }
623 greg 2.46 /* get vertex position flags */
624     vflags = vertex_flags(hp);
625 greg 2.27 /* compute first row of edges */
626     for (j = 0; j < hp->ns-1; j++) {
627 greg 2.46 comp_fftri(&fftr, hp, 0, j, VDB_X, vflags);
628 greg 2.27 if (hessrow != NULL)
629     comp_hessian(hessrow[j], &fftr, hp->rp->ron);
630     if (gradrow != NULL)
631     comp_gradient(gradrow[j], &fftr, hp->rp->ron);
632     }
633     /* sum each row of triangles */
634     for (i = 0; i < hp->ns-1; i++) {
635     FVECT hesscol[3]; /* compute first vertical edge */
636     FVECT gradcol;
637 greg 2.46 comp_fftri(&fftr, hp, i, 0, VDB_Y, vflags);
638 greg 2.27 if (hessrow != NULL)
639     comp_hessian(hesscol, &fftr, hp->rp->ron);
640     if (gradrow != NULL)
641     comp_gradient(gradcol, &fftr, hp->rp->ron);
642     for (j = 0; j < hp->ns-1; j++) {
643     FVECT hessdia[3]; /* compute triangle contributions */
644     FVECT graddia;
645 greg 2.46 double backg;
646     backg = back_ambval(hp, i, j, VDB_X, VDB_Y, vflags);
647 greg 2.27 /* diagonal (inner) edge */
648 greg 2.46 comp_fftri(&fftr, hp, i, j+1, VDB_xY, vflags);
649 greg 2.27 if (hessrow != NULL) {
650     comp_hessian(hessdia, &fftr, hp->rp->ron);
651     rev_hessian(hesscol);
652     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
653     }
654 greg 2.39 if (gradrow != NULL) {
655 greg 2.27 comp_gradient(graddia, &fftr, hp->rp->ron);
656     rev_gradient(gradcol);
657     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
658     }
659     /* initialize edge in next row */
660 greg 2.46 comp_fftri(&fftr, hp, i+1, j+1, VDB_x, vflags);
661 greg 2.27 if (hessrow != NULL)
662     comp_hessian(hessrow[j], &fftr, hp->rp->ron);
663     if (gradrow != NULL)
664     comp_gradient(gradrow[j], &fftr, hp->rp->ron);
665     /* new column edge & paired triangle */
666 greg 2.46 backg = back_ambval(hp, i+1, j+1, VDB_x, VDB_y, vflags);
667     comp_fftri(&fftr, hp, i, j+1, VDB_Y, vflags);
668 greg 2.27 if (hessrow != NULL) {
669     comp_hessian(hesscol, &fftr, hp->rp->ron);
670     rev_hessian(hessdia);
671     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
672     if (i < hp->ns-2)
673     rev_hessian(hessrow[j]);
674     }
675     if (gradrow != NULL) {
676     comp_gradient(gradcol, &fftr, hp->rp->ron);
677     rev_gradient(graddia);
678     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
679     if (i < hp->ns-2)
680     rev_gradient(gradrow[j]);
681     }
682     }
683     }
684     /* release row buffers */
685     if (hessrow != NULL) free(hessrow);
686     if (gradrow != NULL) free(gradrow);
687 greg 2.46 free(vflags);
688 greg 2.27
689     if (ra != NULL) /* extract eigenvectors & radii */
690     eigenvectors(uv, ra, hessian);
691 greg 2.32 if (pg != NULL) { /* tangential position gradient */
692     pg[0] = DOT(gradient, uv[0]);
693     pg[1] = DOT(gradient, uv[1]);
694 greg 2.27 }
695     }
696    
697    
698     /* Compute direction gradient from a hemispherical sampling */
699     static void
700     ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
701     {
702 greg 2.41 AMBSAMP *ap;
703     double dgsum[2];
704     int n;
705     FVECT vd;
706     double gfact;
707 greg 2.27
708 greg 2.29 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
709 greg 2.27 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
710     /* use vector for azimuth + 90deg */
711     VSUB(vd, ap->p, hp->rp->rop);
712 greg 2.29 /* brightness over cosine factor */
713     gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
714 greg 2.40 /* sine = proj_radius/vd_length */
715     dgsum[0] -= DOT(uv[1], vd) * gfact;
716     dgsum[1] += DOT(uv[0], vd) * gfact;
717 greg 2.26 }
718 greg 2.29 dg[0] = dgsum[0] / (hp->ns*hp->ns);
719     dg[1] = dgsum[1] / (hp->ns*hp->ns);
720 greg 2.26 }
721    
722 greg 2.27
723 greg 2.47 /* Make sure radii don't extend beyond what we see in our periphery */
724 greg 2.48 static int
725 greg 2.47 hem_radii(AMBHEMI *hp, FVECT uv[2], float ra[2])
726     {
727 greg 2.48 #ifdef AHEM_MARG
728     #define MAXDACCUM 47
729     const double hemarg = AHEM_MARG*ambacc; /* hem margin */
730     float radivisor2[MAXDACCUM+1];
731     int i, j, k = hp->ns/10 + 1; /* around 5%ile */
732     const int n2accum = (k < MAXDACCUM) ? k : MAXDACCUM ;
733     int na = 0;
734     double d;
735 greg 2.47 /* circle around perimeter */
736     for (i = 0; i < hp->ns; i++)
737     for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
738     AMBSAMP *ap = &ambsam(hp,i,j);
739 greg 2.48 double radiv2 = 0;
740 greg 2.47 FVECT vec;
741 greg 2.48 if (ap->d <= FTINY)
742     continue;
743 greg 2.47 VSUB(vec, ap->p, hp->rp->rop);
744 greg 2.48 for (k = 2; k--; ) {
745     d = ap->d * DOT(vec, uv[k]) * ra[k];
746     radiv2 += d*d;
747     }
748     radiv2 *= hemarg*hemarg * ap->d * ap->d;
749     if (radiv2 <= 1.0)
750     continue;
751     /* insert in percentile list */
752     for (k = na; k && radiv2 > radivisor2[k-1]; k--)
753     radivisor2[k] = radivisor2[k-1];
754     radivisor2[k] = radiv2;
755     na += (na < n2accum);
756 greg 2.47 }
757 greg 2.48 if (na < n2accum) /* current radii are OK? */
758     return(0);
759     /* else apply divisor */
760     d = 1.0/sqrt(radivisor2[na-1]);
761     ra[0] *= d;
762     ra[1] *= d;
763     return(1);
764     #undef MAXDACCUM
765     #else
766     return(0);
767 greg 2.47 #endif
768     }
769    
770    
771 greg 2.26 int
772     doambient( /* compute ambient component */
773     COLOR rcol, /* input/output color */
774     RAY *r,
775     double wt,
776 greg 2.27 FVECT uv[2], /* returned (optional) */
777     float ra[2], /* returned (optional) */
778     float pg[2], /* returned (optional) */
779     float dg[2] /* returned (optional) */
780 greg 2.26 )
781     {
782 greg 2.41 AMBHEMI *hp = inithemi(rcol, r, wt);
783 greg 2.45 int cnt;
784 greg 2.41 FVECT my_uv[2];
785     double d, K, acol[3];
786     AMBSAMP *ap;
787     int i, j;
788 greg 2.28 /* check/initialize */
789     if (hp == NULL)
790 greg 2.26 return(0);
791     if (uv != NULL)
792     memset(uv, 0, sizeof(FVECT)*2);
793     if (ra != NULL)
794     ra[0] = ra[1] = 0.0;
795     if (pg != NULL)
796     pg[0] = pg[1] = 0.0;
797     if (dg != NULL)
798     dg[0] = dg[1] = 0.0;
799     /* sample the hemisphere */
800     acol[0] = acol[1] = acol[2] = 0.0;
801 greg 2.45 cnt = 0;
802 greg 2.27 for (i = hp->ns; i--; )
803     for (j = hp->ns; j--; )
804 greg 2.28 if ((ap = ambsample(hp, i, j)) != NULL) {
805 greg 2.26 addcolor(acol, ap->v);
806     ++cnt;
807     }
808     if (!cnt) {
809     setcolor(rcol, 0.0, 0.0, 0.0);
810     free(hp);
811     return(0); /* no valid samples */
812     }
813 greg 2.41 if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */
814     copycolor(rcol, acol);
815     free(hp);
816     return(-1); /* return value w/o Hessian */
817     }
818     cnt = ambssamp*wt + 0.5; /* perform super-sampling? */
819     if (cnt > 0)
820     ambsupersamp(acol, hp, cnt);
821 greg 2.29 copycolor(rcol, acol); /* final indirect irradiance/PI */
822 greg 2.41 if ((ra == NULL) & (pg == NULL) & (dg == NULL)) {
823 greg 2.26 free(hp);
824     return(-1); /* no radius or gradient calc. */
825     }
826 greg 2.45 if ((d = bright(acol)) > FTINY) { /* normalize Y values */
827     d = 0.99*(hp->ns*hp->ns)/d;
828 greg 2.38 K = 0.01;
829 greg 2.45 } else { /* or fall back on geometric Hessian */
830 greg 2.38 K = 1.0;
831     pg = NULL;
832     dg = NULL;
833     }
834 greg 2.29 ap = hp->sa; /* relative Y channel from here on... */
835 greg 2.26 for (i = hp->ns*hp->ns; i--; ap++)
836 greg 2.38 colval(ap->v,CIEY) = bright(ap->v)*d + K;
837 greg 2.26
838     if (uv == NULL) /* make sure we have axis pointers */
839     uv = my_uv;
840     /* compute radii & pos. gradient */
841     ambHessian(hp, uv, ra, pg);
842 greg 2.29
843 greg 2.26 if (dg != NULL) /* compute direction gradient */
844     ambdirgrad(hp, uv, dg);
845 greg 2.29
846 greg 2.28 if (ra != NULL) { /* scale/clamp radii */
847 greg 2.35 if (pg != NULL) {
848     if (ra[0]*(d = fabs(pg[0])) > 1.0)
849     ra[0] = 1.0/d;
850     if (ra[1]*(d = fabs(pg[1])) > 1.0)
851     ra[1] = 1.0/d;
852 greg 2.48 if (ra[0] > ra[1])
853     ra[0] = ra[1];
854 greg 2.35 }
855 greg 2.47 hem_radii(hp, uv, ra);
856 greg 2.29 if (ra[0] < minarad) {
857     ra[0] = minarad;
858     if (ra[1] < minarad)
859     ra[1] = minarad;
860     }
861     ra[0] *= d = 1.0/sqrt(sqrt(wt));
862 greg 2.26 if ((ra[1] *= d) > 2.0*ra[0])
863     ra[1] = 2.0*ra[0];
864 greg 2.28 if (ra[1] > maxarad) {
865     ra[1] = maxarad;
866     if (ra[0] > maxarad)
867     ra[0] = maxarad;
868     }
869 greg 2.35 if (pg != NULL) { /* cap gradient if necessary */
870     d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
871     if (d > 1.0) {
872     d = 1.0/sqrt(d);
873     pg[0] *= d;
874     pg[1] *= d;
875     }
876     }
877 greg 2.26 }
878     free(hp); /* clean up and return */
879     return(1);
880     }
881    
882    
883 greg 2.25 #else /* ! NEWAMB */
884 greg 1.1
885    
886 greg 2.15 void
887 greg 2.14 inithemi( /* initialize sampling hemisphere */
888 greg 2.23 AMBHEMI *hp,
889 greg 2.16 COLOR ac,
890 greg 2.14 RAY *r,
891     double wt
892     )
893 greg 1.1 {
894 greg 2.16 double d;
895 greg 2.23 int i;
896 greg 2.14 /* set number of divisions */
897 greg 2.16 if (ambacc <= FTINY &&
898 greg 2.20 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
899 greg 2.16 wt = d; /* avoid ray termination */
900     hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
901 greg 2.14 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
902     if (hp->nt < i)
903     hp->nt = i;
904     hp->np = PI * hp->nt + 0.5;
905     /* set number of super-samples */
906 greg 2.15 hp->ns = ambssamp * wt + 0.5;
907 greg 2.16 /* assign coefficient */
908 greg 2.14 copycolor(hp->acoef, ac);
909 greg 2.16 d = 1.0/(hp->nt*hp->np);
910     scalecolor(hp->acoef, d);
911 greg 2.14 /* make axes */
912     VCOPY(hp->uz, r->ron);
913     hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
914     for (i = 0; i < 3; i++)
915     if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
916     break;
917     if (i >= 3)
918     error(CONSISTENCY, "bad ray direction in inithemi");
919     hp->uy[i] = 1.0;
920     fcross(hp->ux, hp->uy, hp->uz);
921     normalize(hp->ux);
922     fcross(hp->uy, hp->uz, hp->ux);
923 greg 1.1 }
924    
925    
926 greg 2.9 int
927 greg 2.14 divsample( /* sample a division */
928 greg 2.23 AMBSAMP *dp,
929 greg 2.14 AMBHEMI *h,
930     RAY *r
931     )
932 greg 1.1 {
933     RAY ar;
934 greg 1.11 int hlist[3];
935     double spt[2];
936 greg 1.1 double xd, yd, zd;
937     double b2;
938     double phi;
939 greg 2.23 int i;
940 greg 2.15 /* ambient coefficient for weight */
941 greg 2.16 if (ambacc > FTINY)
942     setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
943     else
944     copycolor(ar.rcoef, h->acoef);
945 greg 2.14 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
946 greg 1.4 return(-1);
947 greg 2.17 if (ambacc > FTINY) {
948     multcolor(ar.rcoef, h->acoef);
949     scalecolor(ar.rcoef, 1./AVGREFL);
950     }
951 greg 1.1 hlist[0] = r->rno;
952     hlist[1] = dp->t;
953     hlist[2] = dp->p;
954 greg 1.13 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
955 greg 1.11 zd = sqrt((dp->t + spt[0])/h->nt);
956     phi = 2.0*PI * (dp->p + spt[1])/h->np;
957 gwlarson 2.8 xd = tcos(phi) * zd;
958     yd = tsin(phi) * zd;
959 greg 1.1 zd = sqrt(1.0 - zd*zd);
960 greg 1.2 for (i = 0; i < 3; i++)
961     ar.rdir[i] = xd*h->ux[i] +
962     yd*h->uy[i] +
963     zd*h->uz[i];
964 greg 2.22 checknorm(ar.rdir);
965 greg 1.2 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
966 greg 1.1 rayvalue(&ar);
967     ndims--;
968 greg 2.16 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
969 greg 1.1 addcolor(dp->v, ar.rcol);
970 greg 2.9 /* use rt to improve gradient calc */
971     if (ar.rt > FTINY && ar.rt < FHUGE)
972     dp->r += 1.0/ar.rt;
973 greg 1.1 /* (re)initialize error */
974     if (dp->n++) {
975     b2 = bright(dp->v)/dp->n - bright(ar.rcol);
976     b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
977     dp->k = b2/(dp->n*dp->n);
978     } else
979     dp->k = 0.0;
980 greg 1.4 return(0);
981 greg 1.1 }
982    
983    
984 greg 2.14 static int
985     ambcmp( /* decreasing order */
986     const void *p1,
987     const void *p2
988     )
989     {
990     const AMBSAMP *d1 = (const AMBSAMP *)p1;
991     const AMBSAMP *d2 = (const AMBSAMP *)p2;
992    
993     if (d1->k < d2->k)
994     return(1);
995     if (d1->k > d2->k)
996     return(-1);
997     return(0);
998     }
999    
1000    
1001     static int
1002     ambnorm( /* standard order */
1003     const void *p1,
1004     const void *p2
1005     )
1006     {
1007     const AMBSAMP *d1 = (const AMBSAMP *)p1;
1008     const AMBSAMP *d2 = (const AMBSAMP *)p2;
1009 greg 2.23 int c;
1010 greg 2.14
1011     if ( (c = d1->t - d2->t) )
1012     return(c);
1013     return(d1->p - d2->p);
1014     }
1015    
1016    
1017 greg 1.1 double
1018 greg 2.14 doambient( /* compute ambient component */
1019 greg 2.23 COLOR rcol,
1020 greg 2.14 RAY *r,
1021     double wt,
1022     FVECT pg,
1023     FVECT dg
1024     )
1025 greg 1.1 {
1026 greg 2.24 double b, d=0;
1027 greg 1.1 AMBHEMI hemi;
1028     AMBSAMP *div;
1029     AMBSAMP dnew;
1030 greg 2.23 double acol[3];
1031     AMBSAMP *dp;
1032 greg 1.1 double arad;
1033 greg 2.19 int divcnt;
1034 greg 2.23 int i, j;
1035 greg 1.1 /* initialize hemisphere */
1036 greg 2.23 inithemi(&hemi, rcol, r, wt);
1037 greg 2.19 divcnt = hemi.nt * hemi.np;
1038 greg 2.17 /* initialize */
1039     if (pg != NULL)
1040     pg[0] = pg[1] = pg[2] = 0.0;
1041     if (dg != NULL)
1042     dg[0] = dg[1] = dg[2] = 0.0;
1043 greg 2.23 setcolor(rcol, 0.0, 0.0, 0.0);
1044 greg 2.19 if (divcnt == 0)
1045 greg 1.1 return(0.0);
1046 greg 2.14 /* allocate super-samples */
1047 greg 2.15 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
1048 greg 2.19 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
1049 greg 1.1 if (div == NULL)
1050     error(SYSTEM, "out of memory in doambient");
1051     } else
1052     div = NULL;
1053     /* sample the divisions */
1054     arad = 0.0;
1055 greg 2.23 acol[0] = acol[1] = acol[2] = 0.0;
1056 greg 1.1 if ((dp = div) == NULL)
1057     dp = &dnew;
1058 greg 2.19 divcnt = 0;
1059 greg 1.1 for (i = 0; i < hemi.nt; i++)
1060     for (j = 0; j < hemi.np; j++) {
1061     dp->t = i; dp->p = j;
1062     setcolor(dp->v, 0.0, 0.0, 0.0);
1063 greg 1.2 dp->r = 0.0;
1064 greg 1.1 dp->n = 0;
1065 greg 2.16 if (divsample(dp, &hemi, r) < 0) {
1066 greg 2.19 if (div != NULL)
1067     dp++;
1068 greg 2.16 continue;
1069     }
1070 greg 2.6 arad += dp->r;
1071 greg 2.19 divcnt++;
1072 greg 1.1 if (div != NULL)
1073     dp++;
1074 greg 2.6 else
1075 greg 1.1 addcolor(acol, dp->v);
1076     }
1077 greg 2.21 if (!divcnt) {
1078     if (div != NULL)
1079     free((void *)div);
1080 greg 2.19 return(0.0); /* no samples taken */
1081 greg 2.21 }
1082 greg 2.19 if (divcnt < hemi.nt*hemi.np) {
1083     pg = dg = NULL; /* incomplete sampling */
1084     hemi.ns = 0;
1085     } else if (arad > FTINY && divcnt/arad < minarad) {
1086 greg 2.15 hemi.ns = 0; /* close enough */
1087 greg 2.19 } else if (hemi.ns > 0) { /* else perform super-sampling? */
1088 greg 1.4 comperrs(div, &hemi); /* compute errors */
1089 greg 2.19 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
1090 greg 1.1 /* super-sample */
1091 greg 2.15 for (i = hemi.ns; i > 0; i--) {
1092 schorsch 2.11 dnew = *div;
1093 greg 2.16 if (divsample(&dnew, &hemi, r) < 0) {
1094     dp++;
1095     continue;
1096     }
1097     dp = div; /* reinsert */
1098 greg 2.19 j = divcnt < i ? divcnt : i;
1099 greg 1.1 while (--j > 0 && dnew.k < dp[1].k) {
1100 schorsch 2.11 *dp = *(dp+1);
1101 greg 1.1 dp++;
1102     }
1103 schorsch 2.11 *dp = dnew;
1104 greg 1.1 }
1105 greg 1.2 if (pg != NULL || dg != NULL) /* restore order */
1106 greg 2.19 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
1107 greg 1.1 }
1108     /* compute returned values */
1109 greg 1.3 if (div != NULL) {
1110 greg 2.19 arad = 0.0; /* note: divcnt may be < nt*np */
1111     for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
1112 greg 1.3 arad += dp->r;
1113     if (dp->n > 1) {
1114     b = 1.0/dp->n;
1115     scalecolor(dp->v, b);
1116     dp->r *= b;
1117     dp->n = 1;
1118     }
1119     addcolor(acol, dp->v);
1120     }
1121 greg 1.5 b = bright(acol);
1122 greg 1.6 if (b > FTINY) {
1123 greg 2.17 b = 1.0/b; /* compute & normalize gradient(s) */
1124 greg 1.6 if (pg != NULL) {
1125     posgradient(pg, div, &hemi);
1126     for (i = 0; i < 3; i++)
1127     pg[i] *= b;
1128     }
1129     if (dg != NULL) {
1130     dirgradient(dg, div, &hemi);
1131     for (i = 0; i < 3; i++)
1132     dg[i] *= b;
1133     }
1134 greg 1.5 }
1135 greg 2.9 free((void *)div);
1136 greg 1.3 }
1137 greg 2.23 copycolor(rcol, acol);
1138 greg 1.1 if (arad <= FTINY)
1139 greg 1.16 arad = maxarad;
1140 greg 2.3 else
1141 greg 2.19 arad = (divcnt+hemi.ns)/arad;
1142 greg 1.15 if (pg != NULL) { /* reduce radius if gradient large */
1143     d = DOT(pg,pg);
1144     if (d*arad*arad > 1.0)
1145     arad = 1.0/sqrt(d);
1146     }
1147 greg 1.16 if (arad < minarad) {
1148 greg 1.1 arad = minarad;
1149 greg 1.16 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
1150     d = 1.0/arad/sqrt(d);
1151     for (i = 0; i < 3; i++)
1152     pg[i] *= d;
1153     }
1154     }
1155 greg 2.3 if ((arad /= sqrt(wt)) > maxarad)
1156     arad = maxarad;
1157     return(arad);
1158 greg 1.1 }
1159    
1160    
1161 greg 2.9 void
1162 greg 2.14 comperrs( /* compute initial error estimates */
1163     AMBSAMP *da, /* assumes standard ordering */
1164 greg 2.23 AMBHEMI *hp
1165 greg 2.14 )
1166 greg 1.1 {
1167     double b, b2;
1168     int i, j;
1169 greg 2.23 AMBSAMP *dp;
1170 greg 1.1 /* sum differences from neighbors */
1171     dp = da;
1172     for (i = 0; i < hp->nt; i++)
1173     for (j = 0; j < hp->np; j++) {
1174 greg 1.6 #ifdef DEBUG
1175     if (dp->t != i || dp->p != j)
1176     error(CONSISTENCY,
1177     "division order in comperrs");
1178     #endif
1179 greg 1.1 b = bright(dp[0].v);
1180     if (i > 0) { /* from above */
1181     b2 = bright(dp[-hp->np].v) - b;
1182     b2 *= b2 * 0.25;
1183     dp[0].k += b2;
1184     dp[-hp->np].k += b2;
1185     }
1186     if (j > 0) { /* from behind */
1187     b2 = bright(dp[-1].v) - b;
1188     b2 *= b2 * 0.25;
1189     dp[0].k += b2;
1190     dp[-1].k += b2;
1191 greg 1.4 } else { /* around */
1192     b2 = bright(dp[hp->np-1].v) - b;
1193 greg 1.1 b2 *= b2 * 0.25;
1194     dp[0].k += b2;
1195 greg 1.4 dp[hp->np-1].k += b2;
1196 greg 1.1 }
1197     dp++;
1198     }
1199     /* divide by number of neighbors */
1200     dp = da;
1201     for (j = 0; j < hp->np; j++) /* top row */
1202     (dp++)->k *= 1.0/3.0;
1203     if (hp->nt < 2)
1204     return;
1205     for (i = 1; i < hp->nt-1; i++) /* central region */
1206     for (j = 0; j < hp->np; j++)
1207     (dp++)->k *= 0.25;
1208     for (j = 0; j < hp->np; j++) /* bottom row */
1209     (dp++)->k *= 1.0/3.0;
1210     }
1211    
1212    
1213 greg 2.9 void
1214 greg 2.14 posgradient( /* compute position gradient */
1215     FVECT gv,
1216     AMBSAMP *da, /* assumes standard ordering */
1217 greg 2.23 AMBHEMI *hp
1218 greg 2.14 )
1219 greg 1.1 {
1220 greg 2.23 int i, j;
1221 greg 2.2 double nextsine, lastsine, b, d;
1222 greg 1.2 double mag0, mag1;
1223     double phi, cosp, sinp, xd, yd;
1224 greg 2.23 AMBSAMP *dp;
1225 greg 1.2
1226     xd = yd = 0.0;
1227     for (j = 0; j < hp->np; j++) {
1228     dp = da + j;
1229     mag0 = mag1 = 0.0;
1230 greg 2.2 lastsine = 0.0;
1231 greg 1.2 for (i = 0; i < hp->nt; i++) {
1232     #ifdef DEBUG
1233     if (dp->t != i || dp->p != j)
1234     error(CONSISTENCY,
1235     "division order in posgradient");
1236     #endif
1237     b = bright(dp->v);
1238     if (i > 0) {
1239     d = dp[-hp->np].r;
1240     if (dp[0].r > d) d = dp[0].r;
1241 greg 2.2 /* sin(t)*cos(t)^2 */
1242     d *= lastsine * (1.0 - (double)i/hp->nt);
1243 greg 1.2 mag0 += d*(b - bright(dp[-hp->np].v));
1244     }
1245 greg 2.2 nextsine = sqrt((double)(i+1)/hp->nt);
1246 greg 1.2 if (j > 0) {
1247     d = dp[-1].r;
1248     if (dp[0].r > d) d = dp[0].r;
1249 greg 2.2 mag1 += d * (nextsine - lastsine) *
1250     (b - bright(dp[-1].v));
1251 greg 1.2 } else {
1252     d = dp[hp->np-1].r;
1253     if (dp[0].r > d) d = dp[0].r;
1254 greg 2.2 mag1 += d * (nextsine - lastsine) *
1255     (b - bright(dp[hp->np-1].v));
1256 greg 1.2 }
1257     dp += hp->np;
1258 greg 2.2 lastsine = nextsine;
1259 greg 1.2 }
1260 greg 2.2 mag0 *= 2.0*PI / hp->np;
1261 greg 1.2 phi = 2.0*PI * (double)j/hp->np;
1262 gwlarson 2.8 cosp = tcos(phi); sinp = tsin(phi);
1263 greg 1.2 xd += mag0*cosp - mag1*sinp;
1264     yd += mag0*sinp + mag1*cosp;
1265     }
1266     for (i = 0; i < 3; i++)
1267 greg 2.16 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
1268 greg 1.1 }
1269    
1270    
1271 greg 2.9 void
1272 greg 2.14 dirgradient( /* compute direction gradient */
1273     FVECT gv,
1274     AMBSAMP *da, /* assumes standard ordering */
1275 greg 2.23 AMBHEMI *hp
1276 greg 2.14 )
1277 greg 1.1 {
1278 greg 2.23 int i, j;
1279 greg 1.2 double mag;
1280     double phi, xd, yd;
1281 greg 2.23 AMBSAMP *dp;
1282 greg 1.2
1283     xd = yd = 0.0;
1284     for (j = 0; j < hp->np; j++) {
1285     dp = da + j;
1286     mag = 0.0;
1287     for (i = 0; i < hp->nt; i++) {
1288     #ifdef DEBUG
1289     if (dp->t != i || dp->p != j)
1290     error(CONSISTENCY,
1291     "division order in dirgradient");
1292     #endif
1293 greg 2.2 /* tan(t) */
1294     mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
1295 greg 1.2 dp += hp->np;
1296     }
1297     phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1298 gwlarson 2.8 xd += mag * tcos(phi);
1299     yd += mag * tsin(phi);
1300 greg 1.2 }
1301     for (i = 0; i < 3; i++)
1302 greg 2.16 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1303 greg 1.1 }
1304 greg 2.25
1305     #endif /* ! NEWAMB */