ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.46
Committed: Fri May 2 21:58:50 2014 UTC (10 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.45: +197 -61 lines
Log Message:
Added baroque book-keeping to avoid calculating pointless Hessians

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.46 static const char RCSid[] = "$Id: ambcomp.c,v 2.45 2014/05/01 22:34:25 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * Routines to compute "ambient" values using Monte Carlo
6 greg 2.9 *
7 greg 2.27 * Hessian calculations based on "Practical Hessian-Based Error Control
8     * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9     * from ACM SIGGRAPH Asia 2012 conference proceedings.
10     *
11 greg 2.46 * Added book-keeping optimization to avoid calculations that would
12     * cancel due to traversal both directions on edges that are adjacent
13     * to same-valued triangles. This cuts about half of Hessian math.
14     *
15 greg 2.9 * Declarations of external symbols in ambient.h
16     */
17    
18 greg 2.10 #include "copyright.h"
19 greg 1.1
20     #include "ray.h"
21 greg 2.25 #include "ambient.h"
22     #include "random.h"
23 greg 1.1
24 greg 2.25 #ifdef NEWAMB
25 greg 1.1
26 greg 2.26 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
27    
28 greg 2.46 /* vertex direction bit positions */
29     #define VDB_xy 0
30     #define VDB_y 01
31     #define VDB_x 02
32     #define VDB_Xy 03
33     #define VDB_xY 04
34     #define VDB_X 05
35     #define VDB_Y 06
36     #define VDB_XY 07
37     /* get opposite vertex direction bit */
38     #define VDB_OPP(f) (~(f) & 07)
39     /* adjacent triangle vertex flags */
40     static const int adjacent_trifl[8] = {
41     0, /* forbidden diagonal */
42     1<<VDB_x|1<<VDB_y|1<<VDB_Xy,
43     1<<VDB_y|1<<VDB_x|1<<VDB_xY,
44     1<<VDB_y|1<<VDB_Xy|1<<VDB_X,
45     1<<VDB_x|1<<VDB_xY|1<<VDB_Y,
46     1<<VDB_Xy|1<<VDB_X|1<<VDB_Y,
47     1<<VDB_xY|1<<VDB_Y|1<<VDB_X,
48     0, /* forbidden diagonal */
49     };
50    
51 greg 2.26 typedef struct {
52 greg 2.44 COLOR v; /* hemisphere sample value */
53     FVECT p; /* intersection point */
54     } AMBSAMP; /* sample value */
55    
56     typedef struct {
57 greg 2.26 RAY *rp; /* originating ray sample */
58 greg 2.27 FVECT ux, uy; /* tangent axis unit vectors */
59 greg 2.26 int ns; /* number of samples per axis */
60     COLOR acoef; /* division contribution coefficient */
61 greg 2.44 AMBSAMP sa[1]; /* sample array (extends struct) */
62 greg 2.26 } AMBHEMI; /* ambient sample hemisphere */
63    
64 greg 2.46 #define ambndx(h,i,j) ((i)*(h)->ns + (j))
65     #define ambsam(h,i,j) (h)->sa[ambndx(h,i,j)]
66 greg 2.26
67 greg 2.27 typedef struct {
68 greg 2.35 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
69     double I1, I2;
70 greg 2.46 int valid;
71 greg 2.27 } FFTRI; /* vectors and coefficients for Hessian calculation */
72    
73 greg 2.26
74 greg 2.46 /* Get index for adjacent vertex */
75     static int
76     adjacent_verti(AMBHEMI *hp, int i, int j, int dbit)
77     {
78     int i0 = i*hp->ns + j;
79    
80     switch (dbit) {
81     case VDB_y: return(i0 - hp->ns);
82     case VDB_x: return(i0 - 1);
83     case VDB_Xy: return(i0 - hp->ns + 1);
84     case VDB_xY: return(i0 + hp->ns - 1);
85     case VDB_X: return(i0 + 1);
86     case VDB_Y: return(i0 + hp->ns);
87     /* the following should never occur */
88     case VDB_xy: return(i0 - hp->ns - 1);
89     case VDB_XY: return(i0 + hp->ns + 1);
90     }
91     return(-1);
92     }
93    
94    
95     /* Get vertex direction bit for the opposite edge to complete triangle */
96     static int
97     vdb_edge(int db1, int db2)
98     {
99     switch (db1) {
100     case VDB_x: return(db2==VDB_y ? VDB_Xy : VDB_Y);
101     case VDB_y: return(db2==VDB_x ? VDB_xY : VDB_X);
102     case VDB_X: return(db2==VDB_Xy ? VDB_y : VDB_xY);
103     case VDB_Y: return(db2==VDB_xY ? VDB_x : VDB_Xy);
104     case VDB_xY: return(db2==VDB_x ? VDB_y : VDB_X);
105     case VDB_Xy: return(db2==VDB_y ? VDB_x : VDB_Y);
106     }
107     error(INTERNAL, "forbidden diagonal in vdb_edge()");
108     return(-1);
109     }
110    
111    
112 greg 2.26 static AMBHEMI *
113     inithemi( /* initialize sampling hemisphere */
114     COLOR ac,
115     RAY *r,
116     double wt
117     )
118     {
119     AMBHEMI *hp;
120     double d;
121     int n, i;
122     /* set number of divisions */
123     if (ambacc <= FTINY &&
124     wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
125     wt = d; /* avoid ray termination */
126     n = sqrt(ambdiv * wt) + 0.5;
127 greg 2.27 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
128 greg 2.26 if (n < i)
129     n = i;
130     /* allocate sampling array */
131 greg 2.41 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
132 greg 2.26 if (hp == NULL)
133     return(NULL);
134     hp->rp = r;
135     hp->ns = n;
136     /* assign coefficient */
137     copycolor(hp->acoef, ac);
138     d = 1.0/(n*n);
139     scalecolor(hp->acoef, d);
140 greg 2.28 /* make tangent plane axes */
141 greg 2.38 hp->uy[0] = 0.5 - frandom();
142     hp->uy[1] = 0.5 - frandom();
143     hp->uy[2] = 0.5 - frandom();
144 greg 2.36 for (i = 3; i--; )
145 greg 2.37 if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6))
146     break;
147     if (i < 0)
148     error(CONSISTENCY, "bad ray direction in inithemi");
149     hp->uy[i] = 1.0;
150 greg 2.27 VCROSS(hp->ux, hp->uy, r->ron);
151 greg 2.26 normalize(hp->ux);
152 greg 2.27 VCROSS(hp->uy, r->ron, hp->ux);
153 greg 2.26 /* we're ready to sample */
154     return(hp);
155     }
156    
157    
158 greg 2.43 /* Sample ambient division and apply weighting coefficient */
159 greg 2.41 static int
160 greg 2.43 getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n)
161 greg 2.26 {
162 greg 2.41 int hlist[3], ii;
163     double spt[2], zd;
164 greg 2.26 /* ambient coefficient for weight */
165     if (ambacc > FTINY)
166 greg 2.41 setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL);
167 greg 2.26 else
168 greg 2.41 copycolor(arp->rcoef, hp->acoef);
169     if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0)
170     return(0);
171 greg 2.26 if (ambacc > FTINY) {
172 greg 2.41 multcolor(arp->rcoef, hp->acoef);
173     scalecolor(arp->rcoef, 1./AVGREFL);
174     }
175     hlist[0] = hp->rp->rno;
176 greg 2.46 hlist[1] = j;
177     hlist[2] = i;
178 greg 2.41 multisamp(spt, 2, urand(ilhash(hlist,3)+n));
179     if (!n) { /* avoid border samples for n==0 */
180 greg 2.46 if ((spt[0] < 0.1) | (spt[0] >= 0.9))
181 greg 2.41 spt[0] = 0.1 + 0.8*frandom();
182 greg 2.46 if ((spt[1] < 0.1) | (spt[1] >= 0.9))
183 greg 2.41 spt[1] = 0.1 + 0.8*frandom();
184 greg 2.26 }
185 greg 2.46 SDsquare2disk(spt, (j+spt[1])/hp->ns, (i+spt[0])/hp->ns);
186 greg 2.26 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
187     for (ii = 3; ii--; )
188 greg 2.41 arp->rdir[ii] = spt[0]*hp->ux[ii] +
189 greg 2.26 spt[1]*hp->uy[ii] +
190     zd*hp->rp->ron[ii];
191 greg 2.41 checknorm(arp->rdir);
192 greg 2.46 dimlist[ndims++] = ambndx(hp,i,j) + 90171;
193 greg 2.43 rayvalue(arp); /* evaluate ray */
194     ndims--; /* apply coefficient */
195     multcolor(arp->rcol, arp->rcoef);
196 greg 2.41 return(1);
197     }
198    
199    
200     static AMBSAMP *
201 greg 2.43 ambsample( /* initial ambient division sample */
202 greg 2.41 AMBHEMI *hp,
203     int i,
204     int j
205     )
206     {
207 greg 2.43 AMBSAMP *ap = &ambsam(hp,i,j);
208 greg 2.41 RAY ar;
209     /* generate hemispherical sample */
210 greg 2.43 if (!getambsamp(&ar, hp, i, j, 0))
211 greg 2.41 goto badsample;
212 greg 2.34 /* limit vertex distance */
213     if (ar.rt > 10.0*thescene.cusize)
214     ar.rt = 10.0*thescene.cusize;
215 greg 2.31 else if (ar.rt <= FTINY) /* should never happen! */
216     goto badsample;
217     VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
218 greg 2.26 copycolor(ap->v, ar.rcol);
219 greg 2.28 return(ap);
220 greg 2.31 badsample:
221     setcolor(ap->v, 0., 0., 0.);
222     VCOPY(ap->p, hp->rp->rop);
223     return(NULL);
224 greg 2.26 }
225    
226    
227 greg 2.41 /* Estimate errors based on ambient division differences */
228     static float *
229     getambdiffs(AMBHEMI *hp)
230     {
231 greg 2.45 float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
232 greg 2.41 float *ep;
233 greg 2.42 AMBSAMP *ap;
234 greg 2.41 double b, d2;
235     int i, j;
236    
237     if (earr == NULL) /* out of memory? */
238     return(NULL);
239     /* compute squared neighbor diffs */
240 greg 2.42 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
241     for (j = 0; j < hp->ns; j++, ap++, ep++) {
242     b = bright(ap[0].v);
243 greg 2.41 if (i) { /* from above */
244 greg 2.42 d2 = b - bright(ap[-hp->ns].v);
245 greg 2.41 d2 *= d2;
246     ep[0] += d2;
247     ep[-hp->ns] += d2;
248     }
249     if (j) { /* from behind */
250 greg 2.42 d2 = b - bright(ap[-1].v);
251 greg 2.41 d2 *= d2;
252     ep[0] += d2;
253     ep[-1] += d2;
254     }
255     }
256     /* correct for number of neighbors */
257     earr[0] *= 2.f;
258     earr[hp->ns-1] *= 2.f;
259     earr[(hp->ns-1)*hp->ns] *= 2.f;
260     earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f;
261     for (i = 1; i < hp->ns-1; i++) {
262     earr[i*hp->ns] *= 4./3.;
263     earr[i*hp->ns + hp->ns-1] *= 4./3.;
264     }
265     for (j = 1; j < hp->ns-1; j++) {
266     earr[j] *= 4./3.;
267     earr[(hp->ns-1)*hp->ns + j] *= 4./3.;
268     }
269     return(earr);
270     }
271    
272    
273 greg 2.43 /* Perform super-sampling on hemisphere (introduces bias) */
274 greg 2.41 static void
275     ambsupersamp(double acol[3], AMBHEMI *hp, int cnt)
276     {
277     float *earr = getambdiffs(hp);
278     double e2sum = 0;
279     AMBSAMP *ap;
280     RAY ar;
281     COLOR asum;
282     float *ep;
283     int i, j, n;
284    
285     if (earr == NULL) /* just skip calc. if no memory */
286     return;
287     /* add up estimated variances */
288     for (ep = earr + hp->ns*hp->ns; ep-- > earr; )
289     e2sum += *ep;
290     ep = earr; /* perform super-sampling */
291     for (ap = hp->sa, i = 0; i < hp->ns; i++)
292     for (j = 0; j < hp->ns; j++, ap++) {
293     int nss = *ep/e2sum*cnt + frandom();
294     setcolor(asum, 0., 0., 0.);
295     for (n = 1; n <= nss; n++) {
296 greg 2.43 if (!getambsamp(&ar, hp, i, j, n)) {
297 greg 2.41 nss = n-1;
298     break;
299     }
300     addcolor(asum, ar.rcol);
301     }
302     if (nss) { /* update returned ambient value */
303     const double ssf = 1./(nss + 1);
304     for (n = 3; n--; )
305     acol[n] += ssf*colval(asum,n) +
306     (ssf - 1.)*colval(ap->v,n);
307     }
308     e2sum -= *ep++; /* update remainders */
309     cnt -= nss;
310     }
311     free(earr);
312     }
313    
314    
315 greg 2.46 /* Compute vertex flags, indicating farthest in each direction */
316     static uby8 *
317     vertex_flags(AMBHEMI *hp)
318     {
319     uby8 *vflags = (uby8 *)calloc(hp->ns*hp->ns, sizeof(uby8));
320     double *dist2a = (double *)malloc(sizeof(double)*hp->ns);
321     uby8 *vf;
322     int i, j;
323    
324     if ((vflags == NULL) | (dist2a == NULL))
325     error(SYSTEM, "out of memory in vertex_flags()");
326     vf = vflags; /* compute distances along first row */
327     for (j = 0; j < hp->ns; j++) {
328     dist2a[j] = dist2(ambsam(hp,0,j).p, hp->rp->rop);
329     ++vf;
330     if (!j) continue;
331     if (dist2a[j] >= dist2a[j-1])
332     vf[0] |= 1<<VDB_x;
333     else
334     vf[-1] |= 1<<VDB_X;
335     }
336     /* flag subsequent rows */
337     for (i = 1; i < hp->ns; i++) {
338     double d2n = dist2(ambsam(hp,i,0).p, hp->rp->rop);
339     for (j = 0; j < hp->ns-1; j++) {
340     double d2 = d2n;
341     if (d2 >= dist2a[j]) /* row before */
342     vf[0] |= 1<<VDB_y;
343     else
344     vf[-hp->ns] |= 1<<VDB_Y;
345     dist2a[j] = d2n;
346     if (d2 >= dist2a[j+1]) /* diagonal we care about */
347     vf[0] |= 1<<VDB_Xy;
348     else
349     vf[1-hp->ns] |= 1<<VDB_xY;
350     d2n = dist2(ambsam(hp,i,j+1).p, hp->rp->rop);
351     if (d2 >= d2n) /* column after */
352     vf[0] |= 1<<VDB_X;
353     else
354     vf[1] |= 1<<VDB_x;
355     ++vf;
356     }
357     if (d2n >= dist2a[j]) /* final column edge */
358     vf[0] |= 1<<VDB_y;
359     else
360     vf[-hp->ns] |= 1<<VDB_Y;
361     dist2a[j] = d2n;
362     ++vf;
363     }
364     free(dist2a);
365     return(vflags);
366     }
367    
368    
369     /* Return brightness of farthest ambient sample */
370     static double
371     back_ambval(AMBHEMI *hp, int i, int j, int dbit1, int dbit2, const uby8 *vflags)
372     {
373     const int v0 = ambndx(hp,i,j);
374     const int tflags = (1<<dbit1 | 1<<dbit2);
375     int v1, v2;
376    
377     if ((vflags[v0] & tflags) == tflags) /* is v0 the farthest? */
378     return(colval(hp->sa[v0].v,CIEY));
379     v1 = adjacent_verti(hp, i, j, dbit1);
380     if (vflags[v0] & 1<<dbit2) /* v1 farthest if v0>v2 */
381     return(colval(hp->sa[v1].v,CIEY));
382     v2 = adjacent_verti(hp, i, j, dbit2);
383     if (vflags[v0] & 1<<dbit1) /* v2 farthest if v0>v1 */
384     return(colval(hp->sa[v2].v,CIEY));
385     /* else check if v1>v2 */
386     if (vflags[v1] & 1<<vdb_edge(dbit1,dbit2))
387     return(colval(hp->sa[v1].v,CIEY));
388     return(colval(hp->sa[v2].v,CIEY));
389     }
390    
391    
392 greg 2.27 /* Compute vectors and coefficients for Hessian/gradient calcs */
393     static void
394 greg 2.46 comp_fftri(FFTRI *ftp, AMBHEMI *hp, int i, int j, int dbit, const uby8 *vflags)
395 greg 2.27 {
396 greg 2.46 const int i0 = ambndx(hp,i,j);
397     double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
398     int i1, ii;
399    
400     ftp->valid = 0; /* check if we can skip this edge */
401     ii = adjacent_trifl[dbit];
402     if ((vflags[i0] & ii) == ii) /* cancels if vertex used as value */
403     return;
404     i1 = adjacent_verti(hp, i, j, dbit);
405     ii = adjacent_trifl[VDB_OPP(dbit)];
406     if ((vflags[i1] & ii) == ii) /* on either end (for both triangles) */
407     return;
408     /* else go ahead with calculation */
409     VSUB(ftp->r_i, hp->sa[i0].p, hp->rp->rop);
410     VSUB(ftp->r_i1, hp->sa[i1].p, hp->rp->rop);
411     VSUB(ftp->e_i, hp->sa[i1].p, hp->sa[i0].p);
412 greg 2.35 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
413     rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
414 greg 2.27 dot_e = DOT(ftp->e_i,ftp->e_i);
415     dot_er = DOT(ftp->e_i, ftp->r_i);
416 greg 2.32 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
417     rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
418     ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
419 greg 2.35 sqrt( rdot_cp );
420 greg 2.32 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
421 greg 2.35 dot_e*ftp->I1 )*0.5*rdot_cp;
422 greg 2.32 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
423 greg 2.46 for (ii = 3; ii--; )
424     ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
425     ftp->valid++;
426 greg 2.27 }
427    
428    
429 greg 2.28 /* Compose 3x3 matrix from two vectors */
430 greg 2.27 static void
431     compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
432     {
433     mat[0][0] = 2.0*va[0]*vb[0];
434     mat[1][1] = 2.0*va[1]*vb[1];
435     mat[2][2] = 2.0*va[2]*vb[2];
436     mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
437     mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
438     mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
439     }
440    
441    
442     /* Compute partial 3x3 Hessian matrix for edge */
443     static void
444     comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
445     {
446 greg 2.35 FVECT ncp;
447 greg 2.27 FVECT m1[3], m2[3], m3[3], m4[3];
448     double d1, d2, d3, d4;
449     double I3, J3, K3;
450     int i, j;
451 greg 2.46
452     if (!ftp->valid) { /* preemptive test */
453     memset(hess, 0, sizeof(FVECT)*3);
454     return;
455     }
456 greg 2.27 /* compute intermediate coefficients */
457     d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
458     d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
459     d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
460     d4 = DOT(ftp->e_i, ftp->r_i);
461 greg 2.35 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
462     / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
463 greg 2.27 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
464     K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
465     /* intermediate matrices */
466 greg 2.35 VCROSS(ncp, nrm, ftp->e_i);
467     compose_matrix(m1, ncp, ftp->rI2_eJ2);
468 greg 2.27 compose_matrix(m2, ftp->r_i, ftp->r_i);
469     compose_matrix(m3, ftp->e_i, ftp->e_i);
470     compose_matrix(m4, ftp->r_i, ftp->e_i);
471 greg 2.35 d1 = DOT(nrm, ftp->rcp);
472 greg 2.27 d2 = -d1*ftp->I2;
473     d1 *= 2.0;
474     for (i = 3; i--; ) /* final matrix sum */
475     for (j = 3; j--; ) {
476     hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
477     2.0*J3*m4[i][j] );
478     hess[i][j] += d2*(i==j);
479 greg 2.46 hess[i][j] *= -1.0/PI;
480 greg 2.27 }
481     }
482    
483    
484     /* Reverse hessian calculation result for edge in other direction */
485     static void
486     rev_hessian(FVECT hess[3])
487     {
488     int i;
489    
490     for (i = 3; i--; ) {
491     hess[i][0] = -hess[i][0];
492     hess[i][1] = -hess[i][1];
493     hess[i][2] = -hess[i][2];
494     }
495     }
496    
497    
498     /* Add to radiometric Hessian from the given triangle */
499     static void
500     add2hessian(FVECT hess[3], FVECT ehess1[3],
501 greg 2.46 FVECT ehess2[3], FVECT ehess3[3], double v)
502 greg 2.27 {
503     int i, j;
504    
505     for (i = 3; i--; )
506     for (j = 3; j--; )
507     hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
508     }
509    
510    
511     /* Compute partial displacement form factor gradient for edge */
512     static void
513     comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
514     {
515 greg 2.35 FVECT ncp;
516 greg 2.27 double f1;
517     int i;
518    
519 greg 2.46 if (!ftp->valid) { /* preemptive test */
520     memset(grad, 0, sizeof(FVECT));
521     return;
522     }
523 greg 2.35 f1 = 2.0*DOT(nrm, ftp->rcp);
524     VCROSS(ncp, nrm, ftp->e_i);
525 greg 2.27 for (i = 3; i--; )
526 greg 2.46 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
527 greg 2.27 }
528    
529    
530     /* Reverse gradient calculation result for edge in other direction */
531     static void
532     rev_gradient(FVECT grad)
533     {
534     grad[0] = -grad[0];
535     grad[1] = -grad[1];
536     grad[2] = -grad[2];
537     }
538    
539    
540     /* Add to displacement gradient from the given triangle */
541     static void
542 greg 2.46 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
543 greg 2.27 {
544     int i;
545    
546     for (i = 3; i--; )
547     grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
548     }
549    
550    
551     /* Compute anisotropic radii and eigenvector directions */
552     static int
553     eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
554     {
555     double hess2[2][2];
556     FVECT a, b;
557     double evalue[2], slope1, xmag1;
558     int i;
559     /* project Hessian to sample plane */
560     for (i = 3; i--; ) {
561     a[i] = DOT(hessian[i], uv[0]);
562     b[i] = DOT(hessian[i], uv[1]);
563     }
564     hess2[0][0] = DOT(uv[0], a);
565     hess2[0][1] = DOT(uv[0], b);
566     hess2[1][0] = DOT(uv[1], a);
567     hess2[1][1] = DOT(uv[1], b);
568 greg 2.38 /* compute eigenvalue(s) */
569     i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
570     hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
571     if (i == 1) /* double-root (circle) */
572     evalue[1] = evalue[0];
573     if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
574 greg 2.35 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) )
575 greg 2.27 error(INTERNAL, "bad eigenvalue calculation");
576    
577     if (evalue[0] > evalue[1]) {
578 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[0]));
579     ra[1] = sqrt(sqrt(4.0/evalue[1]));
580 greg 2.27 slope1 = evalue[1];
581     } else {
582 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[1]));
583     ra[1] = sqrt(sqrt(4.0/evalue[0]));
584 greg 2.27 slope1 = evalue[0];
585     }
586     /* compute unit eigenvectors */
587     if (fabs(hess2[0][1]) <= FTINY)
588     return; /* uv OK as is */
589     slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
590     xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
591     for (i = 3; i--; ) {
592     b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
593     a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
594     }
595     VCOPY(uv[0], a);
596     VCOPY(uv[1], b);
597     }
598    
599    
600 greg 2.26 static void
601     ambHessian( /* anisotropic radii & pos. gradient */
602     AMBHEMI *hp,
603     FVECT uv[2], /* returned */
604 greg 2.28 float ra[2], /* returned (optional) */
605     float pg[2] /* returned (optional) */
606 greg 2.26 )
607     {
608 greg 2.27 static char memerrmsg[] = "out of memory in ambHessian()";
609     FVECT (*hessrow)[3] = NULL;
610     FVECT *gradrow = NULL;
611 greg 2.46 uby8 *vflags;
612 greg 2.27 FVECT hessian[3];
613     FVECT gradient;
614     FFTRI fftr;
615     int i, j;
616     /* be sure to assign unit vectors */
617     VCOPY(uv[0], hp->ux);
618     VCOPY(uv[1], hp->uy);
619     /* clock-wise vertex traversal from sample POV */
620     if (ra != NULL) { /* initialize Hessian row buffer */
621 greg 2.28 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
622 greg 2.27 if (hessrow == NULL)
623     error(SYSTEM, memerrmsg);
624     memset(hessian, 0, sizeof(hessian));
625     } else if (pg == NULL) /* bogus call? */
626     return;
627     if (pg != NULL) { /* initialize form factor row buffer */
628 greg 2.28 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
629 greg 2.27 if (gradrow == NULL)
630     error(SYSTEM, memerrmsg);
631     memset(gradient, 0, sizeof(gradient));
632     }
633 greg 2.46 /* get vertex position flags */
634     vflags = vertex_flags(hp);
635 greg 2.27 /* compute first row of edges */
636     for (j = 0; j < hp->ns-1; j++) {
637 greg 2.46 comp_fftri(&fftr, hp, 0, j, VDB_X, vflags);
638 greg 2.27 if (hessrow != NULL)
639     comp_hessian(hessrow[j], &fftr, hp->rp->ron);
640     if (gradrow != NULL)
641     comp_gradient(gradrow[j], &fftr, hp->rp->ron);
642     }
643     /* sum each row of triangles */
644     for (i = 0; i < hp->ns-1; i++) {
645     FVECT hesscol[3]; /* compute first vertical edge */
646     FVECT gradcol;
647 greg 2.46 comp_fftri(&fftr, hp, i, 0, VDB_Y, vflags);
648 greg 2.27 if (hessrow != NULL)
649     comp_hessian(hesscol, &fftr, hp->rp->ron);
650     if (gradrow != NULL)
651     comp_gradient(gradcol, &fftr, hp->rp->ron);
652     for (j = 0; j < hp->ns-1; j++) {
653     FVECT hessdia[3]; /* compute triangle contributions */
654     FVECT graddia;
655 greg 2.46 double backg;
656     backg = back_ambval(hp, i, j, VDB_X, VDB_Y, vflags);
657 greg 2.27 /* diagonal (inner) edge */
658 greg 2.46 comp_fftri(&fftr, hp, i, j+1, VDB_xY, vflags);
659 greg 2.27 if (hessrow != NULL) {
660     comp_hessian(hessdia, &fftr, hp->rp->ron);
661     rev_hessian(hesscol);
662     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
663     }
664 greg 2.39 if (gradrow != NULL) {
665 greg 2.27 comp_gradient(graddia, &fftr, hp->rp->ron);
666     rev_gradient(gradcol);
667     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
668     }
669     /* initialize edge in next row */
670 greg 2.46 comp_fftri(&fftr, hp, i+1, j+1, VDB_x, vflags);
671 greg 2.27 if (hessrow != NULL)
672     comp_hessian(hessrow[j], &fftr, hp->rp->ron);
673     if (gradrow != NULL)
674     comp_gradient(gradrow[j], &fftr, hp->rp->ron);
675     /* new column edge & paired triangle */
676 greg 2.46 backg = back_ambval(hp, i+1, j+1, VDB_x, VDB_y, vflags);
677     comp_fftri(&fftr, hp, i, j+1, VDB_Y, vflags);
678 greg 2.27 if (hessrow != NULL) {
679     comp_hessian(hesscol, &fftr, hp->rp->ron);
680     rev_hessian(hessdia);
681     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
682     if (i < hp->ns-2)
683     rev_hessian(hessrow[j]);
684     }
685     if (gradrow != NULL) {
686     comp_gradient(gradcol, &fftr, hp->rp->ron);
687     rev_gradient(graddia);
688     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
689     if (i < hp->ns-2)
690     rev_gradient(gradrow[j]);
691     }
692     }
693     }
694     /* release row buffers */
695     if (hessrow != NULL) free(hessrow);
696     if (gradrow != NULL) free(gradrow);
697 greg 2.46 free(vflags);
698 greg 2.27
699     if (ra != NULL) /* extract eigenvectors & radii */
700     eigenvectors(uv, ra, hessian);
701 greg 2.32 if (pg != NULL) { /* tangential position gradient */
702     pg[0] = DOT(gradient, uv[0]);
703     pg[1] = DOT(gradient, uv[1]);
704 greg 2.27 }
705     }
706    
707    
708     /* Compute direction gradient from a hemispherical sampling */
709     static void
710     ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
711     {
712 greg 2.41 AMBSAMP *ap;
713     double dgsum[2];
714     int n;
715     FVECT vd;
716     double gfact;
717 greg 2.27
718 greg 2.29 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
719 greg 2.27 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
720     /* use vector for azimuth + 90deg */
721     VSUB(vd, ap->p, hp->rp->rop);
722 greg 2.29 /* brightness over cosine factor */
723     gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
724 greg 2.40 /* sine = proj_radius/vd_length */
725     dgsum[0] -= DOT(uv[1], vd) * gfact;
726     dgsum[1] += DOT(uv[0], vd) * gfact;
727 greg 2.26 }
728 greg 2.29 dg[0] = dgsum[0] / (hp->ns*hp->ns);
729     dg[1] = dgsum[1] / (hp->ns*hp->ns);
730 greg 2.26 }
731    
732 greg 2.27
733 greg 2.26 int
734     doambient( /* compute ambient component */
735     COLOR rcol, /* input/output color */
736     RAY *r,
737     double wt,
738 greg 2.27 FVECT uv[2], /* returned (optional) */
739     float ra[2], /* returned (optional) */
740     float pg[2], /* returned (optional) */
741     float dg[2] /* returned (optional) */
742 greg 2.26 )
743     {
744 greg 2.41 AMBHEMI *hp = inithemi(rcol, r, wt);
745 greg 2.45 int cnt;
746 greg 2.41 FVECT my_uv[2];
747     double d, K, acol[3];
748     AMBSAMP *ap;
749     int i, j;
750 greg 2.28 /* check/initialize */
751     if (hp == NULL)
752 greg 2.26 return(0);
753     if (uv != NULL)
754     memset(uv, 0, sizeof(FVECT)*2);
755     if (ra != NULL)
756     ra[0] = ra[1] = 0.0;
757     if (pg != NULL)
758     pg[0] = pg[1] = 0.0;
759     if (dg != NULL)
760     dg[0] = dg[1] = 0.0;
761     /* sample the hemisphere */
762     acol[0] = acol[1] = acol[2] = 0.0;
763 greg 2.45 cnt = 0;
764 greg 2.27 for (i = hp->ns; i--; )
765     for (j = hp->ns; j--; )
766 greg 2.28 if ((ap = ambsample(hp, i, j)) != NULL) {
767 greg 2.26 addcolor(acol, ap->v);
768     ++cnt;
769     }
770     if (!cnt) {
771     setcolor(rcol, 0.0, 0.0, 0.0);
772     free(hp);
773     return(0); /* no valid samples */
774     }
775 greg 2.41 if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */
776     copycolor(rcol, acol);
777     free(hp);
778     return(-1); /* return value w/o Hessian */
779     }
780     cnt = ambssamp*wt + 0.5; /* perform super-sampling? */
781     if (cnt > 0)
782     ambsupersamp(acol, hp, cnt);
783 greg 2.29 copycolor(rcol, acol); /* final indirect irradiance/PI */
784 greg 2.41 if ((ra == NULL) & (pg == NULL) & (dg == NULL)) {
785 greg 2.26 free(hp);
786     return(-1); /* no radius or gradient calc. */
787     }
788 greg 2.45 if ((d = bright(acol)) > FTINY) { /* normalize Y values */
789     d = 0.99*(hp->ns*hp->ns)/d;
790 greg 2.38 K = 0.01;
791 greg 2.45 } else { /* or fall back on geometric Hessian */
792 greg 2.38 K = 1.0;
793     pg = NULL;
794     dg = NULL;
795     }
796 greg 2.29 ap = hp->sa; /* relative Y channel from here on... */
797 greg 2.26 for (i = hp->ns*hp->ns; i--; ap++)
798 greg 2.38 colval(ap->v,CIEY) = bright(ap->v)*d + K;
799 greg 2.26
800     if (uv == NULL) /* make sure we have axis pointers */
801     uv = my_uv;
802     /* compute radii & pos. gradient */
803     ambHessian(hp, uv, ra, pg);
804 greg 2.29
805 greg 2.26 if (dg != NULL) /* compute direction gradient */
806     ambdirgrad(hp, uv, dg);
807 greg 2.29
808 greg 2.28 if (ra != NULL) { /* scale/clamp radii */
809 greg 2.35 if (pg != NULL) {
810     if (ra[0]*(d = fabs(pg[0])) > 1.0)
811     ra[0] = 1.0/d;
812     if (ra[1]*(d = fabs(pg[1])) > 1.0)
813     ra[1] = 1.0/d;
814     if (ra[0] > ra[1])
815     ra[0] = ra[1];
816     }
817 greg 2.29 if (ra[0] < minarad) {
818     ra[0] = minarad;
819     if (ra[1] < minarad)
820     ra[1] = minarad;
821     }
822     ra[0] *= d = 1.0/sqrt(sqrt(wt));
823 greg 2.26 if ((ra[1] *= d) > 2.0*ra[0])
824     ra[1] = 2.0*ra[0];
825 greg 2.28 if (ra[1] > maxarad) {
826     ra[1] = maxarad;
827     if (ra[0] > maxarad)
828     ra[0] = maxarad;
829     }
830 greg 2.35 if (pg != NULL) { /* cap gradient if necessary */
831     d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
832     if (d > 1.0) {
833     d = 1.0/sqrt(d);
834     pg[0] *= d;
835     pg[1] *= d;
836     }
837     }
838 greg 2.26 }
839     free(hp); /* clean up and return */
840     return(1);
841     }
842    
843    
844 greg 2.25 #else /* ! NEWAMB */
845 greg 1.1
846    
847 greg 2.15 void
848 greg 2.14 inithemi( /* initialize sampling hemisphere */
849 greg 2.23 AMBHEMI *hp,
850 greg 2.16 COLOR ac,
851 greg 2.14 RAY *r,
852     double wt
853     )
854 greg 1.1 {
855 greg 2.16 double d;
856 greg 2.23 int i;
857 greg 2.14 /* set number of divisions */
858 greg 2.16 if (ambacc <= FTINY &&
859 greg 2.20 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
860 greg 2.16 wt = d; /* avoid ray termination */
861     hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
862 greg 2.14 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
863     if (hp->nt < i)
864     hp->nt = i;
865     hp->np = PI * hp->nt + 0.5;
866     /* set number of super-samples */
867 greg 2.15 hp->ns = ambssamp * wt + 0.5;
868 greg 2.16 /* assign coefficient */
869 greg 2.14 copycolor(hp->acoef, ac);
870 greg 2.16 d = 1.0/(hp->nt*hp->np);
871     scalecolor(hp->acoef, d);
872 greg 2.14 /* make axes */
873     VCOPY(hp->uz, r->ron);
874     hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
875     for (i = 0; i < 3; i++)
876     if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
877     break;
878     if (i >= 3)
879     error(CONSISTENCY, "bad ray direction in inithemi");
880     hp->uy[i] = 1.0;
881     fcross(hp->ux, hp->uy, hp->uz);
882     normalize(hp->ux);
883     fcross(hp->uy, hp->uz, hp->ux);
884 greg 1.1 }
885    
886    
887 greg 2.9 int
888 greg 2.14 divsample( /* sample a division */
889 greg 2.23 AMBSAMP *dp,
890 greg 2.14 AMBHEMI *h,
891     RAY *r
892     )
893 greg 1.1 {
894     RAY ar;
895 greg 1.11 int hlist[3];
896     double spt[2];
897 greg 1.1 double xd, yd, zd;
898     double b2;
899     double phi;
900 greg 2.23 int i;
901 greg 2.15 /* ambient coefficient for weight */
902 greg 2.16 if (ambacc > FTINY)
903     setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
904     else
905     copycolor(ar.rcoef, h->acoef);
906 greg 2.14 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
907 greg 1.4 return(-1);
908 greg 2.17 if (ambacc > FTINY) {
909     multcolor(ar.rcoef, h->acoef);
910     scalecolor(ar.rcoef, 1./AVGREFL);
911     }
912 greg 1.1 hlist[0] = r->rno;
913     hlist[1] = dp->t;
914     hlist[2] = dp->p;
915 greg 1.13 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
916 greg 1.11 zd = sqrt((dp->t + spt[0])/h->nt);
917     phi = 2.0*PI * (dp->p + spt[1])/h->np;
918 gwlarson 2.8 xd = tcos(phi) * zd;
919     yd = tsin(phi) * zd;
920 greg 1.1 zd = sqrt(1.0 - zd*zd);
921 greg 1.2 for (i = 0; i < 3; i++)
922     ar.rdir[i] = xd*h->ux[i] +
923     yd*h->uy[i] +
924     zd*h->uz[i];
925 greg 2.22 checknorm(ar.rdir);
926 greg 1.2 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
927 greg 1.1 rayvalue(&ar);
928     ndims--;
929 greg 2.16 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
930 greg 1.1 addcolor(dp->v, ar.rcol);
931 greg 2.9 /* use rt to improve gradient calc */
932     if (ar.rt > FTINY && ar.rt < FHUGE)
933     dp->r += 1.0/ar.rt;
934 greg 1.1 /* (re)initialize error */
935     if (dp->n++) {
936     b2 = bright(dp->v)/dp->n - bright(ar.rcol);
937     b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
938     dp->k = b2/(dp->n*dp->n);
939     } else
940     dp->k = 0.0;
941 greg 1.4 return(0);
942 greg 1.1 }
943    
944    
945 greg 2.14 static int
946     ambcmp( /* decreasing order */
947     const void *p1,
948     const void *p2
949     )
950     {
951     const AMBSAMP *d1 = (const AMBSAMP *)p1;
952     const AMBSAMP *d2 = (const AMBSAMP *)p2;
953    
954     if (d1->k < d2->k)
955     return(1);
956     if (d1->k > d2->k)
957     return(-1);
958     return(0);
959     }
960    
961    
962     static int
963     ambnorm( /* standard order */
964     const void *p1,
965     const void *p2
966     )
967     {
968     const AMBSAMP *d1 = (const AMBSAMP *)p1;
969     const AMBSAMP *d2 = (const AMBSAMP *)p2;
970 greg 2.23 int c;
971 greg 2.14
972     if ( (c = d1->t - d2->t) )
973     return(c);
974     return(d1->p - d2->p);
975     }
976    
977    
978 greg 1.1 double
979 greg 2.14 doambient( /* compute ambient component */
980 greg 2.23 COLOR rcol,
981 greg 2.14 RAY *r,
982     double wt,
983     FVECT pg,
984     FVECT dg
985     )
986 greg 1.1 {
987 greg 2.24 double b, d=0;
988 greg 1.1 AMBHEMI hemi;
989     AMBSAMP *div;
990     AMBSAMP dnew;
991 greg 2.23 double acol[3];
992     AMBSAMP *dp;
993 greg 1.1 double arad;
994 greg 2.19 int divcnt;
995 greg 2.23 int i, j;
996 greg 1.1 /* initialize hemisphere */
997 greg 2.23 inithemi(&hemi, rcol, r, wt);
998 greg 2.19 divcnt = hemi.nt * hemi.np;
999 greg 2.17 /* initialize */
1000     if (pg != NULL)
1001     pg[0] = pg[1] = pg[2] = 0.0;
1002     if (dg != NULL)
1003     dg[0] = dg[1] = dg[2] = 0.0;
1004 greg 2.23 setcolor(rcol, 0.0, 0.0, 0.0);
1005 greg 2.19 if (divcnt == 0)
1006 greg 1.1 return(0.0);
1007 greg 2.14 /* allocate super-samples */
1008 greg 2.15 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
1009 greg 2.19 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
1010 greg 1.1 if (div == NULL)
1011     error(SYSTEM, "out of memory in doambient");
1012     } else
1013     div = NULL;
1014     /* sample the divisions */
1015     arad = 0.0;
1016 greg 2.23 acol[0] = acol[1] = acol[2] = 0.0;
1017 greg 1.1 if ((dp = div) == NULL)
1018     dp = &dnew;
1019 greg 2.19 divcnt = 0;
1020 greg 1.1 for (i = 0; i < hemi.nt; i++)
1021     for (j = 0; j < hemi.np; j++) {
1022     dp->t = i; dp->p = j;
1023     setcolor(dp->v, 0.0, 0.0, 0.0);
1024 greg 1.2 dp->r = 0.0;
1025 greg 1.1 dp->n = 0;
1026 greg 2.16 if (divsample(dp, &hemi, r) < 0) {
1027 greg 2.19 if (div != NULL)
1028     dp++;
1029 greg 2.16 continue;
1030     }
1031 greg 2.6 arad += dp->r;
1032 greg 2.19 divcnt++;
1033 greg 1.1 if (div != NULL)
1034     dp++;
1035 greg 2.6 else
1036 greg 1.1 addcolor(acol, dp->v);
1037     }
1038 greg 2.21 if (!divcnt) {
1039     if (div != NULL)
1040     free((void *)div);
1041 greg 2.19 return(0.0); /* no samples taken */
1042 greg 2.21 }
1043 greg 2.19 if (divcnt < hemi.nt*hemi.np) {
1044     pg = dg = NULL; /* incomplete sampling */
1045     hemi.ns = 0;
1046     } else if (arad > FTINY && divcnt/arad < minarad) {
1047 greg 2.15 hemi.ns = 0; /* close enough */
1048 greg 2.19 } else if (hemi.ns > 0) { /* else perform super-sampling? */
1049 greg 1.4 comperrs(div, &hemi); /* compute errors */
1050 greg 2.19 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
1051 greg 1.1 /* super-sample */
1052 greg 2.15 for (i = hemi.ns; i > 0; i--) {
1053 schorsch 2.11 dnew = *div;
1054 greg 2.16 if (divsample(&dnew, &hemi, r) < 0) {
1055     dp++;
1056     continue;
1057     }
1058     dp = div; /* reinsert */
1059 greg 2.19 j = divcnt < i ? divcnt : i;
1060 greg 1.1 while (--j > 0 && dnew.k < dp[1].k) {
1061 schorsch 2.11 *dp = *(dp+1);
1062 greg 1.1 dp++;
1063     }
1064 schorsch 2.11 *dp = dnew;
1065 greg 1.1 }
1066 greg 1.2 if (pg != NULL || dg != NULL) /* restore order */
1067 greg 2.19 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
1068 greg 1.1 }
1069     /* compute returned values */
1070 greg 1.3 if (div != NULL) {
1071 greg 2.19 arad = 0.0; /* note: divcnt may be < nt*np */
1072     for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
1073 greg 1.3 arad += dp->r;
1074     if (dp->n > 1) {
1075     b = 1.0/dp->n;
1076     scalecolor(dp->v, b);
1077     dp->r *= b;
1078     dp->n = 1;
1079     }
1080     addcolor(acol, dp->v);
1081     }
1082 greg 1.5 b = bright(acol);
1083 greg 1.6 if (b > FTINY) {
1084 greg 2.17 b = 1.0/b; /* compute & normalize gradient(s) */
1085 greg 1.6 if (pg != NULL) {
1086     posgradient(pg, div, &hemi);
1087     for (i = 0; i < 3; i++)
1088     pg[i] *= b;
1089     }
1090     if (dg != NULL) {
1091     dirgradient(dg, div, &hemi);
1092     for (i = 0; i < 3; i++)
1093     dg[i] *= b;
1094     }
1095 greg 1.5 }
1096 greg 2.9 free((void *)div);
1097 greg 1.3 }
1098 greg 2.23 copycolor(rcol, acol);
1099 greg 1.1 if (arad <= FTINY)
1100 greg 1.16 arad = maxarad;
1101 greg 2.3 else
1102 greg 2.19 arad = (divcnt+hemi.ns)/arad;
1103 greg 1.15 if (pg != NULL) { /* reduce radius if gradient large */
1104     d = DOT(pg,pg);
1105     if (d*arad*arad > 1.0)
1106     arad = 1.0/sqrt(d);
1107     }
1108 greg 1.16 if (arad < minarad) {
1109 greg 1.1 arad = minarad;
1110 greg 1.16 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
1111     d = 1.0/arad/sqrt(d);
1112     for (i = 0; i < 3; i++)
1113     pg[i] *= d;
1114     }
1115     }
1116 greg 2.3 if ((arad /= sqrt(wt)) > maxarad)
1117     arad = maxarad;
1118     return(arad);
1119 greg 1.1 }
1120    
1121    
1122 greg 2.9 void
1123 greg 2.14 comperrs( /* compute initial error estimates */
1124     AMBSAMP *da, /* assumes standard ordering */
1125 greg 2.23 AMBHEMI *hp
1126 greg 2.14 )
1127 greg 1.1 {
1128     double b, b2;
1129     int i, j;
1130 greg 2.23 AMBSAMP *dp;
1131 greg 1.1 /* sum differences from neighbors */
1132     dp = da;
1133     for (i = 0; i < hp->nt; i++)
1134     for (j = 0; j < hp->np; j++) {
1135 greg 1.6 #ifdef DEBUG
1136     if (dp->t != i || dp->p != j)
1137     error(CONSISTENCY,
1138     "division order in comperrs");
1139     #endif
1140 greg 1.1 b = bright(dp[0].v);
1141     if (i > 0) { /* from above */
1142     b2 = bright(dp[-hp->np].v) - b;
1143     b2 *= b2 * 0.25;
1144     dp[0].k += b2;
1145     dp[-hp->np].k += b2;
1146     }
1147     if (j > 0) { /* from behind */
1148     b2 = bright(dp[-1].v) - b;
1149     b2 *= b2 * 0.25;
1150     dp[0].k += b2;
1151     dp[-1].k += b2;
1152 greg 1.4 } else { /* around */
1153     b2 = bright(dp[hp->np-1].v) - b;
1154 greg 1.1 b2 *= b2 * 0.25;
1155     dp[0].k += b2;
1156 greg 1.4 dp[hp->np-1].k += b2;
1157 greg 1.1 }
1158     dp++;
1159     }
1160     /* divide by number of neighbors */
1161     dp = da;
1162     for (j = 0; j < hp->np; j++) /* top row */
1163     (dp++)->k *= 1.0/3.0;
1164     if (hp->nt < 2)
1165     return;
1166     for (i = 1; i < hp->nt-1; i++) /* central region */
1167     for (j = 0; j < hp->np; j++)
1168     (dp++)->k *= 0.25;
1169     for (j = 0; j < hp->np; j++) /* bottom row */
1170     (dp++)->k *= 1.0/3.0;
1171     }
1172    
1173    
1174 greg 2.9 void
1175 greg 2.14 posgradient( /* compute position gradient */
1176     FVECT gv,
1177     AMBSAMP *da, /* assumes standard ordering */
1178 greg 2.23 AMBHEMI *hp
1179 greg 2.14 )
1180 greg 1.1 {
1181 greg 2.23 int i, j;
1182 greg 2.2 double nextsine, lastsine, b, d;
1183 greg 1.2 double mag0, mag1;
1184     double phi, cosp, sinp, xd, yd;
1185 greg 2.23 AMBSAMP *dp;
1186 greg 1.2
1187     xd = yd = 0.0;
1188     for (j = 0; j < hp->np; j++) {
1189     dp = da + j;
1190     mag0 = mag1 = 0.0;
1191 greg 2.2 lastsine = 0.0;
1192 greg 1.2 for (i = 0; i < hp->nt; i++) {
1193     #ifdef DEBUG
1194     if (dp->t != i || dp->p != j)
1195     error(CONSISTENCY,
1196     "division order in posgradient");
1197     #endif
1198     b = bright(dp->v);
1199     if (i > 0) {
1200     d = dp[-hp->np].r;
1201     if (dp[0].r > d) d = dp[0].r;
1202 greg 2.2 /* sin(t)*cos(t)^2 */
1203     d *= lastsine * (1.0 - (double)i/hp->nt);
1204 greg 1.2 mag0 += d*(b - bright(dp[-hp->np].v));
1205     }
1206 greg 2.2 nextsine = sqrt((double)(i+1)/hp->nt);
1207 greg 1.2 if (j > 0) {
1208     d = dp[-1].r;
1209     if (dp[0].r > d) d = dp[0].r;
1210 greg 2.2 mag1 += d * (nextsine - lastsine) *
1211     (b - bright(dp[-1].v));
1212 greg 1.2 } else {
1213     d = dp[hp->np-1].r;
1214     if (dp[0].r > d) d = dp[0].r;
1215 greg 2.2 mag1 += d * (nextsine - lastsine) *
1216     (b - bright(dp[hp->np-1].v));
1217 greg 1.2 }
1218     dp += hp->np;
1219 greg 2.2 lastsine = nextsine;
1220 greg 1.2 }
1221 greg 2.2 mag0 *= 2.0*PI / hp->np;
1222 greg 1.2 phi = 2.0*PI * (double)j/hp->np;
1223 gwlarson 2.8 cosp = tcos(phi); sinp = tsin(phi);
1224 greg 1.2 xd += mag0*cosp - mag1*sinp;
1225     yd += mag0*sinp + mag1*cosp;
1226     }
1227     for (i = 0; i < 3; i++)
1228 greg 2.16 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
1229 greg 1.1 }
1230    
1231    
1232 greg 2.9 void
1233 greg 2.14 dirgradient( /* compute direction gradient */
1234     FVECT gv,
1235     AMBSAMP *da, /* assumes standard ordering */
1236 greg 2.23 AMBHEMI *hp
1237 greg 2.14 )
1238 greg 1.1 {
1239 greg 2.23 int i, j;
1240 greg 1.2 double mag;
1241     double phi, xd, yd;
1242 greg 2.23 AMBSAMP *dp;
1243 greg 1.2
1244     xd = yd = 0.0;
1245     for (j = 0; j < hp->np; j++) {
1246     dp = da + j;
1247     mag = 0.0;
1248     for (i = 0; i < hp->nt; i++) {
1249     #ifdef DEBUG
1250     if (dp->t != i || dp->p != j)
1251     error(CONSISTENCY,
1252     "division order in dirgradient");
1253     #endif
1254 greg 2.2 /* tan(t) */
1255     mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
1256 greg 1.2 dp += hp->np;
1257     }
1258     phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1259 gwlarson 2.8 xd += mag * tcos(phi);
1260     yd += mag * tsin(phi);
1261 greg 1.2 }
1262     for (i = 0; i < 3; i++)
1263 greg 2.16 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1264 greg 1.1 }
1265 greg 2.25
1266     #endif /* ! NEWAMB */