ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.45
Committed: Thu May 1 22:34:25 2014 UTC (10 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.44: +7 -7 lines
Log Message:
Fixed bug introduced in change to support -as option (-DNEWAMB)

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.45 static const char RCSid[] = "$Id: ambcomp.c,v 2.44 2014/05/01 16:06:11 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * Routines to compute "ambient" values using Monte Carlo
6 greg 2.9 *
7 greg 2.27 * Hessian calculations based on "Practical Hessian-Based Error Control
8     * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9     * from ACM SIGGRAPH Asia 2012 conference proceedings.
10     *
11 greg 2.9 * Declarations of external symbols in ambient.h
12     */
13    
14 greg 2.10 #include "copyright.h"
15 greg 1.1
16     #include "ray.h"
17 greg 2.25 #include "ambient.h"
18     #include "random.h"
19 greg 1.1
20 greg 2.25 #ifdef NEWAMB
21 greg 1.1
22 greg 2.26 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
23    
24     typedef struct {
25 greg 2.44 COLOR v; /* hemisphere sample value */
26     FVECT p; /* intersection point */
27     } AMBSAMP; /* sample value */
28    
29     typedef struct {
30 greg 2.26 RAY *rp; /* originating ray sample */
31 greg 2.27 FVECT ux, uy; /* tangent axis unit vectors */
32 greg 2.26 int ns; /* number of samples per axis */
33     COLOR acoef; /* division contribution coefficient */
34 greg 2.44 AMBSAMP sa[1]; /* sample array (extends struct) */
35 greg 2.26 } AMBHEMI; /* ambient sample hemisphere */
36    
37 greg 2.43 #define ambsam(h,i,j) (h)->sa[(i)*(h)->ns + (j)]
38 greg 2.26
39 greg 2.27 typedef struct {
40 greg 2.35 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
41     double I1, I2;
42 greg 2.27 } FFTRI; /* vectors and coefficients for Hessian calculation */
43    
44 greg 2.26
45     static AMBHEMI *
46     inithemi( /* initialize sampling hemisphere */
47     COLOR ac,
48     RAY *r,
49     double wt
50     )
51     {
52     AMBHEMI *hp;
53     double d;
54     int n, i;
55     /* set number of divisions */
56     if (ambacc <= FTINY &&
57     wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
58     wt = d; /* avoid ray termination */
59     n = sqrt(ambdiv * wt) + 0.5;
60 greg 2.27 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
61 greg 2.26 if (n < i)
62     n = i;
63     /* allocate sampling array */
64 greg 2.41 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
65 greg 2.26 if (hp == NULL)
66     return(NULL);
67     hp->rp = r;
68     hp->ns = n;
69     /* assign coefficient */
70     copycolor(hp->acoef, ac);
71     d = 1.0/(n*n);
72     scalecolor(hp->acoef, d);
73 greg 2.28 /* make tangent plane axes */
74 greg 2.38 hp->uy[0] = 0.5 - frandom();
75     hp->uy[1] = 0.5 - frandom();
76     hp->uy[2] = 0.5 - frandom();
77 greg 2.36 for (i = 3; i--; )
78 greg 2.37 if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6))
79     break;
80     if (i < 0)
81     error(CONSISTENCY, "bad ray direction in inithemi");
82     hp->uy[i] = 1.0;
83 greg 2.27 VCROSS(hp->ux, hp->uy, r->ron);
84 greg 2.26 normalize(hp->ux);
85 greg 2.27 VCROSS(hp->uy, r->ron, hp->ux);
86 greg 2.26 /* we're ready to sample */
87     return(hp);
88     }
89    
90    
91 greg 2.43 /* Sample ambient division and apply weighting coefficient */
92 greg 2.41 static int
93 greg 2.43 getambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n)
94 greg 2.26 {
95 greg 2.41 int hlist[3], ii;
96     double spt[2], zd;
97 greg 2.26 /* ambient coefficient for weight */
98     if (ambacc > FTINY)
99 greg 2.41 setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL);
100 greg 2.26 else
101 greg 2.41 copycolor(arp->rcoef, hp->acoef);
102     if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0)
103     return(0);
104 greg 2.26 if (ambacc > FTINY) {
105 greg 2.41 multcolor(arp->rcoef, hp->acoef);
106     scalecolor(arp->rcoef, 1./AVGREFL);
107     }
108     hlist[0] = hp->rp->rno;
109     hlist[1] = i;
110     hlist[2] = j;
111     multisamp(spt, 2, urand(ilhash(hlist,3)+n));
112     if (!n) { /* avoid border samples for n==0 */
113     if ((spt[0] < 0.1) | (spt[0] > 0.9))
114     spt[0] = 0.1 + 0.8*frandom();
115     if ((spt[1] < 0.1) | (spt[1] > 0.9))
116     spt[1] = 0.1 + 0.8*frandom();
117 greg 2.26 }
118 greg 2.41 SDsquare2disk(spt, (i+spt[0])/hp->ns, (j+spt[1])/hp->ns);
119 greg 2.26 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
120     for (ii = 3; ii--; )
121 greg 2.41 arp->rdir[ii] = spt[0]*hp->ux[ii] +
122 greg 2.26 spt[1]*hp->uy[ii] +
123     zd*hp->rp->ron[ii];
124 greg 2.41 checknorm(arp->rdir);
125 greg 2.43 dimlist[ndims++] = i*hp->ns + j + 90171;
126     rayvalue(arp); /* evaluate ray */
127     ndims--; /* apply coefficient */
128     multcolor(arp->rcol, arp->rcoef);
129 greg 2.41 return(1);
130     }
131    
132    
133     static AMBSAMP *
134 greg 2.43 ambsample( /* initial ambient division sample */
135 greg 2.41 AMBHEMI *hp,
136     int i,
137     int j
138     )
139     {
140 greg 2.43 AMBSAMP *ap = &ambsam(hp,i,j);
141 greg 2.41 RAY ar;
142     /* generate hemispherical sample */
143 greg 2.43 if (!getambsamp(&ar, hp, i, j, 0))
144 greg 2.41 goto badsample;
145 greg 2.34 /* limit vertex distance */
146     if (ar.rt > 10.0*thescene.cusize)
147     ar.rt = 10.0*thescene.cusize;
148 greg 2.31 else if (ar.rt <= FTINY) /* should never happen! */
149     goto badsample;
150     VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
151 greg 2.26 copycolor(ap->v, ar.rcol);
152 greg 2.28 return(ap);
153 greg 2.31 badsample:
154     setcolor(ap->v, 0., 0., 0.);
155     VCOPY(ap->p, hp->rp->rop);
156     return(NULL);
157 greg 2.26 }
158    
159    
160 greg 2.41 /* Estimate errors based on ambient division differences */
161     static float *
162     getambdiffs(AMBHEMI *hp)
163     {
164 greg 2.45 float *earr = (float *)calloc(hp->ns*hp->ns, sizeof(float));
165 greg 2.41 float *ep;
166 greg 2.42 AMBSAMP *ap;
167 greg 2.41 double b, d2;
168     int i, j;
169    
170     if (earr == NULL) /* out of memory? */
171     return(NULL);
172     /* compute squared neighbor diffs */
173 greg 2.42 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
174     for (j = 0; j < hp->ns; j++, ap++, ep++) {
175     b = bright(ap[0].v);
176 greg 2.41 if (i) { /* from above */
177 greg 2.42 d2 = b - bright(ap[-hp->ns].v);
178 greg 2.41 d2 *= d2;
179     ep[0] += d2;
180     ep[-hp->ns] += d2;
181     }
182     if (j) { /* from behind */
183 greg 2.42 d2 = b - bright(ap[-1].v);
184 greg 2.41 d2 *= d2;
185     ep[0] += d2;
186     ep[-1] += d2;
187     }
188     }
189     /* correct for number of neighbors */
190     earr[0] *= 2.f;
191     earr[hp->ns-1] *= 2.f;
192     earr[(hp->ns-1)*hp->ns] *= 2.f;
193     earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f;
194     for (i = 1; i < hp->ns-1; i++) {
195     earr[i*hp->ns] *= 4./3.;
196     earr[i*hp->ns + hp->ns-1] *= 4./3.;
197     }
198     for (j = 1; j < hp->ns-1; j++) {
199     earr[j] *= 4./3.;
200     earr[(hp->ns-1)*hp->ns + j] *= 4./3.;
201     }
202     return(earr);
203     }
204    
205    
206 greg 2.43 /* Perform super-sampling on hemisphere (introduces bias) */
207 greg 2.41 static void
208     ambsupersamp(double acol[3], AMBHEMI *hp, int cnt)
209     {
210     float *earr = getambdiffs(hp);
211     double e2sum = 0;
212     AMBSAMP *ap;
213     RAY ar;
214     COLOR asum;
215     float *ep;
216     int i, j, n;
217    
218     if (earr == NULL) /* just skip calc. if no memory */
219     return;
220     /* add up estimated variances */
221     for (ep = earr + hp->ns*hp->ns; ep-- > earr; )
222     e2sum += *ep;
223     ep = earr; /* perform super-sampling */
224     for (ap = hp->sa, i = 0; i < hp->ns; i++)
225     for (j = 0; j < hp->ns; j++, ap++) {
226     int nss = *ep/e2sum*cnt + frandom();
227     setcolor(asum, 0., 0., 0.);
228     for (n = 1; n <= nss; n++) {
229 greg 2.43 if (!getambsamp(&ar, hp, i, j, n)) {
230 greg 2.41 nss = n-1;
231     break;
232     }
233     addcolor(asum, ar.rcol);
234     }
235     if (nss) { /* update returned ambient value */
236     const double ssf = 1./(nss + 1);
237     for (n = 3; n--; )
238     acol[n] += ssf*colval(asum,n) +
239     (ssf - 1.)*colval(ap->v,n);
240     }
241     e2sum -= *ep++; /* update remainders */
242     cnt -= nss;
243     }
244     free(earr);
245     }
246    
247    
248 greg 2.27 /* Compute vectors and coefficients for Hessian/gradient calcs */
249     static void
250 greg 2.31 comp_fftri(FFTRI *ftp, FVECT ap0, FVECT ap1, FVECT rop)
251 greg 2.27 {
252 greg 2.35 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
253 greg 2.30 int i;
254 greg 2.27
255     VSUB(ftp->r_i, ap0, rop);
256     VSUB(ftp->r_i1, ap1, rop);
257     VSUB(ftp->e_i, ap1, ap0);
258 greg 2.35 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
259     rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
260 greg 2.27 dot_e = DOT(ftp->e_i,ftp->e_i);
261     dot_er = DOT(ftp->e_i, ftp->r_i);
262 greg 2.32 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
263     rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
264     ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
265 greg 2.35 sqrt( rdot_cp );
266 greg 2.32 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
267 greg 2.35 dot_e*ftp->I1 )*0.5*rdot_cp;
268 greg 2.32 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
269 greg 2.30 for (i = 3; i--; )
270     ftp->rI2_eJ2[i] = ftp->I2*ftp->r_i[i] + J2*ftp->e_i[i];
271 greg 2.27 }
272    
273    
274 greg 2.28 /* Compose 3x3 matrix from two vectors */
275 greg 2.27 static void
276     compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
277     {
278     mat[0][0] = 2.0*va[0]*vb[0];
279     mat[1][1] = 2.0*va[1]*vb[1];
280     mat[2][2] = 2.0*va[2]*vb[2];
281     mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
282     mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
283     mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
284     }
285    
286    
287     /* Compute partial 3x3 Hessian matrix for edge */
288     static void
289     comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
290     {
291 greg 2.35 FVECT ncp;
292 greg 2.27 FVECT m1[3], m2[3], m3[3], m4[3];
293     double d1, d2, d3, d4;
294     double I3, J3, K3;
295     int i, j;
296     /* compute intermediate coefficients */
297     d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
298     d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
299     d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
300     d4 = DOT(ftp->e_i, ftp->r_i);
301 greg 2.35 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
302     / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
303 greg 2.27 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
304     K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
305     /* intermediate matrices */
306 greg 2.35 VCROSS(ncp, nrm, ftp->e_i);
307     compose_matrix(m1, ncp, ftp->rI2_eJ2);
308 greg 2.27 compose_matrix(m2, ftp->r_i, ftp->r_i);
309     compose_matrix(m3, ftp->e_i, ftp->e_i);
310     compose_matrix(m4, ftp->r_i, ftp->e_i);
311 greg 2.35 d1 = DOT(nrm, ftp->rcp);
312 greg 2.27 d2 = -d1*ftp->I2;
313     d1 *= 2.0;
314     for (i = 3; i--; ) /* final matrix sum */
315     for (j = 3; j--; ) {
316     hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
317     2.0*J3*m4[i][j] );
318     hess[i][j] += d2*(i==j);
319 greg 2.32 hess[i][j] *= 1.0/PI;
320 greg 2.27 }
321     }
322    
323    
324     /* Reverse hessian calculation result for edge in other direction */
325     static void
326     rev_hessian(FVECT hess[3])
327     {
328     int i;
329    
330     for (i = 3; i--; ) {
331     hess[i][0] = -hess[i][0];
332     hess[i][1] = -hess[i][1];
333     hess[i][2] = -hess[i][2];
334     }
335     }
336    
337    
338     /* Add to radiometric Hessian from the given triangle */
339     static void
340     add2hessian(FVECT hess[3], FVECT ehess1[3],
341     FVECT ehess2[3], FVECT ehess3[3], COLORV v)
342     {
343     int i, j;
344    
345     for (i = 3; i--; )
346     for (j = 3; j--; )
347     hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
348     }
349    
350    
351     /* Compute partial displacement form factor gradient for edge */
352     static void
353     comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
354     {
355 greg 2.35 FVECT ncp;
356 greg 2.27 double f1;
357     int i;
358    
359 greg 2.35 f1 = 2.0*DOT(nrm, ftp->rcp);
360     VCROSS(ncp, nrm, ftp->e_i);
361 greg 2.27 for (i = 3; i--; )
362 greg 2.35 grad[i] = (-0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
363 greg 2.27 }
364    
365    
366     /* Reverse gradient calculation result for edge in other direction */
367     static void
368     rev_gradient(FVECT grad)
369     {
370     grad[0] = -grad[0];
371     grad[1] = -grad[1];
372     grad[2] = -grad[2];
373     }
374    
375    
376     /* Add to displacement gradient from the given triangle */
377     static void
378     add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, COLORV v)
379     {
380     int i;
381    
382     for (i = 3; i--; )
383     grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
384     }
385    
386    
387     /* Return brightness of furthest ambient sample */
388     static COLORV
389 greg 2.41 back_ambval(AMBSAMP *ap1, AMBSAMP *ap2, AMBSAMP *ap3, FVECT orig)
390 greg 2.27 {
391     COLORV vback;
392     FVECT vec;
393     double d2, d2best;
394    
395     VSUB(vec, ap1->p, orig);
396     d2best = DOT(vec,vec);
397 greg 2.29 vback = colval(ap1->v,CIEY);
398 greg 2.27 VSUB(vec, ap2->p, orig);
399     d2 = DOT(vec,vec);
400     if (d2 > d2best) {
401     d2best = d2;
402 greg 2.29 vback = colval(ap2->v,CIEY);
403 greg 2.27 }
404     VSUB(vec, ap3->p, orig);
405     d2 = DOT(vec,vec);
406     if (d2 > d2best)
407 greg 2.29 return(colval(ap3->v,CIEY));
408 greg 2.27 return(vback);
409     }
410    
411    
412     /* Compute anisotropic radii and eigenvector directions */
413     static int
414     eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
415     {
416     double hess2[2][2];
417     FVECT a, b;
418     double evalue[2], slope1, xmag1;
419     int i;
420     /* project Hessian to sample plane */
421     for (i = 3; i--; ) {
422     a[i] = DOT(hessian[i], uv[0]);
423     b[i] = DOT(hessian[i], uv[1]);
424     }
425     hess2[0][0] = DOT(uv[0], a);
426     hess2[0][1] = DOT(uv[0], b);
427     hess2[1][0] = DOT(uv[1], a);
428     hess2[1][1] = DOT(uv[1], b);
429 greg 2.38 /* compute eigenvalue(s) */
430     i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
431     hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
432     if (i == 1) /* double-root (circle) */
433     evalue[1] = evalue[0];
434     if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
435 greg 2.35 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) )
436 greg 2.27 error(INTERNAL, "bad eigenvalue calculation");
437    
438     if (evalue[0] > evalue[1]) {
439 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[0]));
440     ra[1] = sqrt(sqrt(4.0/evalue[1]));
441 greg 2.27 slope1 = evalue[1];
442     } else {
443 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[1]));
444     ra[1] = sqrt(sqrt(4.0/evalue[0]));
445 greg 2.27 slope1 = evalue[0];
446     }
447     /* compute unit eigenvectors */
448     if (fabs(hess2[0][1]) <= FTINY)
449     return; /* uv OK as is */
450     slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
451     xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
452     for (i = 3; i--; ) {
453     b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
454     a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
455     }
456     VCOPY(uv[0], a);
457     VCOPY(uv[1], b);
458     }
459    
460    
461 greg 2.26 static void
462     ambHessian( /* anisotropic radii & pos. gradient */
463     AMBHEMI *hp,
464     FVECT uv[2], /* returned */
465 greg 2.28 float ra[2], /* returned (optional) */
466     float pg[2] /* returned (optional) */
467 greg 2.26 )
468     {
469 greg 2.27 static char memerrmsg[] = "out of memory in ambHessian()";
470     FVECT (*hessrow)[3] = NULL;
471     FVECT *gradrow = NULL;
472     FVECT hessian[3];
473     FVECT gradient;
474     FFTRI fftr;
475     int i, j;
476     /* be sure to assign unit vectors */
477     VCOPY(uv[0], hp->ux);
478     VCOPY(uv[1], hp->uy);
479     /* clock-wise vertex traversal from sample POV */
480     if (ra != NULL) { /* initialize Hessian row buffer */
481 greg 2.28 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
482 greg 2.27 if (hessrow == NULL)
483     error(SYSTEM, memerrmsg);
484     memset(hessian, 0, sizeof(hessian));
485     } else if (pg == NULL) /* bogus call? */
486     return;
487     if (pg != NULL) { /* initialize form factor row buffer */
488 greg 2.28 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
489 greg 2.27 if (gradrow == NULL)
490     error(SYSTEM, memerrmsg);
491     memset(gradient, 0, sizeof(gradient));
492     }
493     /* compute first row of edges */
494     for (j = 0; j < hp->ns-1; j++) {
495 greg 2.43 comp_fftri(&fftr, ambsam(hp,0,j).p,
496     ambsam(hp,0,j+1).p, hp->rp->rop);
497 greg 2.27 if (hessrow != NULL)
498     comp_hessian(hessrow[j], &fftr, hp->rp->ron);
499     if (gradrow != NULL)
500     comp_gradient(gradrow[j], &fftr, hp->rp->ron);
501     }
502     /* sum each row of triangles */
503     for (i = 0; i < hp->ns-1; i++) {
504     FVECT hesscol[3]; /* compute first vertical edge */
505     FVECT gradcol;
506 greg 2.43 comp_fftri(&fftr, ambsam(hp,i,0).p,
507     ambsam(hp,i+1,0).p, hp->rp->rop);
508 greg 2.27 if (hessrow != NULL)
509     comp_hessian(hesscol, &fftr, hp->rp->ron);
510     if (gradrow != NULL)
511     comp_gradient(gradcol, &fftr, hp->rp->ron);
512     for (j = 0; j < hp->ns-1; j++) {
513     FVECT hessdia[3]; /* compute triangle contributions */
514     FVECT graddia;
515     COLORV backg;
516 greg 2.43 backg = back_ambval(&ambsam(hp,i,j), &ambsam(hp,i,j+1),
517     &ambsam(hp,i+1,j), hp->rp->rop);
518 greg 2.27 /* diagonal (inner) edge */
519 greg 2.43 comp_fftri(&fftr, ambsam(hp,i,j+1).p,
520     ambsam(hp,i+1,j).p, hp->rp->rop);
521 greg 2.27 if (hessrow != NULL) {
522     comp_hessian(hessdia, &fftr, hp->rp->ron);
523     rev_hessian(hesscol);
524     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
525     }
526 greg 2.39 if (gradrow != NULL) {
527 greg 2.27 comp_gradient(graddia, &fftr, hp->rp->ron);
528     rev_gradient(gradcol);
529     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
530     }
531     /* initialize edge in next row */
532 greg 2.43 comp_fftri(&fftr, ambsam(hp,i+1,j+1).p,
533     ambsam(hp,i+1,j).p, hp->rp->rop);
534 greg 2.27 if (hessrow != NULL)
535     comp_hessian(hessrow[j], &fftr, hp->rp->ron);
536     if (gradrow != NULL)
537     comp_gradient(gradrow[j], &fftr, hp->rp->ron);
538     /* new column edge & paired triangle */
539 greg 2.43 backg = back_ambval(&ambsam(hp,i,j+1), &ambsam(hp,i+1,j+1),
540     &ambsam(hp,i+1,j), hp->rp->rop);
541     comp_fftri(&fftr, ambsam(hp,i,j+1).p, ambsam(hp,i+1,j+1).p,
542 greg 2.27 hp->rp->rop);
543     if (hessrow != NULL) {
544     comp_hessian(hesscol, &fftr, hp->rp->ron);
545     rev_hessian(hessdia);
546     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
547     if (i < hp->ns-2)
548     rev_hessian(hessrow[j]);
549     }
550     if (gradrow != NULL) {
551     comp_gradient(gradcol, &fftr, hp->rp->ron);
552     rev_gradient(graddia);
553     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
554     if (i < hp->ns-2)
555     rev_gradient(gradrow[j]);
556     }
557     }
558     }
559     /* release row buffers */
560     if (hessrow != NULL) free(hessrow);
561     if (gradrow != NULL) free(gradrow);
562    
563     if (ra != NULL) /* extract eigenvectors & radii */
564     eigenvectors(uv, ra, hessian);
565 greg 2.32 if (pg != NULL) { /* tangential position gradient */
566     pg[0] = DOT(gradient, uv[0]);
567     pg[1] = DOT(gradient, uv[1]);
568 greg 2.27 }
569     }
570    
571    
572     /* Compute direction gradient from a hemispherical sampling */
573     static void
574     ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
575     {
576 greg 2.41 AMBSAMP *ap;
577     double dgsum[2];
578     int n;
579     FVECT vd;
580     double gfact;
581 greg 2.27
582 greg 2.29 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
583 greg 2.27 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
584     /* use vector for azimuth + 90deg */
585     VSUB(vd, ap->p, hp->rp->rop);
586 greg 2.29 /* brightness over cosine factor */
587     gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
588 greg 2.40 /* sine = proj_radius/vd_length */
589     dgsum[0] -= DOT(uv[1], vd) * gfact;
590     dgsum[1] += DOT(uv[0], vd) * gfact;
591 greg 2.26 }
592 greg 2.29 dg[0] = dgsum[0] / (hp->ns*hp->ns);
593     dg[1] = dgsum[1] / (hp->ns*hp->ns);
594 greg 2.26 }
595    
596 greg 2.27
597 greg 2.26 int
598     doambient( /* compute ambient component */
599     COLOR rcol, /* input/output color */
600     RAY *r,
601     double wt,
602 greg 2.27 FVECT uv[2], /* returned (optional) */
603     float ra[2], /* returned (optional) */
604     float pg[2], /* returned (optional) */
605     float dg[2] /* returned (optional) */
606 greg 2.26 )
607     {
608 greg 2.41 AMBHEMI *hp = inithemi(rcol, r, wt);
609 greg 2.45 int cnt;
610 greg 2.41 FVECT my_uv[2];
611     double d, K, acol[3];
612     AMBSAMP *ap;
613     int i, j;
614 greg 2.28 /* check/initialize */
615     if (hp == NULL)
616 greg 2.26 return(0);
617     if (uv != NULL)
618     memset(uv, 0, sizeof(FVECT)*2);
619     if (ra != NULL)
620     ra[0] = ra[1] = 0.0;
621     if (pg != NULL)
622     pg[0] = pg[1] = 0.0;
623     if (dg != NULL)
624     dg[0] = dg[1] = 0.0;
625     /* sample the hemisphere */
626     acol[0] = acol[1] = acol[2] = 0.0;
627 greg 2.45 cnt = 0;
628 greg 2.27 for (i = hp->ns; i--; )
629     for (j = hp->ns; j--; )
630 greg 2.28 if ((ap = ambsample(hp, i, j)) != NULL) {
631 greg 2.26 addcolor(acol, ap->v);
632     ++cnt;
633     }
634     if (!cnt) {
635     setcolor(rcol, 0.0, 0.0, 0.0);
636     free(hp);
637     return(0); /* no valid samples */
638     }
639 greg 2.41 if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */
640     copycolor(rcol, acol);
641     free(hp);
642     return(-1); /* return value w/o Hessian */
643     }
644     cnt = ambssamp*wt + 0.5; /* perform super-sampling? */
645     if (cnt > 0)
646     ambsupersamp(acol, hp, cnt);
647 greg 2.29 copycolor(rcol, acol); /* final indirect irradiance/PI */
648 greg 2.41 if ((ra == NULL) & (pg == NULL) & (dg == NULL)) {
649 greg 2.26 free(hp);
650     return(-1); /* no radius or gradient calc. */
651     }
652 greg 2.45 if ((d = bright(acol)) > FTINY) { /* normalize Y values */
653     d = 0.99*(hp->ns*hp->ns)/d;
654 greg 2.38 K = 0.01;
655 greg 2.45 } else { /* or fall back on geometric Hessian */
656 greg 2.38 K = 1.0;
657     pg = NULL;
658     dg = NULL;
659     }
660 greg 2.29 ap = hp->sa; /* relative Y channel from here on... */
661 greg 2.26 for (i = hp->ns*hp->ns; i--; ap++)
662 greg 2.38 colval(ap->v,CIEY) = bright(ap->v)*d + K;
663 greg 2.26
664     if (uv == NULL) /* make sure we have axis pointers */
665     uv = my_uv;
666     /* compute radii & pos. gradient */
667     ambHessian(hp, uv, ra, pg);
668 greg 2.29
669 greg 2.26 if (dg != NULL) /* compute direction gradient */
670     ambdirgrad(hp, uv, dg);
671 greg 2.29
672 greg 2.28 if (ra != NULL) { /* scale/clamp radii */
673 greg 2.35 if (pg != NULL) {
674     if (ra[0]*(d = fabs(pg[0])) > 1.0)
675     ra[0] = 1.0/d;
676     if (ra[1]*(d = fabs(pg[1])) > 1.0)
677     ra[1] = 1.0/d;
678     if (ra[0] > ra[1])
679     ra[0] = ra[1];
680     }
681 greg 2.29 if (ra[0] < minarad) {
682     ra[0] = minarad;
683     if (ra[1] < minarad)
684     ra[1] = minarad;
685     }
686     ra[0] *= d = 1.0/sqrt(sqrt(wt));
687 greg 2.26 if ((ra[1] *= d) > 2.0*ra[0])
688     ra[1] = 2.0*ra[0];
689 greg 2.28 if (ra[1] > maxarad) {
690     ra[1] = maxarad;
691     if (ra[0] > maxarad)
692     ra[0] = maxarad;
693     }
694 greg 2.35 if (pg != NULL) { /* cap gradient if necessary */
695     d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
696     if (d > 1.0) {
697     d = 1.0/sqrt(d);
698     pg[0] *= d;
699     pg[1] *= d;
700     }
701     }
702 greg 2.26 }
703     free(hp); /* clean up and return */
704     return(1);
705     }
706    
707    
708 greg 2.25 #else /* ! NEWAMB */
709 greg 1.1
710    
711 greg 2.15 void
712 greg 2.14 inithemi( /* initialize sampling hemisphere */
713 greg 2.23 AMBHEMI *hp,
714 greg 2.16 COLOR ac,
715 greg 2.14 RAY *r,
716     double wt
717     )
718 greg 1.1 {
719 greg 2.16 double d;
720 greg 2.23 int i;
721 greg 2.14 /* set number of divisions */
722 greg 2.16 if (ambacc <= FTINY &&
723 greg 2.20 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
724 greg 2.16 wt = d; /* avoid ray termination */
725     hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
726 greg 2.14 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
727     if (hp->nt < i)
728     hp->nt = i;
729     hp->np = PI * hp->nt + 0.5;
730     /* set number of super-samples */
731 greg 2.15 hp->ns = ambssamp * wt + 0.5;
732 greg 2.16 /* assign coefficient */
733 greg 2.14 copycolor(hp->acoef, ac);
734 greg 2.16 d = 1.0/(hp->nt*hp->np);
735     scalecolor(hp->acoef, d);
736 greg 2.14 /* make axes */
737     VCOPY(hp->uz, r->ron);
738     hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
739     for (i = 0; i < 3; i++)
740     if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
741     break;
742     if (i >= 3)
743     error(CONSISTENCY, "bad ray direction in inithemi");
744     hp->uy[i] = 1.0;
745     fcross(hp->ux, hp->uy, hp->uz);
746     normalize(hp->ux);
747     fcross(hp->uy, hp->uz, hp->ux);
748 greg 1.1 }
749    
750    
751 greg 2.9 int
752 greg 2.14 divsample( /* sample a division */
753 greg 2.23 AMBSAMP *dp,
754 greg 2.14 AMBHEMI *h,
755     RAY *r
756     )
757 greg 1.1 {
758     RAY ar;
759 greg 1.11 int hlist[3];
760     double spt[2];
761 greg 1.1 double xd, yd, zd;
762     double b2;
763     double phi;
764 greg 2.23 int i;
765 greg 2.15 /* ambient coefficient for weight */
766 greg 2.16 if (ambacc > FTINY)
767     setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
768     else
769     copycolor(ar.rcoef, h->acoef);
770 greg 2.14 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
771 greg 1.4 return(-1);
772 greg 2.17 if (ambacc > FTINY) {
773     multcolor(ar.rcoef, h->acoef);
774     scalecolor(ar.rcoef, 1./AVGREFL);
775     }
776 greg 1.1 hlist[0] = r->rno;
777     hlist[1] = dp->t;
778     hlist[2] = dp->p;
779 greg 1.13 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
780 greg 1.11 zd = sqrt((dp->t + spt[0])/h->nt);
781     phi = 2.0*PI * (dp->p + spt[1])/h->np;
782 gwlarson 2.8 xd = tcos(phi) * zd;
783     yd = tsin(phi) * zd;
784 greg 1.1 zd = sqrt(1.0 - zd*zd);
785 greg 1.2 for (i = 0; i < 3; i++)
786     ar.rdir[i] = xd*h->ux[i] +
787     yd*h->uy[i] +
788     zd*h->uz[i];
789 greg 2.22 checknorm(ar.rdir);
790 greg 1.2 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
791 greg 1.1 rayvalue(&ar);
792     ndims--;
793 greg 2.16 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
794 greg 1.1 addcolor(dp->v, ar.rcol);
795 greg 2.9 /* use rt to improve gradient calc */
796     if (ar.rt > FTINY && ar.rt < FHUGE)
797     dp->r += 1.0/ar.rt;
798 greg 1.1 /* (re)initialize error */
799     if (dp->n++) {
800     b2 = bright(dp->v)/dp->n - bright(ar.rcol);
801     b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
802     dp->k = b2/(dp->n*dp->n);
803     } else
804     dp->k = 0.0;
805 greg 1.4 return(0);
806 greg 1.1 }
807    
808    
809 greg 2.14 static int
810     ambcmp( /* decreasing order */
811     const void *p1,
812     const void *p2
813     )
814     {
815     const AMBSAMP *d1 = (const AMBSAMP *)p1;
816     const AMBSAMP *d2 = (const AMBSAMP *)p2;
817    
818     if (d1->k < d2->k)
819     return(1);
820     if (d1->k > d2->k)
821     return(-1);
822     return(0);
823     }
824    
825    
826     static int
827     ambnorm( /* standard order */
828     const void *p1,
829     const void *p2
830     )
831     {
832     const AMBSAMP *d1 = (const AMBSAMP *)p1;
833     const AMBSAMP *d2 = (const AMBSAMP *)p2;
834 greg 2.23 int c;
835 greg 2.14
836     if ( (c = d1->t - d2->t) )
837     return(c);
838     return(d1->p - d2->p);
839     }
840    
841    
842 greg 1.1 double
843 greg 2.14 doambient( /* compute ambient component */
844 greg 2.23 COLOR rcol,
845 greg 2.14 RAY *r,
846     double wt,
847     FVECT pg,
848     FVECT dg
849     )
850 greg 1.1 {
851 greg 2.24 double b, d=0;
852 greg 1.1 AMBHEMI hemi;
853     AMBSAMP *div;
854     AMBSAMP dnew;
855 greg 2.23 double acol[3];
856     AMBSAMP *dp;
857 greg 1.1 double arad;
858 greg 2.19 int divcnt;
859 greg 2.23 int i, j;
860 greg 1.1 /* initialize hemisphere */
861 greg 2.23 inithemi(&hemi, rcol, r, wt);
862 greg 2.19 divcnt = hemi.nt * hemi.np;
863 greg 2.17 /* initialize */
864     if (pg != NULL)
865     pg[0] = pg[1] = pg[2] = 0.0;
866     if (dg != NULL)
867     dg[0] = dg[1] = dg[2] = 0.0;
868 greg 2.23 setcolor(rcol, 0.0, 0.0, 0.0);
869 greg 2.19 if (divcnt == 0)
870 greg 1.1 return(0.0);
871 greg 2.14 /* allocate super-samples */
872 greg 2.15 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
873 greg 2.19 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
874 greg 1.1 if (div == NULL)
875     error(SYSTEM, "out of memory in doambient");
876     } else
877     div = NULL;
878     /* sample the divisions */
879     arad = 0.0;
880 greg 2.23 acol[0] = acol[1] = acol[2] = 0.0;
881 greg 1.1 if ((dp = div) == NULL)
882     dp = &dnew;
883 greg 2.19 divcnt = 0;
884 greg 1.1 for (i = 0; i < hemi.nt; i++)
885     for (j = 0; j < hemi.np; j++) {
886     dp->t = i; dp->p = j;
887     setcolor(dp->v, 0.0, 0.0, 0.0);
888 greg 1.2 dp->r = 0.0;
889 greg 1.1 dp->n = 0;
890 greg 2.16 if (divsample(dp, &hemi, r) < 0) {
891 greg 2.19 if (div != NULL)
892     dp++;
893 greg 2.16 continue;
894     }
895 greg 2.6 arad += dp->r;
896 greg 2.19 divcnt++;
897 greg 1.1 if (div != NULL)
898     dp++;
899 greg 2.6 else
900 greg 1.1 addcolor(acol, dp->v);
901     }
902 greg 2.21 if (!divcnt) {
903     if (div != NULL)
904     free((void *)div);
905 greg 2.19 return(0.0); /* no samples taken */
906 greg 2.21 }
907 greg 2.19 if (divcnt < hemi.nt*hemi.np) {
908     pg = dg = NULL; /* incomplete sampling */
909     hemi.ns = 0;
910     } else if (arad > FTINY && divcnt/arad < minarad) {
911 greg 2.15 hemi.ns = 0; /* close enough */
912 greg 2.19 } else if (hemi.ns > 0) { /* else perform super-sampling? */
913 greg 1.4 comperrs(div, &hemi); /* compute errors */
914 greg 2.19 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
915 greg 1.1 /* super-sample */
916 greg 2.15 for (i = hemi.ns; i > 0; i--) {
917 schorsch 2.11 dnew = *div;
918 greg 2.16 if (divsample(&dnew, &hemi, r) < 0) {
919     dp++;
920     continue;
921     }
922     dp = div; /* reinsert */
923 greg 2.19 j = divcnt < i ? divcnt : i;
924 greg 1.1 while (--j > 0 && dnew.k < dp[1].k) {
925 schorsch 2.11 *dp = *(dp+1);
926 greg 1.1 dp++;
927     }
928 schorsch 2.11 *dp = dnew;
929 greg 1.1 }
930 greg 1.2 if (pg != NULL || dg != NULL) /* restore order */
931 greg 2.19 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
932 greg 1.1 }
933     /* compute returned values */
934 greg 1.3 if (div != NULL) {
935 greg 2.19 arad = 0.0; /* note: divcnt may be < nt*np */
936     for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
937 greg 1.3 arad += dp->r;
938     if (dp->n > 1) {
939     b = 1.0/dp->n;
940     scalecolor(dp->v, b);
941     dp->r *= b;
942     dp->n = 1;
943     }
944     addcolor(acol, dp->v);
945     }
946 greg 1.5 b = bright(acol);
947 greg 1.6 if (b > FTINY) {
948 greg 2.17 b = 1.0/b; /* compute & normalize gradient(s) */
949 greg 1.6 if (pg != NULL) {
950     posgradient(pg, div, &hemi);
951     for (i = 0; i < 3; i++)
952     pg[i] *= b;
953     }
954     if (dg != NULL) {
955     dirgradient(dg, div, &hemi);
956     for (i = 0; i < 3; i++)
957     dg[i] *= b;
958     }
959 greg 1.5 }
960 greg 2.9 free((void *)div);
961 greg 1.3 }
962 greg 2.23 copycolor(rcol, acol);
963 greg 1.1 if (arad <= FTINY)
964 greg 1.16 arad = maxarad;
965 greg 2.3 else
966 greg 2.19 arad = (divcnt+hemi.ns)/arad;
967 greg 1.15 if (pg != NULL) { /* reduce radius if gradient large */
968     d = DOT(pg,pg);
969     if (d*arad*arad > 1.0)
970     arad = 1.0/sqrt(d);
971     }
972 greg 1.16 if (arad < minarad) {
973 greg 1.1 arad = minarad;
974 greg 1.16 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
975     d = 1.0/arad/sqrt(d);
976     for (i = 0; i < 3; i++)
977     pg[i] *= d;
978     }
979     }
980 greg 2.3 if ((arad /= sqrt(wt)) > maxarad)
981     arad = maxarad;
982     return(arad);
983 greg 1.1 }
984    
985    
986 greg 2.9 void
987 greg 2.14 comperrs( /* compute initial error estimates */
988     AMBSAMP *da, /* assumes standard ordering */
989 greg 2.23 AMBHEMI *hp
990 greg 2.14 )
991 greg 1.1 {
992     double b, b2;
993     int i, j;
994 greg 2.23 AMBSAMP *dp;
995 greg 1.1 /* sum differences from neighbors */
996     dp = da;
997     for (i = 0; i < hp->nt; i++)
998     for (j = 0; j < hp->np; j++) {
999 greg 1.6 #ifdef DEBUG
1000     if (dp->t != i || dp->p != j)
1001     error(CONSISTENCY,
1002     "division order in comperrs");
1003     #endif
1004 greg 1.1 b = bright(dp[0].v);
1005     if (i > 0) { /* from above */
1006     b2 = bright(dp[-hp->np].v) - b;
1007     b2 *= b2 * 0.25;
1008     dp[0].k += b2;
1009     dp[-hp->np].k += b2;
1010     }
1011     if (j > 0) { /* from behind */
1012     b2 = bright(dp[-1].v) - b;
1013     b2 *= b2 * 0.25;
1014     dp[0].k += b2;
1015     dp[-1].k += b2;
1016 greg 1.4 } else { /* around */
1017     b2 = bright(dp[hp->np-1].v) - b;
1018 greg 1.1 b2 *= b2 * 0.25;
1019     dp[0].k += b2;
1020 greg 1.4 dp[hp->np-1].k += b2;
1021 greg 1.1 }
1022     dp++;
1023     }
1024     /* divide by number of neighbors */
1025     dp = da;
1026     for (j = 0; j < hp->np; j++) /* top row */
1027     (dp++)->k *= 1.0/3.0;
1028     if (hp->nt < 2)
1029     return;
1030     for (i = 1; i < hp->nt-1; i++) /* central region */
1031     for (j = 0; j < hp->np; j++)
1032     (dp++)->k *= 0.25;
1033     for (j = 0; j < hp->np; j++) /* bottom row */
1034     (dp++)->k *= 1.0/3.0;
1035     }
1036    
1037    
1038 greg 2.9 void
1039 greg 2.14 posgradient( /* compute position gradient */
1040     FVECT gv,
1041     AMBSAMP *da, /* assumes standard ordering */
1042 greg 2.23 AMBHEMI *hp
1043 greg 2.14 )
1044 greg 1.1 {
1045 greg 2.23 int i, j;
1046 greg 2.2 double nextsine, lastsine, b, d;
1047 greg 1.2 double mag0, mag1;
1048     double phi, cosp, sinp, xd, yd;
1049 greg 2.23 AMBSAMP *dp;
1050 greg 1.2
1051     xd = yd = 0.0;
1052     for (j = 0; j < hp->np; j++) {
1053     dp = da + j;
1054     mag0 = mag1 = 0.0;
1055 greg 2.2 lastsine = 0.0;
1056 greg 1.2 for (i = 0; i < hp->nt; i++) {
1057     #ifdef DEBUG
1058     if (dp->t != i || dp->p != j)
1059     error(CONSISTENCY,
1060     "division order in posgradient");
1061     #endif
1062     b = bright(dp->v);
1063     if (i > 0) {
1064     d = dp[-hp->np].r;
1065     if (dp[0].r > d) d = dp[0].r;
1066 greg 2.2 /* sin(t)*cos(t)^2 */
1067     d *= lastsine * (1.0 - (double)i/hp->nt);
1068 greg 1.2 mag0 += d*(b - bright(dp[-hp->np].v));
1069     }
1070 greg 2.2 nextsine = sqrt((double)(i+1)/hp->nt);
1071 greg 1.2 if (j > 0) {
1072     d = dp[-1].r;
1073     if (dp[0].r > d) d = dp[0].r;
1074 greg 2.2 mag1 += d * (nextsine - lastsine) *
1075     (b - bright(dp[-1].v));
1076 greg 1.2 } else {
1077     d = dp[hp->np-1].r;
1078     if (dp[0].r > d) d = dp[0].r;
1079 greg 2.2 mag1 += d * (nextsine - lastsine) *
1080     (b - bright(dp[hp->np-1].v));
1081 greg 1.2 }
1082     dp += hp->np;
1083 greg 2.2 lastsine = nextsine;
1084 greg 1.2 }
1085 greg 2.2 mag0 *= 2.0*PI / hp->np;
1086 greg 1.2 phi = 2.0*PI * (double)j/hp->np;
1087 gwlarson 2.8 cosp = tcos(phi); sinp = tsin(phi);
1088 greg 1.2 xd += mag0*cosp - mag1*sinp;
1089     yd += mag0*sinp + mag1*cosp;
1090     }
1091     for (i = 0; i < 3; i++)
1092 greg 2.16 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
1093 greg 1.1 }
1094    
1095    
1096 greg 2.9 void
1097 greg 2.14 dirgradient( /* compute direction gradient */
1098     FVECT gv,
1099     AMBSAMP *da, /* assumes standard ordering */
1100 greg 2.23 AMBHEMI *hp
1101 greg 2.14 )
1102 greg 1.1 {
1103 greg 2.23 int i, j;
1104 greg 1.2 double mag;
1105     double phi, xd, yd;
1106 greg 2.23 AMBSAMP *dp;
1107 greg 1.2
1108     xd = yd = 0.0;
1109     for (j = 0; j < hp->np; j++) {
1110     dp = da + j;
1111     mag = 0.0;
1112     for (i = 0; i < hp->nt; i++) {
1113     #ifdef DEBUG
1114     if (dp->t != i || dp->p != j)
1115     error(CONSISTENCY,
1116     "division order in dirgradient");
1117     #endif
1118 greg 2.2 /* tan(t) */
1119     mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
1120 greg 1.2 dp += hp->np;
1121     }
1122     phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1123 gwlarson 2.8 xd += mag * tcos(phi);
1124     yd += mag * tsin(phi);
1125 greg 1.2 }
1126     for (i = 0; i < 3; i++)
1127 greg 2.16 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1128 greg 1.1 }
1129 greg 2.25
1130     #endif /* ! NEWAMB */