ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.42
Committed: Wed Apr 30 23:44:06 2014 UTC (10 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.41: +7 -6 lines
Log Message:
Minor optimization

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.42 static const char RCSid[] = "$Id: ambcomp.c,v 2.41 2014/04/30 23:38:58 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * Routines to compute "ambient" values using Monte Carlo
6 greg 2.9 *
7 greg 2.27 * Hessian calculations based on "Practical Hessian-Based Error Control
8     * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9     * from ACM SIGGRAPH Asia 2012 conference proceedings.
10     *
11 greg 2.9 * Declarations of external symbols in ambient.h
12     */
13    
14 greg 2.10 #include "copyright.h"
15 greg 1.1
16     #include "ray.h"
17 greg 2.25 #include "ambient.h"
18     #include "random.h"
19 greg 1.1
20 greg 2.25 #ifdef NEWAMB
21 greg 1.1
22 greg 2.26 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
23    
24     typedef struct {
25     RAY *rp; /* originating ray sample */
26 greg 2.27 FVECT ux, uy; /* tangent axis unit vectors */
27 greg 2.26 int ns; /* number of samples per axis */
28     COLOR acoef; /* division contribution coefficient */
29     struct s_ambsamp {
30     COLOR v; /* hemisphere sample value */
31 greg 2.31 FVECT p; /* intersection point */
32 greg 2.26 } sa[1]; /* sample array (extends struct) */
33     } AMBHEMI; /* ambient sample hemisphere */
34    
35 greg 2.41 typedef struct s_ambsamp AMBSAMP;
36    
37 greg 2.26 #define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)]
38    
39 greg 2.27 typedef struct {
40 greg 2.35 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
41     double I1, I2;
42 greg 2.27 } FFTRI; /* vectors and coefficients for Hessian calculation */
43    
44 greg 2.26
45     static AMBHEMI *
46     inithemi( /* initialize sampling hemisphere */
47     COLOR ac,
48     RAY *r,
49     double wt
50     )
51     {
52     AMBHEMI *hp;
53     double d;
54     int n, i;
55     /* set number of divisions */
56     if (ambacc <= FTINY &&
57     wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
58     wt = d; /* avoid ray termination */
59     n = sqrt(ambdiv * wt) + 0.5;
60 greg 2.27 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
61 greg 2.26 if (n < i)
62     n = i;
63     /* allocate sampling array */
64 greg 2.41 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
65 greg 2.26 if (hp == NULL)
66     return(NULL);
67     hp->rp = r;
68     hp->ns = n;
69     /* assign coefficient */
70     copycolor(hp->acoef, ac);
71     d = 1.0/(n*n);
72     scalecolor(hp->acoef, d);
73 greg 2.28 /* make tangent plane axes */
74 greg 2.38 hp->uy[0] = 0.5 - frandom();
75     hp->uy[1] = 0.5 - frandom();
76     hp->uy[2] = 0.5 - frandom();
77 greg 2.36 for (i = 3; i--; )
78 greg 2.37 if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6))
79     break;
80     if (i < 0)
81     error(CONSISTENCY, "bad ray direction in inithemi");
82     hp->uy[i] = 1.0;
83 greg 2.27 VCROSS(hp->ux, hp->uy, r->ron);
84 greg 2.26 normalize(hp->ux);
85 greg 2.27 VCROSS(hp->uy, r->ron, hp->ux);
86 greg 2.26 /* we're ready to sample */
87     return(hp);
88     }
89    
90    
91 greg 2.41 /* Prepare ambient division sample */
92     static int
93     prepambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n)
94 greg 2.26 {
95 greg 2.41 int hlist[3], ii;
96     double spt[2], zd;
97 greg 2.26 /* ambient coefficient for weight */
98     if (ambacc > FTINY)
99 greg 2.41 setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL);
100 greg 2.26 else
101 greg 2.41 copycolor(arp->rcoef, hp->acoef);
102     if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0)
103     return(0);
104 greg 2.26 if (ambacc > FTINY) {
105 greg 2.41 multcolor(arp->rcoef, hp->acoef);
106     scalecolor(arp->rcoef, 1./AVGREFL);
107     }
108     hlist[0] = hp->rp->rno;
109     hlist[1] = i;
110     hlist[2] = j;
111     multisamp(spt, 2, urand(ilhash(hlist,3)+n));
112     if (!n) { /* avoid border samples for n==0 */
113     if ((spt[0] < 0.1) | (spt[0] > 0.9))
114     spt[0] = 0.1 + 0.8*frandom();
115     if ((spt[1] < 0.1) | (spt[1] > 0.9))
116     spt[1] = 0.1 + 0.8*frandom();
117 greg 2.26 }
118 greg 2.41 SDsquare2disk(spt, (i+spt[0])/hp->ns, (j+spt[1])/hp->ns);
119 greg 2.26 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
120     for (ii = 3; ii--; )
121 greg 2.41 arp->rdir[ii] = spt[0]*hp->ux[ii] +
122 greg 2.26 spt[1]*hp->uy[ii] +
123     zd*hp->rp->ron[ii];
124 greg 2.41 checknorm(arp->rdir);
125     return(1);
126     }
127    
128    
129     static AMBSAMP *
130     ambsample( /* sample an ambient direction */
131     AMBHEMI *hp,
132     int i,
133     int j
134     )
135     {
136     AMBSAMP *ap = &ambsamp(hp,i,j);
137     RAY ar;
138     /* generate hemispherical sample */
139     if (!prepambsamp(&ar, hp, i, j, 0))
140     goto badsample;
141 greg 2.26 dimlist[ndims++] = i*hp->ns + j + 90171;
142     rayvalue(&ar); /* evaluate ray */
143     ndims--;
144 greg 2.34 /* limit vertex distance */
145     if (ar.rt > 10.0*thescene.cusize)
146     ar.rt = 10.0*thescene.cusize;
147 greg 2.31 else if (ar.rt <= FTINY) /* should never happen! */
148     goto badsample;
149     VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
150 greg 2.26 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
151     copycolor(ap->v, ar.rcol);
152 greg 2.28 return(ap);
153 greg 2.31 badsample:
154     setcolor(ap->v, 0., 0., 0.);
155     VCOPY(ap->p, hp->rp->rop);
156     return(NULL);
157 greg 2.26 }
158    
159    
160 greg 2.41 /* Estimate errors based on ambient division differences */
161     static float *
162     getambdiffs(AMBHEMI *hp)
163     {
164     float *earr = calloc(hp->ns*hp->ns, sizeof(float));
165     float *ep;
166 greg 2.42 AMBSAMP *ap;
167 greg 2.41 double b, d2;
168     int i, j;
169    
170     if (earr == NULL) /* out of memory? */
171     return(NULL);
172     /* compute squared neighbor diffs */
173 greg 2.42 for (ap = hp->sa, ep = earr, i = 0; i < hp->ns; i++)
174     for (j = 0; j < hp->ns; j++, ap++, ep++) {
175     b = bright(ap[0].v);
176 greg 2.41 if (i) { /* from above */
177 greg 2.42 d2 = b - bright(ap[-hp->ns].v);
178 greg 2.41 d2 *= d2;
179     ep[0] += d2;
180     ep[-hp->ns] += d2;
181     }
182     if (j) { /* from behind */
183 greg 2.42 d2 = b - bright(ap[-1].v);
184 greg 2.41 d2 *= d2;
185     ep[0] += d2;
186     ep[-1] += d2;
187     }
188     }
189     /* correct for number of neighbors */
190     earr[0] *= 2.f;
191     earr[hp->ns-1] *= 2.f;
192     earr[(hp->ns-1)*hp->ns] *= 2.f;
193     earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f;
194     for (i = 1; i < hp->ns-1; i++) {
195     earr[i*hp->ns] *= 4./3.;
196     earr[i*hp->ns + hp->ns-1] *= 4./3.;
197     }
198     for (j = 1; j < hp->ns-1; j++) {
199     earr[j] *= 4./3.;
200     earr[(hp->ns-1)*hp->ns + j] *= 4./3.;
201     }
202     return(earr);
203     }
204    
205    
206     /* Perform super-sampling on hemisphere */
207     static void
208     ambsupersamp(double acol[3], AMBHEMI *hp, int cnt)
209     {
210     float *earr = getambdiffs(hp);
211     double e2sum = 0;
212     AMBSAMP *ap;
213     RAY ar;
214     COLOR asum;
215     float *ep;
216     int i, j, n;
217    
218     if (earr == NULL) /* just skip calc. if no memory */
219     return;
220     /* add up estimated variances */
221     for (ep = earr + hp->ns*hp->ns; ep-- > earr; )
222     e2sum += *ep;
223     ep = earr; /* perform super-sampling */
224     for (ap = hp->sa, i = 0; i < hp->ns; i++)
225     for (j = 0; j < hp->ns; j++, ap++) {
226     int nss = *ep/e2sum*cnt + frandom();
227     setcolor(asum, 0., 0., 0.);
228     for (n = 1; n <= nss; n++) {
229     if (!prepambsamp(&ar, hp, i, j, n)) {
230     nss = n-1;
231     break;
232     }
233     dimlist[ndims++] = i*hp->ns + j + 90171;
234     rayvalue(&ar); /* evaluate super-sample */
235     ndims--;
236     multcolor(ar.rcol, ar.rcoef);
237     addcolor(asum, ar.rcol);
238     }
239     if (nss) { /* update returned ambient value */
240     const double ssf = 1./(nss + 1);
241     for (n = 3; n--; )
242     acol[n] += ssf*colval(asum,n) +
243     (ssf - 1.)*colval(ap->v,n);
244     }
245     e2sum -= *ep++; /* update remainders */
246     cnt -= nss;
247     }
248     free(earr);
249     }
250    
251    
252 greg 2.27 /* Compute vectors and coefficients for Hessian/gradient calcs */
253     static void
254 greg 2.31 comp_fftri(FFTRI *ftp, FVECT ap0, FVECT ap1, FVECT rop)
255 greg 2.27 {
256 greg 2.35 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
257 greg 2.30 int i;
258 greg 2.27
259     VSUB(ftp->r_i, ap0, rop);
260     VSUB(ftp->r_i1, ap1, rop);
261     VSUB(ftp->e_i, ap1, ap0);
262 greg 2.35 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
263     rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
264 greg 2.27 dot_e = DOT(ftp->e_i,ftp->e_i);
265     dot_er = DOT(ftp->e_i, ftp->r_i);
266 greg 2.32 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
267     rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
268     ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
269 greg 2.35 sqrt( rdot_cp );
270 greg 2.32 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
271 greg 2.35 dot_e*ftp->I1 )*0.5*rdot_cp;
272 greg 2.32 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
273 greg 2.30 for (i = 3; i--; )
274     ftp->rI2_eJ2[i] = ftp->I2*ftp->r_i[i] + J2*ftp->e_i[i];
275 greg 2.27 }
276    
277    
278 greg 2.28 /* Compose 3x3 matrix from two vectors */
279 greg 2.27 static void
280     compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
281     {
282     mat[0][0] = 2.0*va[0]*vb[0];
283     mat[1][1] = 2.0*va[1]*vb[1];
284     mat[2][2] = 2.0*va[2]*vb[2];
285     mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
286     mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
287     mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
288     }
289    
290    
291     /* Compute partial 3x3 Hessian matrix for edge */
292     static void
293     comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
294     {
295 greg 2.35 FVECT ncp;
296 greg 2.27 FVECT m1[3], m2[3], m3[3], m4[3];
297     double d1, d2, d3, d4;
298     double I3, J3, K3;
299     int i, j;
300     /* compute intermediate coefficients */
301     d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
302     d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
303     d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
304     d4 = DOT(ftp->e_i, ftp->r_i);
305 greg 2.35 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
306     / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
307 greg 2.27 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
308     K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
309     /* intermediate matrices */
310 greg 2.35 VCROSS(ncp, nrm, ftp->e_i);
311     compose_matrix(m1, ncp, ftp->rI2_eJ2);
312 greg 2.27 compose_matrix(m2, ftp->r_i, ftp->r_i);
313     compose_matrix(m3, ftp->e_i, ftp->e_i);
314     compose_matrix(m4, ftp->r_i, ftp->e_i);
315 greg 2.35 d1 = DOT(nrm, ftp->rcp);
316 greg 2.27 d2 = -d1*ftp->I2;
317     d1 *= 2.0;
318     for (i = 3; i--; ) /* final matrix sum */
319     for (j = 3; j--; ) {
320     hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
321     2.0*J3*m4[i][j] );
322     hess[i][j] += d2*(i==j);
323 greg 2.32 hess[i][j] *= 1.0/PI;
324 greg 2.27 }
325     }
326    
327    
328     /* Reverse hessian calculation result for edge in other direction */
329     static void
330     rev_hessian(FVECT hess[3])
331     {
332     int i;
333    
334     for (i = 3; i--; ) {
335     hess[i][0] = -hess[i][0];
336     hess[i][1] = -hess[i][1];
337     hess[i][2] = -hess[i][2];
338     }
339     }
340    
341    
342     /* Add to radiometric Hessian from the given triangle */
343     static void
344     add2hessian(FVECT hess[3], FVECT ehess1[3],
345     FVECT ehess2[3], FVECT ehess3[3], COLORV v)
346     {
347     int i, j;
348    
349     for (i = 3; i--; )
350     for (j = 3; j--; )
351     hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
352     }
353    
354    
355     /* Compute partial displacement form factor gradient for edge */
356     static void
357     comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
358     {
359 greg 2.35 FVECT ncp;
360 greg 2.27 double f1;
361     int i;
362    
363 greg 2.35 f1 = 2.0*DOT(nrm, ftp->rcp);
364     VCROSS(ncp, nrm, ftp->e_i);
365 greg 2.27 for (i = 3; i--; )
366 greg 2.35 grad[i] = (-0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
367 greg 2.27 }
368    
369    
370     /* Reverse gradient calculation result for edge in other direction */
371     static void
372     rev_gradient(FVECT grad)
373     {
374     grad[0] = -grad[0];
375     grad[1] = -grad[1];
376     grad[2] = -grad[2];
377     }
378    
379    
380     /* Add to displacement gradient from the given triangle */
381     static void
382     add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, COLORV v)
383     {
384     int i;
385    
386     for (i = 3; i--; )
387     grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
388     }
389    
390    
391     /* Return brightness of furthest ambient sample */
392     static COLORV
393 greg 2.41 back_ambval(AMBSAMP *ap1, AMBSAMP *ap2, AMBSAMP *ap3, FVECT orig)
394 greg 2.27 {
395     COLORV vback;
396     FVECT vec;
397     double d2, d2best;
398    
399     VSUB(vec, ap1->p, orig);
400     d2best = DOT(vec,vec);
401 greg 2.29 vback = colval(ap1->v,CIEY);
402 greg 2.27 VSUB(vec, ap2->p, orig);
403     d2 = DOT(vec,vec);
404     if (d2 > d2best) {
405     d2best = d2;
406 greg 2.29 vback = colval(ap2->v,CIEY);
407 greg 2.27 }
408     VSUB(vec, ap3->p, orig);
409     d2 = DOT(vec,vec);
410     if (d2 > d2best)
411 greg 2.29 return(colval(ap3->v,CIEY));
412 greg 2.27 return(vback);
413     }
414    
415    
416     /* Compute anisotropic radii and eigenvector directions */
417     static int
418     eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
419     {
420     double hess2[2][2];
421     FVECT a, b;
422     double evalue[2], slope1, xmag1;
423     int i;
424     /* project Hessian to sample plane */
425     for (i = 3; i--; ) {
426     a[i] = DOT(hessian[i], uv[0]);
427     b[i] = DOT(hessian[i], uv[1]);
428     }
429     hess2[0][0] = DOT(uv[0], a);
430     hess2[0][1] = DOT(uv[0], b);
431     hess2[1][0] = DOT(uv[1], a);
432     hess2[1][1] = DOT(uv[1], b);
433 greg 2.38 /* compute eigenvalue(s) */
434     i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
435     hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
436     if (i == 1) /* double-root (circle) */
437     evalue[1] = evalue[0];
438     if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
439 greg 2.35 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) )
440 greg 2.27 error(INTERNAL, "bad eigenvalue calculation");
441    
442     if (evalue[0] > evalue[1]) {
443 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[0]));
444     ra[1] = sqrt(sqrt(4.0/evalue[1]));
445 greg 2.27 slope1 = evalue[1];
446     } else {
447 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[1]));
448     ra[1] = sqrt(sqrt(4.0/evalue[0]));
449 greg 2.27 slope1 = evalue[0];
450     }
451     /* compute unit eigenvectors */
452     if (fabs(hess2[0][1]) <= FTINY)
453     return; /* uv OK as is */
454     slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
455     xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
456     for (i = 3; i--; ) {
457     b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
458     a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
459     }
460     VCOPY(uv[0], a);
461     VCOPY(uv[1], b);
462     }
463    
464    
465 greg 2.26 static void
466     ambHessian( /* anisotropic radii & pos. gradient */
467     AMBHEMI *hp,
468     FVECT uv[2], /* returned */
469 greg 2.28 float ra[2], /* returned (optional) */
470     float pg[2] /* returned (optional) */
471 greg 2.26 )
472     {
473 greg 2.27 static char memerrmsg[] = "out of memory in ambHessian()";
474     FVECT (*hessrow)[3] = NULL;
475     FVECT *gradrow = NULL;
476     FVECT hessian[3];
477     FVECT gradient;
478     FFTRI fftr;
479     int i, j;
480     /* be sure to assign unit vectors */
481     VCOPY(uv[0], hp->ux);
482     VCOPY(uv[1], hp->uy);
483     /* clock-wise vertex traversal from sample POV */
484     if (ra != NULL) { /* initialize Hessian row buffer */
485 greg 2.28 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
486 greg 2.27 if (hessrow == NULL)
487     error(SYSTEM, memerrmsg);
488     memset(hessian, 0, sizeof(hessian));
489     } else if (pg == NULL) /* bogus call? */
490     return;
491     if (pg != NULL) { /* initialize form factor row buffer */
492 greg 2.28 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
493 greg 2.27 if (gradrow == NULL)
494     error(SYSTEM, memerrmsg);
495     memset(gradient, 0, sizeof(gradient));
496     }
497     /* compute first row of edges */
498     for (j = 0; j < hp->ns-1; j++) {
499     comp_fftri(&fftr, ambsamp(hp,0,j).p,
500     ambsamp(hp,0,j+1).p, hp->rp->rop);
501     if (hessrow != NULL)
502     comp_hessian(hessrow[j], &fftr, hp->rp->ron);
503     if (gradrow != NULL)
504     comp_gradient(gradrow[j], &fftr, hp->rp->ron);
505     }
506     /* sum each row of triangles */
507     for (i = 0; i < hp->ns-1; i++) {
508     FVECT hesscol[3]; /* compute first vertical edge */
509     FVECT gradcol;
510     comp_fftri(&fftr, ambsamp(hp,i,0).p,
511     ambsamp(hp,i+1,0).p, hp->rp->rop);
512     if (hessrow != NULL)
513     comp_hessian(hesscol, &fftr, hp->rp->ron);
514     if (gradrow != NULL)
515     comp_gradient(gradcol, &fftr, hp->rp->ron);
516     for (j = 0; j < hp->ns-1; j++) {
517     FVECT hessdia[3]; /* compute triangle contributions */
518     FVECT graddia;
519     COLORV backg;
520     backg = back_ambval(&ambsamp(hp,i,j), &ambsamp(hp,i,j+1),
521     &ambsamp(hp,i+1,j), hp->rp->rop);
522     /* diagonal (inner) edge */
523     comp_fftri(&fftr, ambsamp(hp,i,j+1).p,
524     ambsamp(hp,i+1,j).p, hp->rp->rop);
525     if (hessrow != NULL) {
526     comp_hessian(hessdia, &fftr, hp->rp->ron);
527     rev_hessian(hesscol);
528     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
529     }
530 greg 2.39 if (gradrow != NULL) {
531 greg 2.27 comp_gradient(graddia, &fftr, hp->rp->ron);
532     rev_gradient(gradcol);
533     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
534     }
535     /* initialize edge in next row */
536     comp_fftri(&fftr, ambsamp(hp,i+1,j+1).p,
537     ambsamp(hp,i+1,j).p, hp->rp->rop);
538     if (hessrow != NULL)
539     comp_hessian(hessrow[j], &fftr, hp->rp->ron);
540     if (gradrow != NULL)
541     comp_gradient(gradrow[j], &fftr, hp->rp->ron);
542     /* new column edge & paired triangle */
543     backg = back_ambval(&ambsamp(hp,i,j+1), &ambsamp(hp,i+1,j+1),
544     &ambsamp(hp,i+1,j), hp->rp->rop);
545     comp_fftri(&fftr, ambsamp(hp,i,j+1).p, ambsamp(hp,i+1,j+1).p,
546     hp->rp->rop);
547     if (hessrow != NULL) {
548     comp_hessian(hesscol, &fftr, hp->rp->ron);
549     rev_hessian(hessdia);
550     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
551     if (i < hp->ns-2)
552     rev_hessian(hessrow[j]);
553     }
554     if (gradrow != NULL) {
555     comp_gradient(gradcol, &fftr, hp->rp->ron);
556     rev_gradient(graddia);
557     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
558     if (i < hp->ns-2)
559     rev_gradient(gradrow[j]);
560     }
561     }
562     }
563     /* release row buffers */
564     if (hessrow != NULL) free(hessrow);
565     if (gradrow != NULL) free(gradrow);
566    
567     if (ra != NULL) /* extract eigenvectors & radii */
568     eigenvectors(uv, ra, hessian);
569 greg 2.32 if (pg != NULL) { /* tangential position gradient */
570     pg[0] = DOT(gradient, uv[0]);
571     pg[1] = DOT(gradient, uv[1]);
572 greg 2.27 }
573     }
574    
575    
576     /* Compute direction gradient from a hemispherical sampling */
577     static void
578     ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
579     {
580 greg 2.41 AMBSAMP *ap;
581     double dgsum[2];
582     int n;
583     FVECT vd;
584     double gfact;
585 greg 2.27
586 greg 2.29 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
587 greg 2.27 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
588     /* use vector for azimuth + 90deg */
589     VSUB(vd, ap->p, hp->rp->rop);
590 greg 2.29 /* brightness over cosine factor */
591     gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
592 greg 2.40 /* sine = proj_radius/vd_length */
593     dgsum[0] -= DOT(uv[1], vd) * gfact;
594     dgsum[1] += DOT(uv[0], vd) * gfact;
595 greg 2.26 }
596 greg 2.29 dg[0] = dgsum[0] / (hp->ns*hp->ns);
597     dg[1] = dgsum[1] / (hp->ns*hp->ns);
598 greg 2.26 }
599    
600 greg 2.27
601 greg 2.26 int
602     doambient( /* compute ambient component */
603     COLOR rcol, /* input/output color */
604     RAY *r,
605     double wt,
606 greg 2.27 FVECT uv[2], /* returned (optional) */
607     float ra[2], /* returned (optional) */
608     float pg[2], /* returned (optional) */
609     float dg[2] /* returned (optional) */
610 greg 2.26 )
611     {
612 greg 2.41 AMBHEMI *hp = inithemi(rcol, r, wt);
613     int cnt = 0;
614     FVECT my_uv[2];
615     double d, K, acol[3];
616     AMBSAMP *ap;
617     int i, j;
618 greg 2.28 /* check/initialize */
619     if (hp == NULL)
620 greg 2.26 return(0);
621     if (uv != NULL)
622     memset(uv, 0, sizeof(FVECT)*2);
623     if (ra != NULL)
624     ra[0] = ra[1] = 0.0;
625     if (pg != NULL)
626     pg[0] = pg[1] = 0.0;
627     if (dg != NULL)
628     dg[0] = dg[1] = 0.0;
629     /* sample the hemisphere */
630     acol[0] = acol[1] = acol[2] = 0.0;
631 greg 2.27 for (i = hp->ns; i--; )
632     for (j = hp->ns; j--; )
633 greg 2.28 if ((ap = ambsample(hp, i, j)) != NULL) {
634 greg 2.26 addcolor(acol, ap->v);
635     ++cnt;
636     }
637     if (!cnt) {
638     setcolor(rcol, 0.0, 0.0, 0.0);
639     free(hp);
640     return(0); /* no valid samples */
641     }
642 greg 2.41 if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */
643     copycolor(rcol, acol);
644     free(hp);
645     return(-1); /* return value w/o Hessian */
646     }
647     cnt = ambssamp*wt + 0.5; /* perform super-sampling? */
648     if (cnt > 0)
649     ambsupersamp(acol, hp, cnt);
650 greg 2.29 copycolor(rcol, acol); /* final indirect irradiance/PI */
651 greg 2.41 if ((ra == NULL) & (pg == NULL) & (dg == NULL)) {
652 greg 2.26 free(hp);
653     return(-1); /* no radius or gradient calc. */
654     }
655 greg 2.38 if (bright(acol) > FTINY) { /* normalize Y values */
656     d = 0.99*cnt/bright(acol);
657     K = 0.01;
658     } else { /* geometric Hessian fall-back */
659 greg 2.29 d = 0.0;
660 greg 2.38 K = 1.0;
661     pg = NULL;
662     dg = NULL;
663     }
664 greg 2.29 ap = hp->sa; /* relative Y channel from here on... */
665 greg 2.26 for (i = hp->ns*hp->ns; i--; ap++)
666 greg 2.38 colval(ap->v,CIEY) = bright(ap->v)*d + K;
667 greg 2.26
668     if (uv == NULL) /* make sure we have axis pointers */
669     uv = my_uv;
670     /* compute radii & pos. gradient */
671     ambHessian(hp, uv, ra, pg);
672 greg 2.29
673 greg 2.26 if (dg != NULL) /* compute direction gradient */
674     ambdirgrad(hp, uv, dg);
675 greg 2.29
676 greg 2.28 if (ra != NULL) { /* scale/clamp radii */
677 greg 2.35 if (pg != NULL) {
678     if (ra[0]*(d = fabs(pg[0])) > 1.0)
679     ra[0] = 1.0/d;
680     if (ra[1]*(d = fabs(pg[1])) > 1.0)
681     ra[1] = 1.0/d;
682     if (ra[0] > ra[1])
683     ra[0] = ra[1];
684     }
685 greg 2.29 if (ra[0] < minarad) {
686     ra[0] = minarad;
687     if (ra[1] < minarad)
688     ra[1] = minarad;
689     }
690     ra[0] *= d = 1.0/sqrt(sqrt(wt));
691 greg 2.26 if ((ra[1] *= d) > 2.0*ra[0])
692     ra[1] = 2.0*ra[0];
693 greg 2.28 if (ra[1] > maxarad) {
694     ra[1] = maxarad;
695     if (ra[0] > maxarad)
696     ra[0] = maxarad;
697     }
698 greg 2.35 if (pg != NULL) { /* cap gradient if necessary */
699     d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
700     if (d > 1.0) {
701     d = 1.0/sqrt(d);
702     pg[0] *= d;
703     pg[1] *= d;
704     }
705     }
706 greg 2.26 }
707     free(hp); /* clean up and return */
708     return(1);
709     }
710    
711    
712 greg 2.25 #else /* ! NEWAMB */
713 greg 1.1
714    
715 greg 2.15 void
716 greg 2.14 inithemi( /* initialize sampling hemisphere */
717 greg 2.23 AMBHEMI *hp,
718 greg 2.16 COLOR ac,
719 greg 2.14 RAY *r,
720     double wt
721     )
722 greg 1.1 {
723 greg 2.16 double d;
724 greg 2.23 int i;
725 greg 2.14 /* set number of divisions */
726 greg 2.16 if (ambacc <= FTINY &&
727 greg 2.20 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
728 greg 2.16 wt = d; /* avoid ray termination */
729     hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
730 greg 2.14 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
731     if (hp->nt < i)
732     hp->nt = i;
733     hp->np = PI * hp->nt + 0.5;
734     /* set number of super-samples */
735 greg 2.15 hp->ns = ambssamp * wt + 0.5;
736 greg 2.16 /* assign coefficient */
737 greg 2.14 copycolor(hp->acoef, ac);
738 greg 2.16 d = 1.0/(hp->nt*hp->np);
739     scalecolor(hp->acoef, d);
740 greg 2.14 /* make axes */
741     VCOPY(hp->uz, r->ron);
742     hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
743     for (i = 0; i < 3; i++)
744     if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
745     break;
746     if (i >= 3)
747     error(CONSISTENCY, "bad ray direction in inithemi");
748     hp->uy[i] = 1.0;
749     fcross(hp->ux, hp->uy, hp->uz);
750     normalize(hp->ux);
751     fcross(hp->uy, hp->uz, hp->ux);
752 greg 1.1 }
753    
754    
755 greg 2.9 int
756 greg 2.14 divsample( /* sample a division */
757 greg 2.23 AMBSAMP *dp,
758 greg 2.14 AMBHEMI *h,
759     RAY *r
760     )
761 greg 1.1 {
762     RAY ar;
763 greg 1.11 int hlist[3];
764     double spt[2];
765 greg 1.1 double xd, yd, zd;
766     double b2;
767     double phi;
768 greg 2.23 int i;
769 greg 2.15 /* ambient coefficient for weight */
770 greg 2.16 if (ambacc > FTINY)
771     setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
772     else
773     copycolor(ar.rcoef, h->acoef);
774 greg 2.14 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
775 greg 1.4 return(-1);
776 greg 2.17 if (ambacc > FTINY) {
777     multcolor(ar.rcoef, h->acoef);
778     scalecolor(ar.rcoef, 1./AVGREFL);
779     }
780 greg 1.1 hlist[0] = r->rno;
781     hlist[1] = dp->t;
782     hlist[2] = dp->p;
783 greg 1.13 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
784 greg 1.11 zd = sqrt((dp->t + spt[0])/h->nt);
785     phi = 2.0*PI * (dp->p + spt[1])/h->np;
786 gwlarson 2.8 xd = tcos(phi) * zd;
787     yd = tsin(phi) * zd;
788 greg 1.1 zd = sqrt(1.0 - zd*zd);
789 greg 1.2 for (i = 0; i < 3; i++)
790     ar.rdir[i] = xd*h->ux[i] +
791     yd*h->uy[i] +
792     zd*h->uz[i];
793 greg 2.22 checknorm(ar.rdir);
794 greg 1.2 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
795 greg 1.1 rayvalue(&ar);
796     ndims--;
797 greg 2.16 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
798 greg 1.1 addcolor(dp->v, ar.rcol);
799 greg 2.9 /* use rt to improve gradient calc */
800     if (ar.rt > FTINY && ar.rt < FHUGE)
801     dp->r += 1.0/ar.rt;
802 greg 1.1 /* (re)initialize error */
803     if (dp->n++) {
804     b2 = bright(dp->v)/dp->n - bright(ar.rcol);
805     b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
806     dp->k = b2/(dp->n*dp->n);
807     } else
808     dp->k = 0.0;
809 greg 1.4 return(0);
810 greg 1.1 }
811    
812    
813 greg 2.14 static int
814     ambcmp( /* decreasing order */
815     const void *p1,
816     const void *p2
817     )
818     {
819     const AMBSAMP *d1 = (const AMBSAMP *)p1;
820     const AMBSAMP *d2 = (const AMBSAMP *)p2;
821    
822     if (d1->k < d2->k)
823     return(1);
824     if (d1->k > d2->k)
825     return(-1);
826     return(0);
827     }
828    
829    
830     static int
831     ambnorm( /* standard order */
832     const void *p1,
833     const void *p2
834     )
835     {
836     const AMBSAMP *d1 = (const AMBSAMP *)p1;
837     const AMBSAMP *d2 = (const AMBSAMP *)p2;
838 greg 2.23 int c;
839 greg 2.14
840     if ( (c = d1->t - d2->t) )
841     return(c);
842     return(d1->p - d2->p);
843     }
844    
845    
846 greg 1.1 double
847 greg 2.14 doambient( /* compute ambient component */
848 greg 2.23 COLOR rcol,
849 greg 2.14 RAY *r,
850     double wt,
851     FVECT pg,
852     FVECT dg
853     )
854 greg 1.1 {
855 greg 2.24 double b, d=0;
856 greg 1.1 AMBHEMI hemi;
857     AMBSAMP *div;
858     AMBSAMP dnew;
859 greg 2.23 double acol[3];
860     AMBSAMP *dp;
861 greg 1.1 double arad;
862 greg 2.19 int divcnt;
863 greg 2.23 int i, j;
864 greg 1.1 /* initialize hemisphere */
865 greg 2.23 inithemi(&hemi, rcol, r, wt);
866 greg 2.19 divcnt = hemi.nt * hemi.np;
867 greg 2.17 /* initialize */
868     if (pg != NULL)
869     pg[0] = pg[1] = pg[2] = 0.0;
870     if (dg != NULL)
871     dg[0] = dg[1] = dg[2] = 0.0;
872 greg 2.23 setcolor(rcol, 0.0, 0.0, 0.0);
873 greg 2.19 if (divcnt == 0)
874 greg 1.1 return(0.0);
875 greg 2.14 /* allocate super-samples */
876 greg 2.15 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
877 greg 2.19 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
878 greg 1.1 if (div == NULL)
879     error(SYSTEM, "out of memory in doambient");
880     } else
881     div = NULL;
882     /* sample the divisions */
883     arad = 0.0;
884 greg 2.23 acol[0] = acol[1] = acol[2] = 0.0;
885 greg 1.1 if ((dp = div) == NULL)
886     dp = &dnew;
887 greg 2.19 divcnt = 0;
888 greg 1.1 for (i = 0; i < hemi.nt; i++)
889     for (j = 0; j < hemi.np; j++) {
890     dp->t = i; dp->p = j;
891     setcolor(dp->v, 0.0, 0.0, 0.0);
892 greg 1.2 dp->r = 0.0;
893 greg 1.1 dp->n = 0;
894 greg 2.16 if (divsample(dp, &hemi, r) < 0) {
895 greg 2.19 if (div != NULL)
896     dp++;
897 greg 2.16 continue;
898     }
899 greg 2.6 arad += dp->r;
900 greg 2.19 divcnt++;
901 greg 1.1 if (div != NULL)
902     dp++;
903 greg 2.6 else
904 greg 1.1 addcolor(acol, dp->v);
905     }
906 greg 2.21 if (!divcnt) {
907     if (div != NULL)
908     free((void *)div);
909 greg 2.19 return(0.0); /* no samples taken */
910 greg 2.21 }
911 greg 2.19 if (divcnt < hemi.nt*hemi.np) {
912     pg = dg = NULL; /* incomplete sampling */
913     hemi.ns = 0;
914     } else if (arad > FTINY && divcnt/arad < minarad) {
915 greg 2.15 hemi.ns = 0; /* close enough */
916 greg 2.19 } else if (hemi.ns > 0) { /* else perform super-sampling? */
917 greg 1.4 comperrs(div, &hemi); /* compute errors */
918 greg 2.19 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
919 greg 1.1 /* super-sample */
920 greg 2.15 for (i = hemi.ns; i > 0; i--) {
921 schorsch 2.11 dnew = *div;
922 greg 2.16 if (divsample(&dnew, &hemi, r) < 0) {
923     dp++;
924     continue;
925     }
926     dp = div; /* reinsert */
927 greg 2.19 j = divcnt < i ? divcnt : i;
928 greg 1.1 while (--j > 0 && dnew.k < dp[1].k) {
929 schorsch 2.11 *dp = *(dp+1);
930 greg 1.1 dp++;
931     }
932 schorsch 2.11 *dp = dnew;
933 greg 1.1 }
934 greg 1.2 if (pg != NULL || dg != NULL) /* restore order */
935 greg 2.19 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
936 greg 1.1 }
937     /* compute returned values */
938 greg 1.3 if (div != NULL) {
939 greg 2.19 arad = 0.0; /* note: divcnt may be < nt*np */
940     for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
941 greg 1.3 arad += dp->r;
942     if (dp->n > 1) {
943     b = 1.0/dp->n;
944     scalecolor(dp->v, b);
945     dp->r *= b;
946     dp->n = 1;
947     }
948     addcolor(acol, dp->v);
949     }
950 greg 1.5 b = bright(acol);
951 greg 1.6 if (b > FTINY) {
952 greg 2.17 b = 1.0/b; /* compute & normalize gradient(s) */
953 greg 1.6 if (pg != NULL) {
954     posgradient(pg, div, &hemi);
955     for (i = 0; i < 3; i++)
956     pg[i] *= b;
957     }
958     if (dg != NULL) {
959     dirgradient(dg, div, &hemi);
960     for (i = 0; i < 3; i++)
961     dg[i] *= b;
962     }
963 greg 1.5 }
964 greg 2.9 free((void *)div);
965 greg 1.3 }
966 greg 2.23 copycolor(rcol, acol);
967 greg 1.1 if (arad <= FTINY)
968 greg 1.16 arad = maxarad;
969 greg 2.3 else
970 greg 2.19 arad = (divcnt+hemi.ns)/arad;
971 greg 1.15 if (pg != NULL) { /* reduce radius if gradient large */
972     d = DOT(pg,pg);
973     if (d*arad*arad > 1.0)
974     arad = 1.0/sqrt(d);
975     }
976 greg 1.16 if (arad < minarad) {
977 greg 1.1 arad = minarad;
978 greg 1.16 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
979     d = 1.0/arad/sqrt(d);
980     for (i = 0; i < 3; i++)
981     pg[i] *= d;
982     }
983     }
984 greg 2.3 if ((arad /= sqrt(wt)) > maxarad)
985     arad = maxarad;
986     return(arad);
987 greg 1.1 }
988    
989    
990 greg 2.9 void
991 greg 2.14 comperrs( /* compute initial error estimates */
992     AMBSAMP *da, /* assumes standard ordering */
993 greg 2.23 AMBHEMI *hp
994 greg 2.14 )
995 greg 1.1 {
996     double b, b2;
997     int i, j;
998 greg 2.23 AMBSAMP *dp;
999 greg 1.1 /* sum differences from neighbors */
1000     dp = da;
1001     for (i = 0; i < hp->nt; i++)
1002     for (j = 0; j < hp->np; j++) {
1003 greg 1.6 #ifdef DEBUG
1004     if (dp->t != i || dp->p != j)
1005     error(CONSISTENCY,
1006     "division order in comperrs");
1007     #endif
1008 greg 1.1 b = bright(dp[0].v);
1009     if (i > 0) { /* from above */
1010     b2 = bright(dp[-hp->np].v) - b;
1011     b2 *= b2 * 0.25;
1012     dp[0].k += b2;
1013     dp[-hp->np].k += b2;
1014     }
1015     if (j > 0) { /* from behind */
1016     b2 = bright(dp[-1].v) - b;
1017     b2 *= b2 * 0.25;
1018     dp[0].k += b2;
1019     dp[-1].k += b2;
1020 greg 1.4 } else { /* around */
1021     b2 = bright(dp[hp->np-1].v) - b;
1022 greg 1.1 b2 *= b2 * 0.25;
1023     dp[0].k += b2;
1024 greg 1.4 dp[hp->np-1].k += b2;
1025 greg 1.1 }
1026     dp++;
1027     }
1028     /* divide by number of neighbors */
1029     dp = da;
1030     for (j = 0; j < hp->np; j++) /* top row */
1031     (dp++)->k *= 1.0/3.0;
1032     if (hp->nt < 2)
1033     return;
1034     for (i = 1; i < hp->nt-1; i++) /* central region */
1035     for (j = 0; j < hp->np; j++)
1036     (dp++)->k *= 0.25;
1037     for (j = 0; j < hp->np; j++) /* bottom row */
1038     (dp++)->k *= 1.0/3.0;
1039     }
1040    
1041    
1042 greg 2.9 void
1043 greg 2.14 posgradient( /* compute position gradient */
1044     FVECT gv,
1045     AMBSAMP *da, /* assumes standard ordering */
1046 greg 2.23 AMBHEMI *hp
1047 greg 2.14 )
1048 greg 1.1 {
1049 greg 2.23 int i, j;
1050 greg 2.2 double nextsine, lastsine, b, d;
1051 greg 1.2 double mag0, mag1;
1052     double phi, cosp, sinp, xd, yd;
1053 greg 2.23 AMBSAMP *dp;
1054 greg 1.2
1055     xd = yd = 0.0;
1056     for (j = 0; j < hp->np; j++) {
1057     dp = da + j;
1058     mag0 = mag1 = 0.0;
1059 greg 2.2 lastsine = 0.0;
1060 greg 1.2 for (i = 0; i < hp->nt; i++) {
1061     #ifdef DEBUG
1062     if (dp->t != i || dp->p != j)
1063     error(CONSISTENCY,
1064     "division order in posgradient");
1065     #endif
1066     b = bright(dp->v);
1067     if (i > 0) {
1068     d = dp[-hp->np].r;
1069     if (dp[0].r > d) d = dp[0].r;
1070 greg 2.2 /* sin(t)*cos(t)^2 */
1071     d *= lastsine * (1.0 - (double)i/hp->nt);
1072 greg 1.2 mag0 += d*(b - bright(dp[-hp->np].v));
1073     }
1074 greg 2.2 nextsine = sqrt((double)(i+1)/hp->nt);
1075 greg 1.2 if (j > 0) {
1076     d = dp[-1].r;
1077     if (dp[0].r > d) d = dp[0].r;
1078 greg 2.2 mag1 += d * (nextsine - lastsine) *
1079     (b - bright(dp[-1].v));
1080 greg 1.2 } else {
1081     d = dp[hp->np-1].r;
1082     if (dp[0].r > d) d = dp[0].r;
1083 greg 2.2 mag1 += d * (nextsine - lastsine) *
1084     (b - bright(dp[hp->np-1].v));
1085 greg 1.2 }
1086     dp += hp->np;
1087 greg 2.2 lastsine = nextsine;
1088 greg 1.2 }
1089 greg 2.2 mag0 *= 2.0*PI / hp->np;
1090 greg 1.2 phi = 2.0*PI * (double)j/hp->np;
1091 gwlarson 2.8 cosp = tcos(phi); sinp = tsin(phi);
1092 greg 1.2 xd += mag0*cosp - mag1*sinp;
1093     yd += mag0*sinp + mag1*cosp;
1094     }
1095     for (i = 0; i < 3; i++)
1096 greg 2.16 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
1097 greg 1.1 }
1098    
1099    
1100 greg 2.9 void
1101 greg 2.14 dirgradient( /* compute direction gradient */
1102     FVECT gv,
1103     AMBSAMP *da, /* assumes standard ordering */
1104 greg 2.23 AMBHEMI *hp
1105 greg 2.14 )
1106 greg 1.1 {
1107 greg 2.23 int i, j;
1108 greg 1.2 double mag;
1109     double phi, xd, yd;
1110 greg 2.23 AMBSAMP *dp;
1111 greg 1.2
1112     xd = yd = 0.0;
1113     for (j = 0; j < hp->np; j++) {
1114     dp = da + j;
1115     mag = 0.0;
1116     for (i = 0; i < hp->nt; i++) {
1117     #ifdef DEBUG
1118     if (dp->t != i || dp->p != j)
1119     error(CONSISTENCY,
1120     "division order in dirgradient");
1121     #endif
1122 greg 2.2 /* tan(t) */
1123     mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
1124 greg 1.2 dp += hp->np;
1125     }
1126     phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1127 gwlarson 2.8 xd += mag * tcos(phi);
1128     yd += mag * tsin(phi);
1129 greg 1.2 }
1130     for (i = 0; i < 3; i++)
1131 greg 2.16 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1132 greg 1.1 }
1133 greg 2.25
1134     #endif /* ! NEWAMB */