ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.41
Committed: Wed Apr 30 23:38:58 2014 UTC (10 years ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.40: +156 -39 lines
Log Message:
Added support for ambient super-samples (-as) in new calculation (-DNEWAMB)

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.41 static const char RCSid[] = "$Id: ambcomp.c,v 2.40 2014/04/30 18:27:14 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * Routines to compute "ambient" values using Monte Carlo
6 greg 2.9 *
7 greg 2.27 * Hessian calculations based on "Practical Hessian-Based Error Control
8     * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9     * from ACM SIGGRAPH Asia 2012 conference proceedings.
10     *
11 greg 2.9 * Declarations of external symbols in ambient.h
12     */
13    
14 greg 2.10 #include "copyright.h"
15 greg 1.1
16     #include "ray.h"
17 greg 2.25 #include "ambient.h"
18     #include "random.h"
19 greg 1.1
20 greg 2.25 #ifdef NEWAMB
21 greg 1.1
22 greg 2.26 extern void SDsquare2disk(double ds[2], double seedx, double seedy);
23    
24     typedef struct {
25     RAY *rp; /* originating ray sample */
26 greg 2.27 FVECT ux, uy; /* tangent axis unit vectors */
27 greg 2.26 int ns; /* number of samples per axis */
28     COLOR acoef; /* division contribution coefficient */
29     struct s_ambsamp {
30     COLOR v; /* hemisphere sample value */
31 greg 2.31 FVECT p; /* intersection point */
32 greg 2.26 } sa[1]; /* sample array (extends struct) */
33     } AMBHEMI; /* ambient sample hemisphere */
34    
35 greg 2.41 typedef struct s_ambsamp AMBSAMP;
36    
37 greg 2.26 #define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)]
38    
39 greg 2.27 typedef struct {
40 greg 2.35 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
41     double I1, I2;
42 greg 2.27 } FFTRI; /* vectors and coefficients for Hessian calculation */
43    
44 greg 2.26
45     static AMBHEMI *
46     inithemi( /* initialize sampling hemisphere */
47     COLOR ac,
48     RAY *r,
49     double wt
50     )
51     {
52     AMBHEMI *hp;
53     double d;
54     int n, i;
55     /* set number of divisions */
56     if (ambacc <= FTINY &&
57     wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
58     wt = d; /* avoid ray termination */
59     n = sqrt(ambdiv * wt) + 0.5;
60 greg 2.27 i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
61 greg 2.26 if (n < i)
62     n = i;
63     /* allocate sampling array */
64 greg 2.41 hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
65 greg 2.26 if (hp == NULL)
66     return(NULL);
67     hp->rp = r;
68     hp->ns = n;
69     /* assign coefficient */
70     copycolor(hp->acoef, ac);
71     d = 1.0/(n*n);
72     scalecolor(hp->acoef, d);
73 greg 2.28 /* make tangent plane axes */
74 greg 2.38 hp->uy[0] = 0.5 - frandom();
75     hp->uy[1] = 0.5 - frandom();
76     hp->uy[2] = 0.5 - frandom();
77 greg 2.36 for (i = 3; i--; )
78 greg 2.37 if ((-0.6 < r->ron[i]) & (r->ron[i] < 0.6))
79     break;
80     if (i < 0)
81     error(CONSISTENCY, "bad ray direction in inithemi");
82     hp->uy[i] = 1.0;
83 greg 2.27 VCROSS(hp->ux, hp->uy, r->ron);
84 greg 2.26 normalize(hp->ux);
85 greg 2.27 VCROSS(hp->uy, r->ron, hp->ux);
86 greg 2.26 /* we're ready to sample */
87     return(hp);
88     }
89    
90    
91 greg 2.41 /* Prepare ambient division sample */
92     static int
93     prepambsamp(RAY *arp, AMBHEMI *hp, int i, int j, int n)
94 greg 2.26 {
95 greg 2.41 int hlist[3], ii;
96     double spt[2], zd;
97 greg 2.26 /* ambient coefficient for weight */
98     if (ambacc > FTINY)
99 greg 2.41 setcolor(arp->rcoef, AVGREFL, AVGREFL, AVGREFL);
100 greg 2.26 else
101 greg 2.41 copycolor(arp->rcoef, hp->acoef);
102     if (rayorigin(arp, AMBIENT, hp->rp, arp->rcoef) < 0)
103     return(0);
104 greg 2.26 if (ambacc > FTINY) {
105 greg 2.41 multcolor(arp->rcoef, hp->acoef);
106     scalecolor(arp->rcoef, 1./AVGREFL);
107     }
108     hlist[0] = hp->rp->rno;
109     hlist[1] = i;
110     hlist[2] = j;
111     multisamp(spt, 2, urand(ilhash(hlist,3)+n));
112     if (!n) { /* avoid border samples for n==0 */
113     if ((spt[0] < 0.1) | (spt[0] > 0.9))
114     spt[0] = 0.1 + 0.8*frandom();
115     if ((spt[1] < 0.1) | (spt[1] > 0.9))
116     spt[1] = 0.1 + 0.8*frandom();
117 greg 2.26 }
118 greg 2.41 SDsquare2disk(spt, (i+spt[0])/hp->ns, (j+spt[1])/hp->ns);
119 greg 2.26 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
120     for (ii = 3; ii--; )
121 greg 2.41 arp->rdir[ii] = spt[0]*hp->ux[ii] +
122 greg 2.26 spt[1]*hp->uy[ii] +
123     zd*hp->rp->ron[ii];
124 greg 2.41 checknorm(arp->rdir);
125     return(1);
126     }
127    
128    
129     static AMBSAMP *
130     ambsample( /* sample an ambient direction */
131     AMBHEMI *hp,
132     int i,
133     int j
134     )
135     {
136     AMBSAMP *ap = &ambsamp(hp,i,j);
137     RAY ar;
138     /* generate hemispherical sample */
139     if (!prepambsamp(&ar, hp, i, j, 0))
140     goto badsample;
141 greg 2.26 dimlist[ndims++] = i*hp->ns + j + 90171;
142     rayvalue(&ar); /* evaluate ray */
143     ndims--;
144 greg 2.34 /* limit vertex distance */
145     if (ar.rt > 10.0*thescene.cusize)
146     ar.rt = 10.0*thescene.cusize;
147 greg 2.31 else if (ar.rt <= FTINY) /* should never happen! */
148     goto badsample;
149     VSUM(ap->p, ar.rorg, ar.rdir, ar.rt);
150 greg 2.26 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
151     copycolor(ap->v, ar.rcol);
152 greg 2.28 return(ap);
153 greg 2.31 badsample:
154     setcolor(ap->v, 0., 0., 0.);
155     VCOPY(ap->p, hp->rp->rop);
156     return(NULL);
157 greg 2.26 }
158    
159    
160 greg 2.41 /* Estimate errors based on ambient division differences */
161     static float *
162     getambdiffs(AMBHEMI *hp)
163     {
164     float *earr = calloc(hp->ns*hp->ns, sizeof(float));
165     float *ep;
166     double b, d2;
167     int i, j;
168    
169     if (earr == NULL) /* out of memory? */
170     return(NULL);
171     /* compute squared neighbor diffs */
172     for (ep = earr, i = 0; i < hp->ns; i++)
173     for (j = 0; j < hp->ns; j++, ep++) {
174     b = bright(ambsamp(hp,i,j).v);
175     if (i) { /* from above */
176     d2 = b - bright(ambsamp(hp,i-1,j).v);
177     d2 *= d2;
178     ep[0] += d2;
179     ep[-hp->ns] += d2;
180     }
181     if (j) { /* from behind */
182     d2 = b - bright(ambsamp(hp,i,j-1).v);
183     d2 *= d2;
184     ep[0] += d2;
185     ep[-1] += d2;
186     }
187     }
188     /* correct for number of neighbors */
189     earr[0] *= 2.f;
190     earr[hp->ns-1] *= 2.f;
191     earr[(hp->ns-1)*hp->ns] *= 2.f;
192     earr[(hp->ns-1)*hp->ns + hp->ns-1] *= 2.f;
193     for (i = 1; i < hp->ns-1; i++) {
194     earr[i*hp->ns] *= 4./3.;
195     earr[i*hp->ns + hp->ns-1] *= 4./3.;
196     }
197     for (j = 1; j < hp->ns-1; j++) {
198     earr[j] *= 4./3.;
199     earr[(hp->ns-1)*hp->ns + j] *= 4./3.;
200     }
201     return(earr);
202     }
203    
204    
205     /* Perform super-sampling on hemisphere */
206     static void
207     ambsupersamp(double acol[3], AMBHEMI *hp, int cnt)
208     {
209     float *earr = getambdiffs(hp);
210     double e2sum = 0;
211     AMBSAMP *ap;
212     RAY ar;
213     COLOR asum;
214     float *ep;
215     int i, j, n;
216    
217     if (earr == NULL) /* just skip calc. if no memory */
218     return;
219     /* add up estimated variances */
220     for (ep = earr + hp->ns*hp->ns; ep-- > earr; )
221     e2sum += *ep;
222     ep = earr; /* perform super-sampling */
223     for (ap = hp->sa, i = 0; i < hp->ns; i++)
224     for (j = 0; j < hp->ns; j++, ap++) {
225     int nss = *ep/e2sum*cnt + frandom();
226     setcolor(asum, 0., 0., 0.);
227     for (n = 1; n <= nss; n++) {
228     if (!prepambsamp(&ar, hp, i, j, n)) {
229     nss = n-1;
230     break;
231     }
232     dimlist[ndims++] = i*hp->ns + j + 90171;
233     rayvalue(&ar); /* evaluate super-sample */
234     ndims--;
235     multcolor(ar.rcol, ar.rcoef);
236     addcolor(asum, ar.rcol);
237     }
238     if (nss) { /* update returned ambient value */
239     const double ssf = 1./(nss + 1);
240     for (n = 3; n--; )
241     acol[n] += ssf*colval(asum,n) +
242     (ssf - 1.)*colval(ap->v,n);
243     }
244     e2sum -= *ep++; /* update remainders */
245     cnt -= nss;
246     }
247     free(earr);
248     }
249    
250    
251 greg 2.27 /* Compute vectors and coefficients for Hessian/gradient calcs */
252     static void
253 greg 2.31 comp_fftri(FFTRI *ftp, FVECT ap0, FVECT ap1, FVECT rop)
254 greg 2.27 {
255 greg 2.35 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
256 greg 2.30 int i;
257 greg 2.27
258     VSUB(ftp->r_i, ap0, rop);
259     VSUB(ftp->r_i1, ap1, rop);
260     VSUB(ftp->e_i, ap1, ap0);
261 greg 2.35 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
262     rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
263 greg 2.27 dot_e = DOT(ftp->e_i,ftp->e_i);
264     dot_er = DOT(ftp->e_i, ftp->r_i);
265 greg 2.32 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
266     rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
267     ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
268 greg 2.35 sqrt( rdot_cp );
269 greg 2.32 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
270 greg 2.35 dot_e*ftp->I1 )*0.5*rdot_cp;
271 greg 2.32 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
272 greg 2.30 for (i = 3; i--; )
273     ftp->rI2_eJ2[i] = ftp->I2*ftp->r_i[i] + J2*ftp->e_i[i];
274 greg 2.27 }
275    
276    
277 greg 2.28 /* Compose 3x3 matrix from two vectors */
278 greg 2.27 static void
279     compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
280     {
281     mat[0][0] = 2.0*va[0]*vb[0];
282     mat[1][1] = 2.0*va[1]*vb[1];
283     mat[2][2] = 2.0*va[2]*vb[2];
284     mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
285     mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
286     mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
287     }
288    
289    
290     /* Compute partial 3x3 Hessian matrix for edge */
291     static void
292     comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
293     {
294 greg 2.35 FVECT ncp;
295 greg 2.27 FVECT m1[3], m2[3], m3[3], m4[3];
296     double d1, d2, d3, d4;
297     double I3, J3, K3;
298     int i, j;
299     /* compute intermediate coefficients */
300     d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
301     d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
302     d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
303     d4 = DOT(ftp->e_i, ftp->r_i);
304 greg 2.35 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
305     / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
306 greg 2.27 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
307     K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
308     /* intermediate matrices */
309 greg 2.35 VCROSS(ncp, nrm, ftp->e_i);
310     compose_matrix(m1, ncp, ftp->rI2_eJ2);
311 greg 2.27 compose_matrix(m2, ftp->r_i, ftp->r_i);
312     compose_matrix(m3, ftp->e_i, ftp->e_i);
313     compose_matrix(m4, ftp->r_i, ftp->e_i);
314 greg 2.35 d1 = DOT(nrm, ftp->rcp);
315 greg 2.27 d2 = -d1*ftp->I2;
316     d1 *= 2.0;
317     for (i = 3; i--; ) /* final matrix sum */
318     for (j = 3; j--; ) {
319     hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
320     2.0*J3*m4[i][j] );
321     hess[i][j] += d2*(i==j);
322 greg 2.32 hess[i][j] *= 1.0/PI;
323 greg 2.27 }
324     }
325    
326    
327     /* Reverse hessian calculation result for edge in other direction */
328     static void
329     rev_hessian(FVECT hess[3])
330     {
331     int i;
332    
333     for (i = 3; i--; ) {
334     hess[i][0] = -hess[i][0];
335     hess[i][1] = -hess[i][1];
336     hess[i][2] = -hess[i][2];
337     }
338     }
339    
340    
341     /* Add to radiometric Hessian from the given triangle */
342     static void
343     add2hessian(FVECT hess[3], FVECT ehess1[3],
344     FVECT ehess2[3], FVECT ehess3[3], COLORV v)
345     {
346     int i, j;
347    
348     for (i = 3; i--; )
349     for (j = 3; j--; )
350     hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
351     }
352    
353    
354     /* Compute partial displacement form factor gradient for edge */
355     static void
356     comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
357     {
358 greg 2.35 FVECT ncp;
359 greg 2.27 double f1;
360     int i;
361    
362 greg 2.35 f1 = 2.0*DOT(nrm, ftp->rcp);
363     VCROSS(ncp, nrm, ftp->e_i);
364 greg 2.27 for (i = 3; i--; )
365 greg 2.35 grad[i] = (-0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
366 greg 2.27 }
367    
368    
369     /* Reverse gradient calculation result for edge in other direction */
370     static void
371     rev_gradient(FVECT grad)
372     {
373     grad[0] = -grad[0];
374     grad[1] = -grad[1];
375     grad[2] = -grad[2];
376     }
377    
378    
379     /* Add to displacement gradient from the given triangle */
380     static void
381     add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, COLORV v)
382     {
383     int i;
384    
385     for (i = 3; i--; )
386     grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
387     }
388    
389    
390     /* Return brightness of furthest ambient sample */
391     static COLORV
392 greg 2.41 back_ambval(AMBSAMP *ap1, AMBSAMP *ap2, AMBSAMP *ap3, FVECT orig)
393 greg 2.27 {
394     COLORV vback;
395     FVECT vec;
396     double d2, d2best;
397    
398     VSUB(vec, ap1->p, orig);
399     d2best = DOT(vec,vec);
400 greg 2.29 vback = colval(ap1->v,CIEY);
401 greg 2.27 VSUB(vec, ap2->p, orig);
402     d2 = DOT(vec,vec);
403     if (d2 > d2best) {
404     d2best = d2;
405 greg 2.29 vback = colval(ap2->v,CIEY);
406 greg 2.27 }
407     VSUB(vec, ap3->p, orig);
408     d2 = DOT(vec,vec);
409     if (d2 > d2best)
410 greg 2.29 return(colval(ap3->v,CIEY));
411 greg 2.27 return(vback);
412     }
413    
414    
415     /* Compute anisotropic radii and eigenvector directions */
416     static int
417     eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
418     {
419     double hess2[2][2];
420     FVECT a, b;
421     double evalue[2], slope1, xmag1;
422     int i;
423     /* project Hessian to sample plane */
424     for (i = 3; i--; ) {
425     a[i] = DOT(hessian[i], uv[0]);
426     b[i] = DOT(hessian[i], uv[1]);
427     }
428     hess2[0][0] = DOT(uv[0], a);
429     hess2[0][1] = DOT(uv[0], b);
430     hess2[1][0] = DOT(uv[1], a);
431     hess2[1][1] = DOT(uv[1], b);
432 greg 2.38 /* compute eigenvalue(s) */
433     i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
434     hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
435     if (i == 1) /* double-root (circle) */
436     evalue[1] = evalue[0];
437     if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
438 greg 2.35 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) )
439 greg 2.27 error(INTERNAL, "bad eigenvalue calculation");
440    
441     if (evalue[0] > evalue[1]) {
442 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[0]));
443     ra[1] = sqrt(sqrt(4.0/evalue[1]));
444 greg 2.27 slope1 = evalue[1];
445     } else {
446 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[1]));
447     ra[1] = sqrt(sqrt(4.0/evalue[0]));
448 greg 2.27 slope1 = evalue[0];
449     }
450     /* compute unit eigenvectors */
451     if (fabs(hess2[0][1]) <= FTINY)
452     return; /* uv OK as is */
453     slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
454     xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
455     for (i = 3; i--; ) {
456     b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
457     a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
458     }
459     VCOPY(uv[0], a);
460     VCOPY(uv[1], b);
461     }
462    
463    
464 greg 2.26 static void
465     ambHessian( /* anisotropic radii & pos. gradient */
466     AMBHEMI *hp,
467     FVECT uv[2], /* returned */
468 greg 2.28 float ra[2], /* returned (optional) */
469     float pg[2] /* returned (optional) */
470 greg 2.26 )
471     {
472 greg 2.27 static char memerrmsg[] = "out of memory in ambHessian()";
473     FVECT (*hessrow)[3] = NULL;
474     FVECT *gradrow = NULL;
475     FVECT hessian[3];
476     FVECT gradient;
477     FFTRI fftr;
478     int i, j;
479     /* be sure to assign unit vectors */
480     VCOPY(uv[0], hp->ux);
481     VCOPY(uv[1], hp->uy);
482     /* clock-wise vertex traversal from sample POV */
483     if (ra != NULL) { /* initialize Hessian row buffer */
484 greg 2.28 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
485 greg 2.27 if (hessrow == NULL)
486     error(SYSTEM, memerrmsg);
487     memset(hessian, 0, sizeof(hessian));
488     } else if (pg == NULL) /* bogus call? */
489     return;
490     if (pg != NULL) { /* initialize form factor row buffer */
491 greg 2.28 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
492 greg 2.27 if (gradrow == NULL)
493     error(SYSTEM, memerrmsg);
494     memset(gradient, 0, sizeof(gradient));
495     }
496     /* compute first row of edges */
497     for (j = 0; j < hp->ns-1; j++) {
498     comp_fftri(&fftr, ambsamp(hp,0,j).p,
499     ambsamp(hp,0,j+1).p, hp->rp->rop);
500     if (hessrow != NULL)
501     comp_hessian(hessrow[j], &fftr, hp->rp->ron);
502     if (gradrow != NULL)
503     comp_gradient(gradrow[j], &fftr, hp->rp->ron);
504     }
505     /* sum each row of triangles */
506     for (i = 0; i < hp->ns-1; i++) {
507     FVECT hesscol[3]; /* compute first vertical edge */
508     FVECT gradcol;
509     comp_fftri(&fftr, ambsamp(hp,i,0).p,
510     ambsamp(hp,i+1,0).p, hp->rp->rop);
511     if (hessrow != NULL)
512     comp_hessian(hesscol, &fftr, hp->rp->ron);
513     if (gradrow != NULL)
514     comp_gradient(gradcol, &fftr, hp->rp->ron);
515     for (j = 0; j < hp->ns-1; j++) {
516     FVECT hessdia[3]; /* compute triangle contributions */
517     FVECT graddia;
518     COLORV backg;
519     backg = back_ambval(&ambsamp(hp,i,j), &ambsamp(hp,i,j+1),
520     &ambsamp(hp,i+1,j), hp->rp->rop);
521     /* diagonal (inner) edge */
522     comp_fftri(&fftr, ambsamp(hp,i,j+1).p,
523     ambsamp(hp,i+1,j).p, hp->rp->rop);
524     if (hessrow != NULL) {
525     comp_hessian(hessdia, &fftr, hp->rp->ron);
526     rev_hessian(hesscol);
527     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
528     }
529 greg 2.39 if (gradrow != NULL) {
530 greg 2.27 comp_gradient(graddia, &fftr, hp->rp->ron);
531     rev_gradient(gradcol);
532     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
533     }
534     /* initialize edge in next row */
535     comp_fftri(&fftr, ambsamp(hp,i+1,j+1).p,
536     ambsamp(hp,i+1,j).p, hp->rp->rop);
537     if (hessrow != NULL)
538     comp_hessian(hessrow[j], &fftr, hp->rp->ron);
539     if (gradrow != NULL)
540     comp_gradient(gradrow[j], &fftr, hp->rp->ron);
541     /* new column edge & paired triangle */
542     backg = back_ambval(&ambsamp(hp,i,j+1), &ambsamp(hp,i+1,j+1),
543     &ambsamp(hp,i+1,j), hp->rp->rop);
544     comp_fftri(&fftr, ambsamp(hp,i,j+1).p, ambsamp(hp,i+1,j+1).p,
545     hp->rp->rop);
546     if (hessrow != NULL) {
547     comp_hessian(hesscol, &fftr, hp->rp->ron);
548     rev_hessian(hessdia);
549     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
550     if (i < hp->ns-2)
551     rev_hessian(hessrow[j]);
552     }
553     if (gradrow != NULL) {
554     comp_gradient(gradcol, &fftr, hp->rp->ron);
555     rev_gradient(graddia);
556     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
557     if (i < hp->ns-2)
558     rev_gradient(gradrow[j]);
559     }
560     }
561     }
562     /* release row buffers */
563     if (hessrow != NULL) free(hessrow);
564     if (gradrow != NULL) free(gradrow);
565    
566     if (ra != NULL) /* extract eigenvectors & radii */
567     eigenvectors(uv, ra, hessian);
568 greg 2.32 if (pg != NULL) { /* tangential position gradient */
569     pg[0] = DOT(gradient, uv[0]);
570     pg[1] = DOT(gradient, uv[1]);
571 greg 2.27 }
572     }
573    
574    
575     /* Compute direction gradient from a hemispherical sampling */
576     static void
577     ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
578     {
579 greg 2.41 AMBSAMP *ap;
580     double dgsum[2];
581     int n;
582     FVECT vd;
583     double gfact;
584 greg 2.27
585 greg 2.29 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
586 greg 2.27 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
587     /* use vector for azimuth + 90deg */
588     VSUB(vd, ap->p, hp->rp->rop);
589 greg 2.29 /* brightness over cosine factor */
590     gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
591 greg 2.40 /* sine = proj_radius/vd_length */
592     dgsum[0] -= DOT(uv[1], vd) * gfact;
593     dgsum[1] += DOT(uv[0], vd) * gfact;
594 greg 2.26 }
595 greg 2.29 dg[0] = dgsum[0] / (hp->ns*hp->ns);
596     dg[1] = dgsum[1] / (hp->ns*hp->ns);
597 greg 2.26 }
598    
599 greg 2.27
600 greg 2.26 int
601     doambient( /* compute ambient component */
602     COLOR rcol, /* input/output color */
603     RAY *r,
604     double wt,
605 greg 2.27 FVECT uv[2], /* returned (optional) */
606     float ra[2], /* returned (optional) */
607     float pg[2], /* returned (optional) */
608     float dg[2] /* returned (optional) */
609 greg 2.26 )
610     {
611 greg 2.41 AMBHEMI *hp = inithemi(rcol, r, wt);
612     int cnt = 0;
613     FVECT my_uv[2];
614     double d, K, acol[3];
615     AMBSAMP *ap;
616     int i, j;
617 greg 2.28 /* check/initialize */
618     if (hp == NULL)
619 greg 2.26 return(0);
620     if (uv != NULL)
621     memset(uv, 0, sizeof(FVECT)*2);
622     if (ra != NULL)
623     ra[0] = ra[1] = 0.0;
624     if (pg != NULL)
625     pg[0] = pg[1] = 0.0;
626     if (dg != NULL)
627     dg[0] = dg[1] = 0.0;
628     /* sample the hemisphere */
629     acol[0] = acol[1] = acol[2] = 0.0;
630 greg 2.27 for (i = hp->ns; i--; )
631     for (j = hp->ns; j--; )
632 greg 2.28 if ((ap = ambsample(hp, i, j)) != NULL) {
633 greg 2.26 addcolor(acol, ap->v);
634     ++cnt;
635     }
636     if (!cnt) {
637     setcolor(rcol, 0.0, 0.0, 0.0);
638     free(hp);
639     return(0); /* no valid samples */
640     }
641 greg 2.41 if (cnt < hp->ns*hp->ns) { /* incomplete sampling? */
642     copycolor(rcol, acol);
643     free(hp);
644     return(-1); /* return value w/o Hessian */
645     }
646     cnt = ambssamp*wt + 0.5; /* perform super-sampling? */
647     if (cnt > 0)
648     ambsupersamp(acol, hp, cnt);
649 greg 2.29 copycolor(rcol, acol); /* final indirect irradiance/PI */
650 greg 2.41 if ((ra == NULL) & (pg == NULL) & (dg == NULL)) {
651 greg 2.26 free(hp);
652     return(-1); /* no radius or gradient calc. */
653     }
654 greg 2.38 if (bright(acol) > FTINY) { /* normalize Y values */
655     d = 0.99*cnt/bright(acol);
656     K = 0.01;
657     } else { /* geometric Hessian fall-back */
658 greg 2.29 d = 0.0;
659 greg 2.38 K = 1.0;
660     pg = NULL;
661     dg = NULL;
662     }
663 greg 2.29 ap = hp->sa; /* relative Y channel from here on... */
664 greg 2.26 for (i = hp->ns*hp->ns; i--; ap++)
665 greg 2.38 colval(ap->v,CIEY) = bright(ap->v)*d + K;
666 greg 2.26
667     if (uv == NULL) /* make sure we have axis pointers */
668     uv = my_uv;
669     /* compute radii & pos. gradient */
670     ambHessian(hp, uv, ra, pg);
671 greg 2.29
672 greg 2.26 if (dg != NULL) /* compute direction gradient */
673     ambdirgrad(hp, uv, dg);
674 greg 2.29
675 greg 2.28 if (ra != NULL) { /* scale/clamp radii */
676 greg 2.35 if (pg != NULL) {
677     if (ra[0]*(d = fabs(pg[0])) > 1.0)
678     ra[0] = 1.0/d;
679     if (ra[1]*(d = fabs(pg[1])) > 1.0)
680     ra[1] = 1.0/d;
681     if (ra[0] > ra[1])
682     ra[0] = ra[1];
683     }
684 greg 2.29 if (ra[0] < minarad) {
685     ra[0] = minarad;
686     if (ra[1] < minarad)
687     ra[1] = minarad;
688     }
689     ra[0] *= d = 1.0/sqrt(sqrt(wt));
690 greg 2.26 if ((ra[1] *= d) > 2.0*ra[0])
691     ra[1] = 2.0*ra[0];
692 greg 2.28 if (ra[1] > maxarad) {
693     ra[1] = maxarad;
694     if (ra[0] > maxarad)
695     ra[0] = maxarad;
696     }
697 greg 2.35 if (pg != NULL) { /* cap gradient if necessary */
698     d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
699     if (d > 1.0) {
700     d = 1.0/sqrt(d);
701     pg[0] *= d;
702     pg[1] *= d;
703     }
704     }
705 greg 2.26 }
706     free(hp); /* clean up and return */
707     return(1);
708     }
709    
710    
711 greg 2.25 #else /* ! NEWAMB */
712 greg 1.1
713    
714 greg 2.15 void
715 greg 2.14 inithemi( /* initialize sampling hemisphere */
716 greg 2.23 AMBHEMI *hp,
717 greg 2.16 COLOR ac,
718 greg 2.14 RAY *r,
719     double wt
720     )
721 greg 1.1 {
722 greg 2.16 double d;
723 greg 2.23 int i;
724 greg 2.14 /* set number of divisions */
725 greg 2.16 if (ambacc <= FTINY &&
726 greg 2.20 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
727 greg 2.16 wt = d; /* avoid ray termination */
728     hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
729 greg 2.14 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
730     if (hp->nt < i)
731     hp->nt = i;
732     hp->np = PI * hp->nt + 0.5;
733     /* set number of super-samples */
734 greg 2.15 hp->ns = ambssamp * wt + 0.5;
735 greg 2.16 /* assign coefficient */
736 greg 2.14 copycolor(hp->acoef, ac);
737 greg 2.16 d = 1.0/(hp->nt*hp->np);
738     scalecolor(hp->acoef, d);
739 greg 2.14 /* make axes */
740     VCOPY(hp->uz, r->ron);
741     hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
742     for (i = 0; i < 3; i++)
743     if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
744     break;
745     if (i >= 3)
746     error(CONSISTENCY, "bad ray direction in inithemi");
747     hp->uy[i] = 1.0;
748     fcross(hp->ux, hp->uy, hp->uz);
749     normalize(hp->ux);
750     fcross(hp->uy, hp->uz, hp->ux);
751 greg 1.1 }
752    
753    
754 greg 2.9 int
755 greg 2.14 divsample( /* sample a division */
756 greg 2.23 AMBSAMP *dp,
757 greg 2.14 AMBHEMI *h,
758     RAY *r
759     )
760 greg 1.1 {
761     RAY ar;
762 greg 1.11 int hlist[3];
763     double spt[2];
764 greg 1.1 double xd, yd, zd;
765     double b2;
766     double phi;
767 greg 2.23 int i;
768 greg 2.15 /* ambient coefficient for weight */
769 greg 2.16 if (ambacc > FTINY)
770     setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
771     else
772     copycolor(ar.rcoef, h->acoef);
773 greg 2.14 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
774 greg 1.4 return(-1);
775 greg 2.17 if (ambacc > FTINY) {
776     multcolor(ar.rcoef, h->acoef);
777     scalecolor(ar.rcoef, 1./AVGREFL);
778     }
779 greg 1.1 hlist[0] = r->rno;
780     hlist[1] = dp->t;
781     hlist[2] = dp->p;
782 greg 1.13 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
783 greg 1.11 zd = sqrt((dp->t + spt[0])/h->nt);
784     phi = 2.0*PI * (dp->p + spt[1])/h->np;
785 gwlarson 2.8 xd = tcos(phi) * zd;
786     yd = tsin(phi) * zd;
787 greg 1.1 zd = sqrt(1.0 - zd*zd);
788 greg 1.2 for (i = 0; i < 3; i++)
789     ar.rdir[i] = xd*h->ux[i] +
790     yd*h->uy[i] +
791     zd*h->uz[i];
792 greg 2.22 checknorm(ar.rdir);
793 greg 1.2 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
794 greg 1.1 rayvalue(&ar);
795     ndims--;
796 greg 2.16 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
797 greg 1.1 addcolor(dp->v, ar.rcol);
798 greg 2.9 /* use rt to improve gradient calc */
799     if (ar.rt > FTINY && ar.rt < FHUGE)
800     dp->r += 1.0/ar.rt;
801 greg 1.1 /* (re)initialize error */
802     if (dp->n++) {
803     b2 = bright(dp->v)/dp->n - bright(ar.rcol);
804     b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
805     dp->k = b2/(dp->n*dp->n);
806     } else
807     dp->k = 0.0;
808 greg 1.4 return(0);
809 greg 1.1 }
810    
811    
812 greg 2.14 static int
813     ambcmp( /* decreasing order */
814     const void *p1,
815     const void *p2
816     )
817     {
818     const AMBSAMP *d1 = (const AMBSAMP *)p1;
819     const AMBSAMP *d2 = (const AMBSAMP *)p2;
820    
821     if (d1->k < d2->k)
822     return(1);
823     if (d1->k > d2->k)
824     return(-1);
825     return(0);
826     }
827    
828    
829     static int
830     ambnorm( /* standard order */
831     const void *p1,
832     const void *p2
833     )
834     {
835     const AMBSAMP *d1 = (const AMBSAMP *)p1;
836     const AMBSAMP *d2 = (const AMBSAMP *)p2;
837 greg 2.23 int c;
838 greg 2.14
839     if ( (c = d1->t - d2->t) )
840     return(c);
841     return(d1->p - d2->p);
842     }
843    
844    
845 greg 1.1 double
846 greg 2.14 doambient( /* compute ambient component */
847 greg 2.23 COLOR rcol,
848 greg 2.14 RAY *r,
849     double wt,
850     FVECT pg,
851     FVECT dg
852     )
853 greg 1.1 {
854 greg 2.24 double b, d=0;
855 greg 1.1 AMBHEMI hemi;
856     AMBSAMP *div;
857     AMBSAMP dnew;
858 greg 2.23 double acol[3];
859     AMBSAMP *dp;
860 greg 1.1 double arad;
861 greg 2.19 int divcnt;
862 greg 2.23 int i, j;
863 greg 1.1 /* initialize hemisphere */
864 greg 2.23 inithemi(&hemi, rcol, r, wt);
865 greg 2.19 divcnt = hemi.nt * hemi.np;
866 greg 2.17 /* initialize */
867     if (pg != NULL)
868     pg[0] = pg[1] = pg[2] = 0.0;
869     if (dg != NULL)
870     dg[0] = dg[1] = dg[2] = 0.0;
871 greg 2.23 setcolor(rcol, 0.0, 0.0, 0.0);
872 greg 2.19 if (divcnt == 0)
873 greg 1.1 return(0.0);
874 greg 2.14 /* allocate super-samples */
875 greg 2.15 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
876 greg 2.19 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
877 greg 1.1 if (div == NULL)
878     error(SYSTEM, "out of memory in doambient");
879     } else
880     div = NULL;
881     /* sample the divisions */
882     arad = 0.0;
883 greg 2.23 acol[0] = acol[1] = acol[2] = 0.0;
884 greg 1.1 if ((dp = div) == NULL)
885     dp = &dnew;
886 greg 2.19 divcnt = 0;
887 greg 1.1 for (i = 0; i < hemi.nt; i++)
888     for (j = 0; j < hemi.np; j++) {
889     dp->t = i; dp->p = j;
890     setcolor(dp->v, 0.0, 0.0, 0.0);
891 greg 1.2 dp->r = 0.0;
892 greg 1.1 dp->n = 0;
893 greg 2.16 if (divsample(dp, &hemi, r) < 0) {
894 greg 2.19 if (div != NULL)
895     dp++;
896 greg 2.16 continue;
897     }
898 greg 2.6 arad += dp->r;
899 greg 2.19 divcnt++;
900 greg 1.1 if (div != NULL)
901     dp++;
902 greg 2.6 else
903 greg 1.1 addcolor(acol, dp->v);
904     }
905 greg 2.21 if (!divcnt) {
906     if (div != NULL)
907     free((void *)div);
908 greg 2.19 return(0.0); /* no samples taken */
909 greg 2.21 }
910 greg 2.19 if (divcnt < hemi.nt*hemi.np) {
911     pg = dg = NULL; /* incomplete sampling */
912     hemi.ns = 0;
913     } else if (arad > FTINY && divcnt/arad < minarad) {
914 greg 2.15 hemi.ns = 0; /* close enough */
915 greg 2.19 } else if (hemi.ns > 0) { /* else perform super-sampling? */
916 greg 1.4 comperrs(div, &hemi); /* compute errors */
917 greg 2.19 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
918 greg 1.1 /* super-sample */
919 greg 2.15 for (i = hemi.ns; i > 0; i--) {
920 schorsch 2.11 dnew = *div;
921 greg 2.16 if (divsample(&dnew, &hemi, r) < 0) {
922     dp++;
923     continue;
924     }
925     dp = div; /* reinsert */
926 greg 2.19 j = divcnt < i ? divcnt : i;
927 greg 1.1 while (--j > 0 && dnew.k < dp[1].k) {
928 schorsch 2.11 *dp = *(dp+1);
929 greg 1.1 dp++;
930     }
931 schorsch 2.11 *dp = dnew;
932 greg 1.1 }
933 greg 1.2 if (pg != NULL || dg != NULL) /* restore order */
934 greg 2.19 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
935 greg 1.1 }
936     /* compute returned values */
937 greg 1.3 if (div != NULL) {
938 greg 2.19 arad = 0.0; /* note: divcnt may be < nt*np */
939     for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
940 greg 1.3 arad += dp->r;
941     if (dp->n > 1) {
942     b = 1.0/dp->n;
943     scalecolor(dp->v, b);
944     dp->r *= b;
945     dp->n = 1;
946     }
947     addcolor(acol, dp->v);
948     }
949 greg 1.5 b = bright(acol);
950 greg 1.6 if (b > FTINY) {
951 greg 2.17 b = 1.0/b; /* compute & normalize gradient(s) */
952 greg 1.6 if (pg != NULL) {
953     posgradient(pg, div, &hemi);
954     for (i = 0; i < 3; i++)
955     pg[i] *= b;
956     }
957     if (dg != NULL) {
958     dirgradient(dg, div, &hemi);
959     for (i = 0; i < 3; i++)
960     dg[i] *= b;
961     }
962 greg 1.5 }
963 greg 2.9 free((void *)div);
964 greg 1.3 }
965 greg 2.23 copycolor(rcol, acol);
966 greg 1.1 if (arad <= FTINY)
967 greg 1.16 arad = maxarad;
968 greg 2.3 else
969 greg 2.19 arad = (divcnt+hemi.ns)/arad;
970 greg 1.15 if (pg != NULL) { /* reduce radius if gradient large */
971     d = DOT(pg,pg);
972     if (d*arad*arad > 1.0)
973     arad = 1.0/sqrt(d);
974     }
975 greg 1.16 if (arad < minarad) {
976 greg 1.1 arad = minarad;
977 greg 1.16 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
978     d = 1.0/arad/sqrt(d);
979     for (i = 0; i < 3; i++)
980     pg[i] *= d;
981     }
982     }
983 greg 2.3 if ((arad /= sqrt(wt)) > maxarad)
984     arad = maxarad;
985     return(arad);
986 greg 1.1 }
987    
988    
989 greg 2.9 void
990 greg 2.14 comperrs( /* compute initial error estimates */
991     AMBSAMP *da, /* assumes standard ordering */
992 greg 2.23 AMBHEMI *hp
993 greg 2.14 )
994 greg 1.1 {
995     double b, b2;
996     int i, j;
997 greg 2.23 AMBSAMP *dp;
998 greg 1.1 /* sum differences from neighbors */
999     dp = da;
1000     for (i = 0; i < hp->nt; i++)
1001     for (j = 0; j < hp->np; j++) {
1002 greg 1.6 #ifdef DEBUG
1003     if (dp->t != i || dp->p != j)
1004     error(CONSISTENCY,
1005     "division order in comperrs");
1006     #endif
1007 greg 1.1 b = bright(dp[0].v);
1008     if (i > 0) { /* from above */
1009     b2 = bright(dp[-hp->np].v) - b;
1010     b2 *= b2 * 0.25;
1011     dp[0].k += b2;
1012     dp[-hp->np].k += b2;
1013     }
1014     if (j > 0) { /* from behind */
1015     b2 = bright(dp[-1].v) - b;
1016     b2 *= b2 * 0.25;
1017     dp[0].k += b2;
1018     dp[-1].k += b2;
1019 greg 1.4 } else { /* around */
1020     b2 = bright(dp[hp->np-1].v) - b;
1021 greg 1.1 b2 *= b2 * 0.25;
1022     dp[0].k += b2;
1023 greg 1.4 dp[hp->np-1].k += b2;
1024 greg 1.1 }
1025     dp++;
1026     }
1027     /* divide by number of neighbors */
1028     dp = da;
1029     for (j = 0; j < hp->np; j++) /* top row */
1030     (dp++)->k *= 1.0/3.0;
1031     if (hp->nt < 2)
1032     return;
1033     for (i = 1; i < hp->nt-1; i++) /* central region */
1034     for (j = 0; j < hp->np; j++)
1035     (dp++)->k *= 0.25;
1036     for (j = 0; j < hp->np; j++) /* bottom row */
1037     (dp++)->k *= 1.0/3.0;
1038     }
1039    
1040    
1041 greg 2.9 void
1042 greg 2.14 posgradient( /* compute position gradient */
1043     FVECT gv,
1044     AMBSAMP *da, /* assumes standard ordering */
1045 greg 2.23 AMBHEMI *hp
1046 greg 2.14 )
1047 greg 1.1 {
1048 greg 2.23 int i, j;
1049 greg 2.2 double nextsine, lastsine, b, d;
1050 greg 1.2 double mag0, mag1;
1051     double phi, cosp, sinp, xd, yd;
1052 greg 2.23 AMBSAMP *dp;
1053 greg 1.2
1054     xd = yd = 0.0;
1055     for (j = 0; j < hp->np; j++) {
1056     dp = da + j;
1057     mag0 = mag1 = 0.0;
1058 greg 2.2 lastsine = 0.0;
1059 greg 1.2 for (i = 0; i < hp->nt; i++) {
1060     #ifdef DEBUG
1061     if (dp->t != i || dp->p != j)
1062     error(CONSISTENCY,
1063     "division order in posgradient");
1064     #endif
1065     b = bright(dp->v);
1066     if (i > 0) {
1067     d = dp[-hp->np].r;
1068     if (dp[0].r > d) d = dp[0].r;
1069 greg 2.2 /* sin(t)*cos(t)^2 */
1070     d *= lastsine * (1.0 - (double)i/hp->nt);
1071 greg 1.2 mag0 += d*(b - bright(dp[-hp->np].v));
1072     }
1073 greg 2.2 nextsine = sqrt((double)(i+1)/hp->nt);
1074 greg 1.2 if (j > 0) {
1075     d = dp[-1].r;
1076     if (dp[0].r > d) d = dp[0].r;
1077 greg 2.2 mag1 += d * (nextsine - lastsine) *
1078     (b - bright(dp[-1].v));
1079 greg 1.2 } else {
1080     d = dp[hp->np-1].r;
1081     if (dp[0].r > d) d = dp[0].r;
1082 greg 2.2 mag1 += d * (nextsine - lastsine) *
1083     (b - bright(dp[hp->np-1].v));
1084 greg 1.2 }
1085     dp += hp->np;
1086 greg 2.2 lastsine = nextsine;
1087 greg 1.2 }
1088 greg 2.2 mag0 *= 2.0*PI / hp->np;
1089 greg 1.2 phi = 2.0*PI * (double)j/hp->np;
1090 gwlarson 2.8 cosp = tcos(phi); sinp = tsin(phi);
1091 greg 1.2 xd += mag0*cosp - mag1*sinp;
1092     yd += mag0*sinp + mag1*cosp;
1093     }
1094     for (i = 0; i < 3; i++)
1095 greg 2.16 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
1096 greg 1.1 }
1097    
1098    
1099 greg 2.9 void
1100 greg 2.14 dirgradient( /* compute direction gradient */
1101     FVECT gv,
1102     AMBSAMP *da, /* assumes standard ordering */
1103 greg 2.23 AMBHEMI *hp
1104 greg 2.14 )
1105 greg 1.1 {
1106 greg 2.23 int i, j;
1107 greg 1.2 double mag;
1108     double phi, xd, yd;
1109 greg 2.23 AMBSAMP *dp;
1110 greg 1.2
1111     xd = yd = 0.0;
1112     for (j = 0; j < hp->np; j++) {
1113     dp = da + j;
1114     mag = 0.0;
1115     for (i = 0; i < hp->nt; i++) {
1116     #ifdef DEBUG
1117     if (dp->t != i || dp->p != j)
1118     error(CONSISTENCY,
1119     "division order in dirgradient");
1120     #endif
1121 greg 2.2 /* tan(t) */
1122     mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
1123 greg 1.2 dp += hp->np;
1124     }
1125     phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
1126 gwlarson 2.8 xd += mag * tcos(phi);
1127     yd += mag * tsin(phi);
1128 greg 1.2 }
1129     for (i = 0; i < 3; i++)
1130 greg 2.16 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
1131 greg 1.1 }
1132 greg 2.25
1133     #endif /* ! NEWAMB */