| 1 |
greg |
1.1 |
#ifndef lint
|
| 2 |
greg |
2.30 |
static const char RCSid[] = "$Id: ambcomp.c,v 2.29 2014/04/23 06:04:17 greg Exp $";
|
| 3 |
greg |
1.1 |
#endif
|
| 4 |
|
|
/*
|
| 5 |
|
|
* Routines to compute "ambient" values using Monte Carlo
|
| 6 |
greg |
2.9 |
*
|
| 7 |
greg |
2.27 |
* Hessian calculations based on "Practical Hessian-Based Error Control
|
| 8 |
|
|
* for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
|
| 9 |
|
|
* from ACM SIGGRAPH Asia 2012 conference proceedings.
|
| 10 |
|
|
*
|
| 11 |
greg |
2.9 |
* Declarations of external symbols in ambient.h
|
| 12 |
|
|
*/
|
| 13 |
|
|
|
| 14 |
greg |
2.10 |
#include "copyright.h"
|
| 15 |
greg |
1.1 |
|
| 16 |
|
|
#include "ray.h"
|
| 17 |
greg |
2.25 |
#include "ambient.h"
|
| 18 |
|
|
#include "random.h"
|
| 19 |
greg |
1.1 |
|
| 20 |
greg |
2.25 |
#ifdef NEWAMB
|
| 21 |
greg |
1.1 |
|
| 22 |
greg |
2.26 |
extern void SDsquare2disk(double ds[2], double seedx, double seedy);
|
| 23 |
|
|
|
| 24 |
|
|
typedef struct {
|
| 25 |
|
|
RAY *rp; /* originating ray sample */
|
| 26 |
greg |
2.27 |
FVECT ux, uy; /* tangent axis unit vectors */
|
| 27 |
greg |
2.26 |
int ns; /* number of samples per axis */
|
| 28 |
|
|
COLOR acoef; /* division contribution coefficient */
|
| 29 |
|
|
struct s_ambsamp {
|
| 30 |
|
|
COLOR v; /* hemisphere sample value */
|
| 31 |
|
|
float p[3]; /* intersection point */
|
| 32 |
|
|
} sa[1]; /* sample array (extends struct) */
|
| 33 |
|
|
} AMBHEMI; /* ambient sample hemisphere */
|
| 34 |
|
|
|
| 35 |
|
|
#define ambsamp(h,i,j) (h)->sa[(i)*(h)->ns + (j)]
|
| 36 |
|
|
|
| 37 |
greg |
2.27 |
typedef struct {
|
| 38 |
greg |
2.30 |
FVECT r_i, r_i1, e_i, rI2_eJ2;
|
| 39 |
|
|
double nf, I1, I2;
|
| 40 |
greg |
2.27 |
} FFTRI; /* vectors and coefficients for Hessian calculation */
|
| 41 |
|
|
|
| 42 |
greg |
2.26 |
|
| 43 |
|
|
static AMBHEMI *
|
| 44 |
|
|
inithemi( /* initialize sampling hemisphere */
|
| 45 |
|
|
COLOR ac,
|
| 46 |
|
|
RAY *r,
|
| 47 |
|
|
double wt
|
| 48 |
|
|
)
|
| 49 |
|
|
{
|
| 50 |
|
|
AMBHEMI *hp;
|
| 51 |
|
|
double d;
|
| 52 |
|
|
int n, i;
|
| 53 |
|
|
/* set number of divisions */
|
| 54 |
|
|
if (ambacc <= FTINY &&
|
| 55 |
|
|
wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
|
| 56 |
|
|
wt = d; /* avoid ray termination */
|
| 57 |
|
|
n = sqrt(ambdiv * wt) + 0.5;
|
| 58 |
greg |
2.27 |
i = 1 + 5*(ambacc > FTINY); /* minimum number of samples */
|
| 59 |
greg |
2.26 |
if (n < i)
|
| 60 |
|
|
n = i;
|
| 61 |
|
|
/* allocate sampling array */
|
| 62 |
|
|
hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) +
|
| 63 |
|
|
sizeof(struct s_ambsamp)*(n*n - 1));
|
| 64 |
|
|
if (hp == NULL)
|
| 65 |
|
|
return(NULL);
|
| 66 |
|
|
hp->rp = r;
|
| 67 |
|
|
hp->ns = n;
|
| 68 |
|
|
/* assign coefficient */
|
| 69 |
|
|
copycolor(hp->acoef, ac);
|
| 70 |
|
|
d = 1.0/(n*n);
|
| 71 |
|
|
scalecolor(hp->acoef, d);
|
| 72 |
greg |
2.28 |
/* make tangent plane axes */
|
| 73 |
|
|
hp->uy[0] = 0.1 - 0.2*frandom();
|
| 74 |
|
|
hp->uy[1] = 0.1 - 0.2*frandom();
|
| 75 |
|
|
hp->uy[2] = 0.1 - 0.2*frandom();
|
| 76 |
greg |
2.26 |
for (i = 0; i < 3; i++)
|
| 77 |
greg |
2.27 |
if (r->ron[i] < 0.6 && r->ron[i] > -0.6)
|
| 78 |
greg |
2.26 |
break;
|
| 79 |
|
|
if (i >= 3)
|
| 80 |
|
|
error(CONSISTENCY, "bad ray direction in inithemi()");
|
| 81 |
|
|
hp->uy[i] = 1.0;
|
| 82 |
greg |
2.27 |
VCROSS(hp->ux, hp->uy, r->ron);
|
| 83 |
greg |
2.26 |
normalize(hp->ux);
|
| 84 |
greg |
2.27 |
VCROSS(hp->uy, r->ron, hp->ux);
|
| 85 |
greg |
2.26 |
/* we're ready to sample */
|
| 86 |
|
|
return(hp);
|
| 87 |
|
|
}
|
| 88 |
|
|
|
| 89 |
|
|
|
| 90 |
greg |
2.28 |
static struct s_ambsamp *
|
| 91 |
greg |
2.26 |
ambsample( /* sample an ambient direction */
|
| 92 |
|
|
AMBHEMI *hp,
|
| 93 |
|
|
int i,
|
| 94 |
greg |
2.27 |
int j
|
| 95 |
greg |
2.26 |
)
|
| 96 |
|
|
{
|
| 97 |
|
|
struct s_ambsamp *ap = &ambsamp(hp,i,j);
|
| 98 |
|
|
RAY ar;
|
| 99 |
greg |
2.27 |
double spt[2], zd;
|
| 100 |
greg |
2.26 |
int ii;
|
| 101 |
|
|
/* ambient coefficient for weight */
|
| 102 |
|
|
if (ambacc > FTINY)
|
| 103 |
|
|
setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
|
| 104 |
|
|
else
|
| 105 |
|
|
copycolor(ar.rcoef, hp->acoef);
|
| 106 |
|
|
if (rayorigin(&ar, AMBIENT, hp->rp, ar.rcoef) < 0) {
|
| 107 |
|
|
setcolor(ap->v, 0., 0., 0.);
|
| 108 |
greg |
2.27 |
VCOPY(ap->p, hp->rp->rop);
|
| 109 |
greg |
2.28 |
return(NULL); /* no sample taken */
|
| 110 |
greg |
2.26 |
}
|
| 111 |
|
|
if (ambacc > FTINY) {
|
| 112 |
|
|
multcolor(ar.rcoef, hp->acoef);
|
| 113 |
|
|
scalecolor(ar.rcoef, 1./AVGREFL);
|
| 114 |
|
|
}
|
| 115 |
|
|
/* generate hemispherical sample */
|
| 116 |
greg |
2.27 |
SDsquare2disk(spt, (i+.1+.8*frandom())/hp->ns,
|
| 117 |
greg |
2.28 |
(j+.1+.8*frandom())/hp->ns );
|
| 118 |
greg |
2.26 |
zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
|
| 119 |
|
|
for (ii = 3; ii--; )
|
| 120 |
|
|
ar.rdir[ii] = spt[0]*hp->ux[ii] +
|
| 121 |
|
|
spt[1]*hp->uy[ii] +
|
| 122 |
|
|
zd*hp->rp->ron[ii];
|
| 123 |
|
|
checknorm(ar.rdir);
|
| 124 |
|
|
dimlist[ndims++] = i*hp->ns + j + 90171;
|
| 125 |
|
|
rayvalue(&ar); /* evaluate ray */
|
| 126 |
|
|
ndims--;
|
| 127 |
|
|
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
|
| 128 |
|
|
copycolor(ap->v, ar.rcol);
|
| 129 |
|
|
if (ar.rt > 20.0*maxarad) /* limit vertex distance */
|
| 130 |
greg |
2.29 |
VSUM(ap->p, ar.rorg, ar.rdir, 20.0*maxarad);
|
| 131 |
|
|
else
|
| 132 |
|
|
VCOPY(ap->p, ar.rop);
|
| 133 |
greg |
2.28 |
return(ap);
|
| 134 |
greg |
2.26 |
}
|
| 135 |
|
|
|
| 136 |
|
|
|
| 137 |
greg |
2.27 |
/* Compute vectors and coefficients for Hessian/gradient calcs */
|
| 138 |
|
|
static void
|
| 139 |
|
|
comp_fftri(FFTRI *ftp, float ap0[3], float ap1[3], FVECT rop)
|
| 140 |
|
|
{
|
| 141 |
greg |
2.30 |
FVECT vcp;
|
| 142 |
|
|
double dot_e, dot_er, dot_r, dot_r1, J2;
|
| 143 |
|
|
int i;
|
| 144 |
greg |
2.27 |
|
| 145 |
|
|
VSUB(ftp->r_i, ap0, rop);
|
| 146 |
|
|
VSUB(ftp->r_i1, ap1, rop);
|
| 147 |
|
|
VSUB(ftp->e_i, ap1, ap0);
|
| 148 |
greg |
2.30 |
VCROSS(vcp, ftp->e_i, ftp->r_i);
|
| 149 |
|
|
ftp->nf = 1.0/DOT(vcp,vcp);
|
| 150 |
greg |
2.27 |
dot_e = DOT(ftp->e_i,ftp->e_i);
|
| 151 |
|
|
dot_er = DOT(ftp->e_i, ftp->r_i);
|
| 152 |
|
|
dot_r = DOT(ftp->r_i,ftp->r_i);
|
| 153 |
|
|
dot_r1 = DOT(ftp->r_i1,ftp->r_i1);
|
| 154 |
greg |
2.29 |
ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) / sqrt(dot_r*dot_r1) ) *
|
| 155 |
|
|
sqrt( ftp->nf );
|
| 156 |
greg |
2.27 |
ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)/dot_r1 - dot_er/dot_r +
|
| 157 |
|
|
dot_e*ftp->I1 )*0.5*ftp->nf;
|
| 158 |
greg |
2.30 |
J2 = 0.5/dot_e*( 1.0/dot_r - 1.0/dot_r1 ) - dot_er/dot_e*ftp->I2;
|
| 159 |
|
|
for (i = 3; i--; )
|
| 160 |
|
|
ftp->rI2_eJ2[i] = ftp->I2*ftp->r_i[i] + J2*ftp->e_i[i];
|
| 161 |
greg |
2.27 |
}
|
| 162 |
|
|
|
| 163 |
|
|
|
| 164 |
greg |
2.28 |
/* Compose 3x3 matrix from two vectors */
|
| 165 |
greg |
2.27 |
static void
|
| 166 |
|
|
compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
|
| 167 |
|
|
{
|
| 168 |
|
|
mat[0][0] = 2.0*va[0]*vb[0];
|
| 169 |
|
|
mat[1][1] = 2.0*va[1]*vb[1];
|
| 170 |
|
|
mat[2][2] = 2.0*va[2]*vb[2];
|
| 171 |
|
|
mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
|
| 172 |
|
|
mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
|
| 173 |
|
|
mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
|
| 174 |
|
|
}
|
| 175 |
|
|
|
| 176 |
|
|
|
| 177 |
|
|
/* Compute partial 3x3 Hessian matrix for edge */
|
| 178 |
|
|
static void
|
| 179 |
|
|
comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
|
| 180 |
|
|
{
|
| 181 |
greg |
2.30 |
FVECT vcp;
|
| 182 |
greg |
2.27 |
FVECT m1[3], m2[3], m3[3], m4[3];
|
| 183 |
|
|
double d1, d2, d3, d4;
|
| 184 |
|
|
double I3, J3, K3;
|
| 185 |
|
|
int i, j;
|
| 186 |
|
|
/* compute intermediate coefficients */
|
| 187 |
|
|
d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
|
| 188 |
|
|
d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
|
| 189 |
|
|
d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
|
| 190 |
|
|
d4 = DOT(ftp->e_i, ftp->r_i);
|
| 191 |
|
|
I3 = 0.25*ftp->nf*( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 +
|
| 192 |
greg |
2.29 |
3.0/d3*ftp->I2 );
|
| 193 |
greg |
2.27 |
J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
|
| 194 |
|
|
K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
|
| 195 |
|
|
/* intermediate matrices */
|
| 196 |
greg |
2.30 |
VCROSS(vcp, nrm, ftp->e_i);
|
| 197 |
|
|
compose_matrix(m1, vcp, ftp->rI2_eJ2);
|
| 198 |
greg |
2.27 |
compose_matrix(m2, ftp->r_i, ftp->r_i);
|
| 199 |
|
|
compose_matrix(m3, ftp->e_i, ftp->e_i);
|
| 200 |
|
|
compose_matrix(m4, ftp->r_i, ftp->e_i);
|
| 201 |
greg |
2.30 |
VCROSS(vcp, ftp->r_i, ftp->e_i);
|
| 202 |
|
|
d1 = DOT(nrm, vcp);
|
| 203 |
greg |
2.27 |
d2 = -d1*ftp->I2;
|
| 204 |
|
|
d1 *= 2.0;
|
| 205 |
|
|
for (i = 3; i--; ) /* final matrix sum */
|
| 206 |
|
|
for (j = 3; j--; ) {
|
| 207 |
|
|
hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
|
| 208 |
|
|
2.0*J3*m4[i][j] );
|
| 209 |
|
|
hess[i][j] += d2*(i==j);
|
| 210 |
|
|
hess[i][j] *= -1.0/PI;
|
| 211 |
|
|
}
|
| 212 |
|
|
}
|
| 213 |
|
|
|
| 214 |
|
|
|
| 215 |
|
|
/* Reverse hessian calculation result for edge in other direction */
|
| 216 |
|
|
static void
|
| 217 |
|
|
rev_hessian(FVECT hess[3])
|
| 218 |
|
|
{
|
| 219 |
|
|
int i;
|
| 220 |
|
|
|
| 221 |
|
|
for (i = 3; i--; ) {
|
| 222 |
|
|
hess[i][0] = -hess[i][0];
|
| 223 |
|
|
hess[i][1] = -hess[i][1];
|
| 224 |
|
|
hess[i][2] = -hess[i][2];
|
| 225 |
|
|
}
|
| 226 |
|
|
}
|
| 227 |
|
|
|
| 228 |
|
|
|
| 229 |
|
|
/* Add to radiometric Hessian from the given triangle */
|
| 230 |
|
|
static void
|
| 231 |
|
|
add2hessian(FVECT hess[3], FVECT ehess1[3],
|
| 232 |
|
|
FVECT ehess2[3], FVECT ehess3[3], COLORV v)
|
| 233 |
|
|
{
|
| 234 |
|
|
int i, j;
|
| 235 |
|
|
|
| 236 |
|
|
for (i = 3; i--; )
|
| 237 |
|
|
for (j = 3; j--; )
|
| 238 |
|
|
hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
|
| 239 |
|
|
}
|
| 240 |
|
|
|
| 241 |
|
|
|
| 242 |
|
|
/* Compute partial displacement form factor gradient for edge */
|
| 243 |
|
|
static void
|
| 244 |
|
|
comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
|
| 245 |
|
|
{
|
| 246 |
|
|
FVECT vcp;
|
| 247 |
|
|
double f1;
|
| 248 |
|
|
int i;
|
| 249 |
|
|
|
| 250 |
|
|
VCROSS(vcp, ftp->r_i, ftp->r_i1);
|
| 251 |
|
|
f1 = 2.0*DOT(nrm, vcp);
|
| 252 |
|
|
VCROSS(vcp, nrm, ftp->e_i);
|
| 253 |
|
|
for (i = 3; i--; )
|
| 254 |
greg |
2.30 |
grad[i] = (0.5/PI)*( ftp->I1*vcp[i] + f1*ftp->rI2_eJ2[i] );
|
| 255 |
greg |
2.27 |
}
|
| 256 |
|
|
|
| 257 |
|
|
|
| 258 |
|
|
/* Reverse gradient calculation result for edge in other direction */
|
| 259 |
|
|
static void
|
| 260 |
|
|
rev_gradient(FVECT grad)
|
| 261 |
|
|
{
|
| 262 |
|
|
grad[0] = -grad[0];
|
| 263 |
|
|
grad[1] = -grad[1];
|
| 264 |
|
|
grad[2] = -grad[2];
|
| 265 |
|
|
}
|
| 266 |
|
|
|
| 267 |
|
|
|
| 268 |
|
|
/* Add to displacement gradient from the given triangle */
|
| 269 |
|
|
static void
|
| 270 |
|
|
add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, COLORV v)
|
| 271 |
|
|
{
|
| 272 |
|
|
int i;
|
| 273 |
|
|
|
| 274 |
|
|
for (i = 3; i--; )
|
| 275 |
|
|
grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
|
| 276 |
|
|
}
|
| 277 |
|
|
|
| 278 |
|
|
|
| 279 |
|
|
/* Return brightness of furthest ambient sample */
|
| 280 |
|
|
static COLORV
|
| 281 |
|
|
back_ambval(struct s_ambsamp *ap1, struct s_ambsamp *ap2,
|
| 282 |
|
|
struct s_ambsamp *ap3, FVECT orig)
|
| 283 |
|
|
{
|
| 284 |
|
|
COLORV vback;
|
| 285 |
|
|
FVECT vec;
|
| 286 |
|
|
double d2, d2best;
|
| 287 |
|
|
|
| 288 |
|
|
VSUB(vec, ap1->p, orig);
|
| 289 |
|
|
d2best = DOT(vec,vec);
|
| 290 |
greg |
2.29 |
vback = colval(ap1->v,CIEY);
|
| 291 |
greg |
2.27 |
VSUB(vec, ap2->p, orig);
|
| 292 |
|
|
d2 = DOT(vec,vec);
|
| 293 |
|
|
if (d2 > d2best) {
|
| 294 |
|
|
d2best = d2;
|
| 295 |
greg |
2.29 |
vback = colval(ap2->v,CIEY);
|
| 296 |
greg |
2.27 |
}
|
| 297 |
|
|
VSUB(vec, ap3->p, orig);
|
| 298 |
|
|
d2 = DOT(vec,vec);
|
| 299 |
|
|
if (d2 > d2best)
|
| 300 |
greg |
2.29 |
return(colval(ap3->v,CIEY));
|
| 301 |
greg |
2.27 |
return(vback);
|
| 302 |
|
|
}
|
| 303 |
|
|
|
| 304 |
|
|
|
| 305 |
|
|
/* Compute anisotropic radii and eigenvector directions */
|
| 306 |
|
|
static int
|
| 307 |
|
|
eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
|
| 308 |
|
|
{
|
| 309 |
|
|
double hess2[2][2];
|
| 310 |
|
|
FVECT a, b;
|
| 311 |
|
|
double evalue[2], slope1, xmag1;
|
| 312 |
|
|
int i;
|
| 313 |
|
|
/* project Hessian to sample plane */
|
| 314 |
|
|
for (i = 3; i--; ) {
|
| 315 |
|
|
a[i] = DOT(hessian[i], uv[0]);
|
| 316 |
|
|
b[i] = DOT(hessian[i], uv[1]);
|
| 317 |
|
|
}
|
| 318 |
|
|
hess2[0][0] = DOT(uv[0], a);
|
| 319 |
|
|
hess2[0][1] = DOT(uv[0], b);
|
| 320 |
|
|
hess2[1][0] = DOT(uv[1], a);
|
| 321 |
|
|
hess2[1][1] = DOT(uv[1], b);
|
| 322 |
|
|
/* compute eigenvalues */
|
| 323 |
greg |
2.28 |
if ( quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
|
| 324 |
greg |
2.27 |
hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]) != 2 ||
|
| 325 |
greg |
2.28 |
(evalue[0] = fabs(evalue[0])) <= FTINY*FTINY ||
|
| 326 |
|
|
(evalue[1] = fabs(evalue[1])) <= FTINY*FTINY )
|
| 327 |
greg |
2.27 |
error(INTERNAL, "bad eigenvalue calculation");
|
| 328 |
|
|
|
| 329 |
|
|
if (evalue[0] > evalue[1]) {
|
| 330 |
greg |
2.29 |
ra[0] = sqrt(sqrt(4.0/evalue[0]));
|
| 331 |
|
|
ra[1] = sqrt(sqrt(4.0/evalue[1]));
|
| 332 |
greg |
2.27 |
slope1 = evalue[1];
|
| 333 |
|
|
} else {
|
| 334 |
greg |
2.29 |
ra[0] = sqrt(sqrt(4.0/evalue[1]));
|
| 335 |
|
|
ra[1] = sqrt(sqrt(4.0/evalue[0]));
|
| 336 |
greg |
2.27 |
slope1 = evalue[0];
|
| 337 |
|
|
}
|
| 338 |
|
|
/* compute unit eigenvectors */
|
| 339 |
|
|
if (fabs(hess2[0][1]) <= FTINY)
|
| 340 |
|
|
return; /* uv OK as is */
|
| 341 |
|
|
slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
|
| 342 |
|
|
xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
|
| 343 |
|
|
for (i = 3; i--; ) {
|
| 344 |
|
|
b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
|
| 345 |
|
|
a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
|
| 346 |
|
|
}
|
| 347 |
|
|
VCOPY(uv[0], a);
|
| 348 |
|
|
VCOPY(uv[1], b);
|
| 349 |
|
|
}
|
| 350 |
|
|
|
| 351 |
|
|
|
| 352 |
greg |
2.26 |
static void
|
| 353 |
|
|
ambHessian( /* anisotropic radii & pos. gradient */
|
| 354 |
|
|
AMBHEMI *hp,
|
| 355 |
|
|
FVECT uv[2], /* returned */
|
| 356 |
greg |
2.28 |
float ra[2], /* returned (optional) */
|
| 357 |
|
|
float pg[2] /* returned (optional) */
|
| 358 |
greg |
2.26 |
)
|
| 359 |
|
|
{
|
| 360 |
greg |
2.27 |
static char memerrmsg[] = "out of memory in ambHessian()";
|
| 361 |
|
|
FVECT (*hessrow)[3] = NULL;
|
| 362 |
|
|
FVECT *gradrow = NULL;
|
| 363 |
|
|
FVECT hessian[3];
|
| 364 |
|
|
FVECT gradient;
|
| 365 |
|
|
FFTRI fftr;
|
| 366 |
|
|
int i, j;
|
| 367 |
|
|
/* be sure to assign unit vectors */
|
| 368 |
|
|
VCOPY(uv[0], hp->ux);
|
| 369 |
|
|
VCOPY(uv[1], hp->uy);
|
| 370 |
|
|
/* clock-wise vertex traversal from sample POV */
|
| 371 |
|
|
if (ra != NULL) { /* initialize Hessian row buffer */
|
| 372 |
greg |
2.28 |
hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
|
| 373 |
greg |
2.27 |
if (hessrow == NULL)
|
| 374 |
|
|
error(SYSTEM, memerrmsg);
|
| 375 |
|
|
memset(hessian, 0, sizeof(hessian));
|
| 376 |
|
|
} else if (pg == NULL) /* bogus call? */
|
| 377 |
|
|
return;
|
| 378 |
|
|
if (pg != NULL) { /* initialize form factor row buffer */
|
| 379 |
greg |
2.28 |
gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
|
| 380 |
greg |
2.27 |
if (gradrow == NULL)
|
| 381 |
|
|
error(SYSTEM, memerrmsg);
|
| 382 |
|
|
memset(gradient, 0, sizeof(gradient));
|
| 383 |
|
|
}
|
| 384 |
|
|
/* compute first row of edges */
|
| 385 |
|
|
for (j = 0; j < hp->ns-1; j++) {
|
| 386 |
|
|
comp_fftri(&fftr, ambsamp(hp,0,j).p,
|
| 387 |
|
|
ambsamp(hp,0,j+1).p, hp->rp->rop);
|
| 388 |
|
|
if (hessrow != NULL)
|
| 389 |
|
|
comp_hessian(hessrow[j], &fftr, hp->rp->ron);
|
| 390 |
|
|
if (gradrow != NULL)
|
| 391 |
|
|
comp_gradient(gradrow[j], &fftr, hp->rp->ron);
|
| 392 |
|
|
}
|
| 393 |
|
|
/* sum each row of triangles */
|
| 394 |
|
|
for (i = 0; i < hp->ns-1; i++) {
|
| 395 |
|
|
FVECT hesscol[3]; /* compute first vertical edge */
|
| 396 |
|
|
FVECT gradcol;
|
| 397 |
|
|
comp_fftri(&fftr, ambsamp(hp,i,0).p,
|
| 398 |
|
|
ambsamp(hp,i+1,0).p, hp->rp->rop);
|
| 399 |
|
|
if (hessrow != NULL)
|
| 400 |
|
|
comp_hessian(hesscol, &fftr, hp->rp->ron);
|
| 401 |
|
|
if (gradrow != NULL)
|
| 402 |
|
|
comp_gradient(gradcol, &fftr, hp->rp->ron);
|
| 403 |
|
|
for (j = 0; j < hp->ns-1; j++) {
|
| 404 |
|
|
FVECT hessdia[3]; /* compute triangle contributions */
|
| 405 |
|
|
FVECT graddia;
|
| 406 |
|
|
COLORV backg;
|
| 407 |
|
|
backg = back_ambval(&ambsamp(hp,i,j), &ambsamp(hp,i,j+1),
|
| 408 |
|
|
&ambsamp(hp,i+1,j), hp->rp->rop);
|
| 409 |
|
|
/* diagonal (inner) edge */
|
| 410 |
|
|
comp_fftri(&fftr, ambsamp(hp,i,j+1).p,
|
| 411 |
|
|
ambsamp(hp,i+1,j).p, hp->rp->rop);
|
| 412 |
|
|
if (hessrow != NULL) {
|
| 413 |
|
|
comp_hessian(hessdia, &fftr, hp->rp->ron);
|
| 414 |
|
|
rev_hessian(hesscol);
|
| 415 |
|
|
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
|
| 416 |
|
|
}
|
| 417 |
|
|
if (gradient != NULL) {
|
| 418 |
|
|
comp_gradient(graddia, &fftr, hp->rp->ron);
|
| 419 |
|
|
rev_gradient(gradcol);
|
| 420 |
|
|
add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
|
| 421 |
|
|
}
|
| 422 |
|
|
/* initialize edge in next row */
|
| 423 |
|
|
comp_fftri(&fftr, ambsamp(hp,i+1,j+1).p,
|
| 424 |
|
|
ambsamp(hp,i+1,j).p, hp->rp->rop);
|
| 425 |
|
|
if (hessrow != NULL)
|
| 426 |
|
|
comp_hessian(hessrow[j], &fftr, hp->rp->ron);
|
| 427 |
|
|
if (gradrow != NULL)
|
| 428 |
|
|
comp_gradient(gradrow[j], &fftr, hp->rp->ron);
|
| 429 |
|
|
/* new column edge & paired triangle */
|
| 430 |
|
|
backg = back_ambval(&ambsamp(hp,i,j+1), &ambsamp(hp,i+1,j+1),
|
| 431 |
|
|
&ambsamp(hp,i+1,j), hp->rp->rop);
|
| 432 |
|
|
comp_fftri(&fftr, ambsamp(hp,i,j+1).p, ambsamp(hp,i+1,j+1).p,
|
| 433 |
|
|
hp->rp->rop);
|
| 434 |
|
|
if (hessrow != NULL) {
|
| 435 |
|
|
comp_hessian(hesscol, &fftr, hp->rp->ron);
|
| 436 |
|
|
rev_hessian(hessdia);
|
| 437 |
|
|
add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
|
| 438 |
|
|
if (i < hp->ns-2)
|
| 439 |
|
|
rev_hessian(hessrow[j]);
|
| 440 |
|
|
}
|
| 441 |
|
|
if (gradrow != NULL) {
|
| 442 |
|
|
comp_gradient(gradcol, &fftr, hp->rp->ron);
|
| 443 |
|
|
rev_gradient(graddia);
|
| 444 |
|
|
add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
|
| 445 |
|
|
if (i < hp->ns-2)
|
| 446 |
|
|
rev_gradient(gradrow[j]);
|
| 447 |
|
|
}
|
| 448 |
|
|
}
|
| 449 |
|
|
}
|
| 450 |
|
|
/* release row buffers */
|
| 451 |
|
|
if (hessrow != NULL) free(hessrow);
|
| 452 |
|
|
if (gradrow != NULL) free(gradrow);
|
| 453 |
|
|
|
| 454 |
|
|
if (ra != NULL) /* extract eigenvectors & radii */
|
| 455 |
|
|
eigenvectors(uv, ra, hessian);
|
| 456 |
greg |
2.29 |
if (pg != NULL) { /* tangential position gradient/PI */
|
| 457 |
|
|
pg[0] = DOT(gradient, uv[0]) / PI;
|
| 458 |
|
|
pg[1] = DOT(gradient, uv[1]) / PI;
|
| 459 |
greg |
2.27 |
}
|
| 460 |
|
|
}
|
| 461 |
|
|
|
| 462 |
|
|
|
| 463 |
|
|
/* Compute direction gradient from a hemispherical sampling */
|
| 464 |
|
|
static void
|
| 465 |
|
|
ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
|
| 466 |
|
|
{
|
| 467 |
|
|
struct s_ambsamp *ap;
|
| 468 |
greg |
2.29 |
double dgsum[2];
|
| 469 |
greg |
2.27 |
int n;
|
| 470 |
greg |
2.28 |
FVECT vd;
|
| 471 |
|
|
double gfact;
|
| 472 |
greg |
2.27 |
|
| 473 |
greg |
2.29 |
dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
|
| 474 |
greg |
2.27 |
for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
|
| 475 |
|
|
/* use vector for azimuth + 90deg */
|
| 476 |
|
|
VSUB(vd, ap->p, hp->rp->rop);
|
| 477 |
greg |
2.29 |
/* brightness over cosine factor */
|
| 478 |
|
|
gfact = colval(ap->v,CIEY) / DOT(hp->rp->ron, vd);
|
| 479 |
|
|
/* -sine = -proj_radius/vd_length */
|
| 480 |
|
|
dgsum[0] += DOT(uv[1], vd) * gfact;
|
| 481 |
|
|
dgsum[1] -= DOT(uv[0], vd) * gfact;
|
| 482 |
greg |
2.26 |
}
|
| 483 |
greg |
2.29 |
dg[0] = dgsum[0] / (hp->ns*hp->ns);
|
| 484 |
|
|
dg[1] = dgsum[1] / (hp->ns*hp->ns);
|
| 485 |
greg |
2.26 |
}
|
| 486 |
|
|
|
| 487 |
greg |
2.27 |
|
| 488 |
greg |
2.26 |
int
|
| 489 |
|
|
doambient( /* compute ambient component */
|
| 490 |
|
|
COLOR rcol, /* input/output color */
|
| 491 |
|
|
RAY *r,
|
| 492 |
|
|
double wt,
|
| 493 |
greg |
2.27 |
FVECT uv[2], /* returned (optional) */
|
| 494 |
|
|
float ra[2], /* returned (optional) */
|
| 495 |
|
|
float pg[2], /* returned (optional) */
|
| 496 |
|
|
float dg[2] /* returned (optional) */
|
| 497 |
greg |
2.26 |
)
|
| 498 |
|
|
{
|
| 499 |
greg |
2.28 |
AMBHEMI *hp = inithemi(rcol, r, wt);
|
| 500 |
greg |
2.26 |
int cnt = 0;
|
| 501 |
|
|
FVECT my_uv[2];
|
| 502 |
|
|
double d, acol[3];
|
| 503 |
|
|
struct s_ambsamp *ap;
|
| 504 |
|
|
int i, j;
|
| 505 |
greg |
2.28 |
/* check/initialize */
|
| 506 |
|
|
if (hp == NULL)
|
| 507 |
greg |
2.26 |
return(0);
|
| 508 |
|
|
if (uv != NULL)
|
| 509 |
|
|
memset(uv, 0, sizeof(FVECT)*2);
|
| 510 |
|
|
if (ra != NULL)
|
| 511 |
|
|
ra[0] = ra[1] = 0.0;
|
| 512 |
|
|
if (pg != NULL)
|
| 513 |
|
|
pg[0] = pg[1] = 0.0;
|
| 514 |
|
|
if (dg != NULL)
|
| 515 |
|
|
dg[0] = dg[1] = 0.0;
|
| 516 |
|
|
/* sample the hemisphere */
|
| 517 |
|
|
acol[0] = acol[1] = acol[2] = 0.0;
|
| 518 |
greg |
2.27 |
for (i = hp->ns; i--; )
|
| 519 |
|
|
for (j = hp->ns; j--; )
|
| 520 |
greg |
2.28 |
if ((ap = ambsample(hp, i, j)) != NULL) {
|
| 521 |
greg |
2.26 |
addcolor(acol, ap->v);
|
| 522 |
|
|
++cnt;
|
| 523 |
|
|
}
|
| 524 |
|
|
if (!cnt) {
|
| 525 |
|
|
setcolor(rcol, 0.0, 0.0, 0.0);
|
| 526 |
|
|
free(hp);
|
| 527 |
|
|
return(0); /* no valid samples */
|
| 528 |
|
|
}
|
| 529 |
greg |
2.29 |
copycolor(rcol, acol); /* final indirect irradiance/PI */
|
| 530 |
greg |
2.26 |
if (cnt < hp->ns*hp->ns || /* incomplete sampling? */
|
| 531 |
|
|
(ra == NULL) & (pg == NULL) & (dg == NULL)) {
|
| 532 |
|
|
free(hp);
|
| 533 |
|
|
return(-1); /* no radius or gradient calc. */
|
| 534 |
|
|
}
|
| 535 |
greg |
2.29 |
multcolor(acol, hp->acoef); /* normalize Y values */
|
| 536 |
|
|
if ((d = bright(acol)) > FTINY)
|
| 537 |
|
|
d = 1.0/d;
|
| 538 |
|
|
else
|
| 539 |
|
|
d = 0.0;
|
| 540 |
|
|
ap = hp->sa; /* relative Y channel from here on... */
|
| 541 |
greg |
2.26 |
for (i = hp->ns*hp->ns; i--; ap++)
|
| 542 |
greg |
2.29 |
colval(ap->v,CIEY) = bright(ap->v)*d + 0.0314;
|
| 543 |
greg |
2.26 |
|
| 544 |
|
|
if (uv == NULL) /* make sure we have axis pointers */
|
| 545 |
|
|
uv = my_uv;
|
| 546 |
|
|
/* compute radii & pos. gradient */
|
| 547 |
|
|
ambHessian(hp, uv, ra, pg);
|
| 548 |
greg |
2.29 |
|
| 549 |
greg |
2.26 |
if (dg != NULL) /* compute direction gradient */
|
| 550 |
|
|
ambdirgrad(hp, uv, dg);
|
| 551 |
greg |
2.29 |
|
| 552 |
greg |
2.28 |
if (ra != NULL) { /* scale/clamp radii */
|
| 553 |
greg |
2.29 |
if (ra[0] < minarad) {
|
| 554 |
|
|
ra[0] = minarad;
|
| 555 |
|
|
if (ra[1] < minarad)
|
| 556 |
|
|
ra[1] = minarad;
|
| 557 |
|
|
}
|
| 558 |
|
|
ra[0] *= d = 1.0/sqrt(sqrt(wt));
|
| 559 |
greg |
2.26 |
if ((ra[1] *= d) > 2.0*ra[0])
|
| 560 |
|
|
ra[1] = 2.0*ra[0];
|
| 561 |
greg |
2.28 |
if (ra[1] > maxarad) {
|
| 562 |
|
|
ra[1] = maxarad;
|
| 563 |
|
|
if (ra[0] > maxarad)
|
| 564 |
|
|
ra[0] = maxarad;
|
| 565 |
|
|
}
|
| 566 |
greg |
2.26 |
}
|
| 567 |
|
|
free(hp); /* clean up and return */
|
| 568 |
|
|
return(1);
|
| 569 |
|
|
}
|
| 570 |
|
|
|
| 571 |
|
|
|
| 572 |
greg |
2.25 |
#else /* ! NEWAMB */
|
| 573 |
greg |
1.1 |
|
| 574 |
|
|
|
| 575 |
greg |
2.15 |
void
|
| 576 |
greg |
2.14 |
inithemi( /* initialize sampling hemisphere */
|
| 577 |
greg |
2.23 |
AMBHEMI *hp,
|
| 578 |
greg |
2.16 |
COLOR ac,
|
| 579 |
greg |
2.14 |
RAY *r,
|
| 580 |
|
|
double wt
|
| 581 |
|
|
)
|
| 582 |
greg |
1.1 |
{
|
| 583 |
greg |
2.16 |
double d;
|
| 584 |
greg |
2.23 |
int i;
|
| 585 |
greg |
2.14 |
/* set number of divisions */
|
| 586 |
greg |
2.16 |
if (ambacc <= FTINY &&
|
| 587 |
greg |
2.20 |
wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
|
| 588 |
greg |
2.16 |
wt = d; /* avoid ray termination */
|
| 589 |
|
|
hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
|
| 590 |
greg |
2.14 |
i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
|
| 591 |
|
|
if (hp->nt < i)
|
| 592 |
|
|
hp->nt = i;
|
| 593 |
|
|
hp->np = PI * hp->nt + 0.5;
|
| 594 |
|
|
/* set number of super-samples */
|
| 595 |
greg |
2.15 |
hp->ns = ambssamp * wt + 0.5;
|
| 596 |
greg |
2.16 |
/* assign coefficient */
|
| 597 |
greg |
2.14 |
copycolor(hp->acoef, ac);
|
| 598 |
greg |
2.16 |
d = 1.0/(hp->nt*hp->np);
|
| 599 |
|
|
scalecolor(hp->acoef, d);
|
| 600 |
greg |
2.14 |
/* make axes */
|
| 601 |
|
|
VCOPY(hp->uz, r->ron);
|
| 602 |
|
|
hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
|
| 603 |
|
|
for (i = 0; i < 3; i++)
|
| 604 |
|
|
if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
|
| 605 |
|
|
break;
|
| 606 |
|
|
if (i >= 3)
|
| 607 |
|
|
error(CONSISTENCY, "bad ray direction in inithemi");
|
| 608 |
|
|
hp->uy[i] = 1.0;
|
| 609 |
|
|
fcross(hp->ux, hp->uy, hp->uz);
|
| 610 |
|
|
normalize(hp->ux);
|
| 611 |
|
|
fcross(hp->uy, hp->uz, hp->ux);
|
| 612 |
greg |
1.1 |
}
|
| 613 |
|
|
|
| 614 |
|
|
|
| 615 |
greg |
2.9 |
int
|
| 616 |
greg |
2.14 |
divsample( /* sample a division */
|
| 617 |
greg |
2.23 |
AMBSAMP *dp,
|
| 618 |
greg |
2.14 |
AMBHEMI *h,
|
| 619 |
|
|
RAY *r
|
| 620 |
|
|
)
|
| 621 |
greg |
1.1 |
{
|
| 622 |
|
|
RAY ar;
|
| 623 |
greg |
1.11 |
int hlist[3];
|
| 624 |
|
|
double spt[2];
|
| 625 |
greg |
1.1 |
double xd, yd, zd;
|
| 626 |
|
|
double b2;
|
| 627 |
|
|
double phi;
|
| 628 |
greg |
2.23 |
int i;
|
| 629 |
greg |
2.15 |
/* ambient coefficient for weight */
|
| 630 |
greg |
2.16 |
if (ambacc > FTINY)
|
| 631 |
|
|
setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
|
| 632 |
|
|
else
|
| 633 |
|
|
copycolor(ar.rcoef, h->acoef);
|
| 634 |
greg |
2.14 |
if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
|
| 635 |
greg |
1.4 |
return(-1);
|
| 636 |
greg |
2.17 |
if (ambacc > FTINY) {
|
| 637 |
|
|
multcolor(ar.rcoef, h->acoef);
|
| 638 |
|
|
scalecolor(ar.rcoef, 1./AVGREFL);
|
| 639 |
|
|
}
|
| 640 |
greg |
1.1 |
hlist[0] = r->rno;
|
| 641 |
|
|
hlist[1] = dp->t;
|
| 642 |
|
|
hlist[2] = dp->p;
|
| 643 |
greg |
1.13 |
multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
|
| 644 |
greg |
1.11 |
zd = sqrt((dp->t + spt[0])/h->nt);
|
| 645 |
|
|
phi = 2.0*PI * (dp->p + spt[1])/h->np;
|
| 646 |
gwlarson |
2.8 |
xd = tcos(phi) * zd;
|
| 647 |
|
|
yd = tsin(phi) * zd;
|
| 648 |
greg |
1.1 |
zd = sqrt(1.0 - zd*zd);
|
| 649 |
greg |
1.2 |
for (i = 0; i < 3; i++)
|
| 650 |
|
|
ar.rdir[i] = xd*h->ux[i] +
|
| 651 |
|
|
yd*h->uy[i] +
|
| 652 |
|
|
zd*h->uz[i];
|
| 653 |
greg |
2.22 |
checknorm(ar.rdir);
|
| 654 |
greg |
1.2 |
dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
|
| 655 |
greg |
1.1 |
rayvalue(&ar);
|
| 656 |
|
|
ndims--;
|
| 657 |
greg |
2.16 |
multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
|
| 658 |
greg |
1.1 |
addcolor(dp->v, ar.rcol);
|
| 659 |
greg |
2.9 |
/* use rt to improve gradient calc */
|
| 660 |
|
|
if (ar.rt > FTINY && ar.rt < FHUGE)
|
| 661 |
|
|
dp->r += 1.0/ar.rt;
|
| 662 |
greg |
1.1 |
/* (re)initialize error */
|
| 663 |
|
|
if (dp->n++) {
|
| 664 |
|
|
b2 = bright(dp->v)/dp->n - bright(ar.rcol);
|
| 665 |
|
|
b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
|
| 666 |
|
|
dp->k = b2/(dp->n*dp->n);
|
| 667 |
|
|
} else
|
| 668 |
|
|
dp->k = 0.0;
|
| 669 |
greg |
1.4 |
return(0);
|
| 670 |
greg |
1.1 |
}
|
| 671 |
|
|
|
| 672 |
|
|
|
| 673 |
greg |
2.14 |
static int
|
| 674 |
|
|
ambcmp( /* decreasing order */
|
| 675 |
|
|
const void *p1,
|
| 676 |
|
|
const void *p2
|
| 677 |
|
|
)
|
| 678 |
|
|
{
|
| 679 |
|
|
const AMBSAMP *d1 = (const AMBSAMP *)p1;
|
| 680 |
|
|
const AMBSAMP *d2 = (const AMBSAMP *)p2;
|
| 681 |
|
|
|
| 682 |
|
|
if (d1->k < d2->k)
|
| 683 |
|
|
return(1);
|
| 684 |
|
|
if (d1->k > d2->k)
|
| 685 |
|
|
return(-1);
|
| 686 |
|
|
return(0);
|
| 687 |
|
|
}
|
| 688 |
|
|
|
| 689 |
|
|
|
| 690 |
|
|
static int
|
| 691 |
|
|
ambnorm( /* standard order */
|
| 692 |
|
|
const void *p1,
|
| 693 |
|
|
const void *p2
|
| 694 |
|
|
)
|
| 695 |
|
|
{
|
| 696 |
|
|
const AMBSAMP *d1 = (const AMBSAMP *)p1;
|
| 697 |
|
|
const AMBSAMP *d2 = (const AMBSAMP *)p2;
|
| 698 |
greg |
2.23 |
int c;
|
| 699 |
greg |
2.14 |
|
| 700 |
|
|
if ( (c = d1->t - d2->t) )
|
| 701 |
|
|
return(c);
|
| 702 |
|
|
return(d1->p - d2->p);
|
| 703 |
|
|
}
|
| 704 |
|
|
|
| 705 |
|
|
|
| 706 |
greg |
1.1 |
double
|
| 707 |
greg |
2.14 |
doambient( /* compute ambient component */
|
| 708 |
greg |
2.23 |
COLOR rcol,
|
| 709 |
greg |
2.14 |
RAY *r,
|
| 710 |
|
|
double wt,
|
| 711 |
|
|
FVECT pg,
|
| 712 |
|
|
FVECT dg
|
| 713 |
|
|
)
|
| 714 |
greg |
1.1 |
{
|
| 715 |
greg |
2.24 |
double b, d=0;
|
| 716 |
greg |
1.1 |
AMBHEMI hemi;
|
| 717 |
|
|
AMBSAMP *div;
|
| 718 |
|
|
AMBSAMP dnew;
|
| 719 |
greg |
2.23 |
double acol[3];
|
| 720 |
|
|
AMBSAMP *dp;
|
| 721 |
greg |
1.1 |
double arad;
|
| 722 |
greg |
2.19 |
int divcnt;
|
| 723 |
greg |
2.23 |
int i, j;
|
| 724 |
greg |
1.1 |
/* initialize hemisphere */
|
| 725 |
greg |
2.23 |
inithemi(&hemi, rcol, r, wt);
|
| 726 |
greg |
2.19 |
divcnt = hemi.nt * hemi.np;
|
| 727 |
greg |
2.17 |
/* initialize */
|
| 728 |
|
|
if (pg != NULL)
|
| 729 |
|
|
pg[0] = pg[1] = pg[2] = 0.0;
|
| 730 |
|
|
if (dg != NULL)
|
| 731 |
|
|
dg[0] = dg[1] = dg[2] = 0.0;
|
| 732 |
greg |
2.23 |
setcolor(rcol, 0.0, 0.0, 0.0);
|
| 733 |
greg |
2.19 |
if (divcnt == 0)
|
| 734 |
greg |
1.1 |
return(0.0);
|
| 735 |
greg |
2.14 |
/* allocate super-samples */
|
| 736 |
greg |
2.15 |
if (hemi.ns > 0 || pg != NULL || dg != NULL) {
|
| 737 |
greg |
2.19 |
div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
|
| 738 |
greg |
1.1 |
if (div == NULL)
|
| 739 |
|
|
error(SYSTEM, "out of memory in doambient");
|
| 740 |
|
|
} else
|
| 741 |
|
|
div = NULL;
|
| 742 |
|
|
/* sample the divisions */
|
| 743 |
|
|
arad = 0.0;
|
| 744 |
greg |
2.23 |
acol[0] = acol[1] = acol[2] = 0.0;
|
| 745 |
greg |
1.1 |
if ((dp = div) == NULL)
|
| 746 |
|
|
dp = &dnew;
|
| 747 |
greg |
2.19 |
divcnt = 0;
|
| 748 |
greg |
1.1 |
for (i = 0; i < hemi.nt; i++)
|
| 749 |
|
|
for (j = 0; j < hemi.np; j++) {
|
| 750 |
|
|
dp->t = i; dp->p = j;
|
| 751 |
|
|
setcolor(dp->v, 0.0, 0.0, 0.0);
|
| 752 |
greg |
1.2 |
dp->r = 0.0;
|
| 753 |
greg |
1.1 |
dp->n = 0;
|
| 754 |
greg |
2.16 |
if (divsample(dp, &hemi, r) < 0) {
|
| 755 |
greg |
2.19 |
if (div != NULL)
|
| 756 |
|
|
dp++;
|
| 757 |
greg |
2.16 |
continue;
|
| 758 |
|
|
}
|
| 759 |
greg |
2.6 |
arad += dp->r;
|
| 760 |
greg |
2.19 |
divcnt++;
|
| 761 |
greg |
1.1 |
if (div != NULL)
|
| 762 |
|
|
dp++;
|
| 763 |
greg |
2.6 |
else
|
| 764 |
greg |
1.1 |
addcolor(acol, dp->v);
|
| 765 |
|
|
}
|
| 766 |
greg |
2.21 |
if (!divcnt) {
|
| 767 |
|
|
if (div != NULL)
|
| 768 |
|
|
free((void *)div);
|
| 769 |
greg |
2.19 |
return(0.0); /* no samples taken */
|
| 770 |
greg |
2.21 |
}
|
| 771 |
greg |
2.19 |
if (divcnt < hemi.nt*hemi.np) {
|
| 772 |
|
|
pg = dg = NULL; /* incomplete sampling */
|
| 773 |
|
|
hemi.ns = 0;
|
| 774 |
|
|
} else if (arad > FTINY && divcnt/arad < minarad) {
|
| 775 |
greg |
2.15 |
hemi.ns = 0; /* close enough */
|
| 776 |
greg |
2.19 |
} else if (hemi.ns > 0) { /* else perform super-sampling? */
|
| 777 |
greg |
1.4 |
comperrs(div, &hemi); /* compute errors */
|
| 778 |
greg |
2.19 |
qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
|
| 779 |
greg |
1.1 |
/* super-sample */
|
| 780 |
greg |
2.15 |
for (i = hemi.ns; i > 0; i--) {
|
| 781 |
schorsch |
2.11 |
dnew = *div;
|
| 782 |
greg |
2.16 |
if (divsample(&dnew, &hemi, r) < 0) {
|
| 783 |
|
|
dp++;
|
| 784 |
|
|
continue;
|
| 785 |
|
|
}
|
| 786 |
|
|
dp = div; /* reinsert */
|
| 787 |
greg |
2.19 |
j = divcnt < i ? divcnt : i;
|
| 788 |
greg |
1.1 |
while (--j > 0 && dnew.k < dp[1].k) {
|
| 789 |
schorsch |
2.11 |
*dp = *(dp+1);
|
| 790 |
greg |
1.1 |
dp++;
|
| 791 |
|
|
}
|
| 792 |
schorsch |
2.11 |
*dp = dnew;
|
| 793 |
greg |
1.1 |
}
|
| 794 |
greg |
1.2 |
if (pg != NULL || dg != NULL) /* restore order */
|
| 795 |
greg |
2.19 |
qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
|
| 796 |
greg |
1.1 |
}
|
| 797 |
|
|
/* compute returned values */
|
| 798 |
greg |
1.3 |
if (div != NULL) {
|
| 799 |
greg |
2.19 |
arad = 0.0; /* note: divcnt may be < nt*np */
|
| 800 |
|
|
for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
|
| 801 |
greg |
1.3 |
arad += dp->r;
|
| 802 |
|
|
if (dp->n > 1) {
|
| 803 |
|
|
b = 1.0/dp->n;
|
| 804 |
|
|
scalecolor(dp->v, b);
|
| 805 |
|
|
dp->r *= b;
|
| 806 |
|
|
dp->n = 1;
|
| 807 |
|
|
}
|
| 808 |
|
|
addcolor(acol, dp->v);
|
| 809 |
|
|
}
|
| 810 |
greg |
1.5 |
b = bright(acol);
|
| 811 |
greg |
1.6 |
if (b > FTINY) {
|
| 812 |
greg |
2.17 |
b = 1.0/b; /* compute & normalize gradient(s) */
|
| 813 |
greg |
1.6 |
if (pg != NULL) {
|
| 814 |
|
|
posgradient(pg, div, &hemi);
|
| 815 |
|
|
for (i = 0; i < 3; i++)
|
| 816 |
|
|
pg[i] *= b;
|
| 817 |
|
|
}
|
| 818 |
|
|
if (dg != NULL) {
|
| 819 |
|
|
dirgradient(dg, div, &hemi);
|
| 820 |
|
|
for (i = 0; i < 3; i++)
|
| 821 |
|
|
dg[i] *= b;
|
| 822 |
|
|
}
|
| 823 |
greg |
1.5 |
}
|
| 824 |
greg |
2.9 |
free((void *)div);
|
| 825 |
greg |
1.3 |
}
|
| 826 |
greg |
2.23 |
copycolor(rcol, acol);
|
| 827 |
greg |
1.1 |
if (arad <= FTINY)
|
| 828 |
greg |
1.16 |
arad = maxarad;
|
| 829 |
greg |
2.3 |
else
|
| 830 |
greg |
2.19 |
arad = (divcnt+hemi.ns)/arad;
|
| 831 |
greg |
1.15 |
if (pg != NULL) { /* reduce radius if gradient large */
|
| 832 |
|
|
d = DOT(pg,pg);
|
| 833 |
|
|
if (d*arad*arad > 1.0)
|
| 834 |
|
|
arad = 1.0/sqrt(d);
|
| 835 |
|
|
}
|
| 836 |
greg |
1.16 |
if (arad < minarad) {
|
| 837 |
greg |
1.1 |
arad = minarad;
|
| 838 |
greg |
1.16 |
if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
|
| 839 |
|
|
d = 1.0/arad/sqrt(d);
|
| 840 |
|
|
for (i = 0; i < 3; i++)
|
| 841 |
|
|
pg[i] *= d;
|
| 842 |
|
|
}
|
| 843 |
|
|
}
|
| 844 |
greg |
2.3 |
if ((arad /= sqrt(wt)) > maxarad)
|
| 845 |
|
|
arad = maxarad;
|
| 846 |
|
|
return(arad);
|
| 847 |
greg |
1.1 |
}
|
| 848 |
|
|
|
| 849 |
|
|
|
| 850 |
greg |
2.9 |
void
|
| 851 |
greg |
2.14 |
comperrs( /* compute initial error estimates */
|
| 852 |
|
|
AMBSAMP *da, /* assumes standard ordering */
|
| 853 |
greg |
2.23 |
AMBHEMI *hp
|
| 854 |
greg |
2.14 |
)
|
| 855 |
greg |
1.1 |
{
|
| 856 |
|
|
double b, b2;
|
| 857 |
|
|
int i, j;
|
| 858 |
greg |
2.23 |
AMBSAMP *dp;
|
| 859 |
greg |
1.1 |
/* sum differences from neighbors */
|
| 860 |
|
|
dp = da;
|
| 861 |
|
|
for (i = 0; i < hp->nt; i++)
|
| 862 |
|
|
for (j = 0; j < hp->np; j++) {
|
| 863 |
greg |
1.6 |
#ifdef DEBUG
|
| 864 |
|
|
if (dp->t != i || dp->p != j)
|
| 865 |
|
|
error(CONSISTENCY,
|
| 866 |
|
|
"division order in comperrs");
|
| 867 |
|
|
#endif
|
| 868 |
greg |
1.1 |
b = bright(dp[0].v);
|
| 869 |
|
|
if (i > 0) { /* from above */
|
| 870 |
|
|
b2 = bright(dp[-hp->np].v) - b;
|
| 871 |
|
|
b2 *= b2 * 0.25;
|
| 872 |
|
|
dp[0].k += b2;
|
| 873 |
|
|
dp[-hp->np].k += b2;
|
| 874 |
|
|
}
|
| 875 |
|
|
if (j > 0) { /* from behind */
|
| 876 |
|
|
b2 = bright(dp[-1].v) - b;
|
| 877 |
|
|
b2 *= b2 * 0.25;
|
| 878 |
|
|
dp[0].k += b2;
|
| 879 |
|
|
dp[-1].k += b2;
|
| 880 |
greg |
1.4 |
} else { /* around */
|
| 881 |
|
|
b2 = bright(dp[hp->np-1].v) - b;
|
| 882 |
greg |
1.1 |
b2 *= b2 * 0.25;
|
| 883 |
|
|
dp[0].k += b2;
|
| 884 |
greg |
1.4 |
dp[hp->np-1].k += b2;
|
| 885 |
greg |
1.1 |
}
|
| 886 |
|
|
dp++;
|
| 887 |
|
|
}
|
| 888 |
|
|
/* divide by number of neighbors */
|
| 889 |
|
|
dp = da;
|
| 890 |
|
|
for (j = 0; j < hp->np; j++) /* top row */
|
| 891 |
|
|
(dp++)->k *= 1.0/3.0;
|
| 892 |
|
|
if (hp->nt < 2)
|
| 893 |
|
|
return;
|
| 894 |
|
|
for (i = 1; i < hp->nt-1; i++) /* central region */
|
| 895 |
|
|
for (j = 0; j < hp->np; j++)
|
| 896 |
|
|
(dp++)->k *= 0.25;
|
| 897 |
|
|
for (j = 0; j < hp->np; j++) /* bottom row */
|
| 898 |
|
|
(dp++)->k *= 1.0/3.0;
|
| 899 |
|
|
}
|
| 900 |
|
|
|
| 901 |
|
|
|
| 902 |
greg |
2.9 |
void
|
| 903 |
greg |
2.14 |
posgradient( /* compute position gradient */
|
| 904 |
|
|
FVECT gv,
|
| 905 |
|
|
AMBSAMP *da, /* assumes standard ordering */
|
| 906 |
greg |
2.23 |
AMBHEMI *hp
|
| 907 |
greg |
2.14 |
)
|
| 908 |
greg |
1.1 |
{
|
| 909 |
greg |
2.23 |
int i, j;
|
| 910 |
greg |
2.2 |
double nextsine, lastsine, b, d;
|
| 911 |
greg |
1.2 |
double mag0, mag1;
|
| 912 |
|
|
double phi, cosp, sinp, xd, yd;
|
| 913 |
greg |
2.23 |
AMBSAMP *dp;
|
| 914 |
greg |
1.2 |
|
| 915 |
|
|
xd = yd = 0.0;
|
| 916 |
|
|
for (j = 0; j < hp->np; j++) {
|
| 917 |
|
|
dp = da + j;
|
| 918 |
|
|
mag0 = mag1 = 0.0;
|
| 919 |
greg |
2.2 |
lastsine = 0.0;
|
| 920 |
greg |
1.2 |
for (i = 0; i < hp->nt; i++) {
|
| 921 |
|
|
#ifdef DEBUG
|
| 922 |
|
|
if (dp->t != i || dp->p != j)
|
| 923 |
|
|
error(CONSISTENCY,
|
| 924 |
|
|
"division order in posgradient");
|
| 925 |
|
|
#endif
|
| 926 |
|
|
b = bright(dp->v);
|
| 927 |
|
|
if (i > 0) {
|
| 928 |
|
|
d = dp[-hp->np].r;
|
| 929 |
|
|
if (dp[0].r > d) d = dp[0].r;
|
| 930 |
greg |
2.2 |
/* sin(t)*cos(t)^2 */
|
| 931 |
|
|
d *= lastsine * (1.0 - (double)i/hp->nt);
|
| 932 |
greg |
1.2 |
mag0 += d*(b - bright(dp[-hp->np].v));
|
| 933 |
|
|
}
|
| 934 |
greg |
2.2 |
nextsine = sqrt((double)(i+1)/hp->nt);
|
| 935 |
greg |
1.2 |
if (j > 0) {
|
| 936 |
|
|
d = dp[-1].r;
|
| 937 |
|
|
if (dp[0].r > d) d = dp[0].r;
|
| 938 |
greg |
2.2 |
mag1 += d * (nextsine - lastsine) *
|
| 939 |
|
|
(b - bright(dp[-1].v));
|
| 940 |
greg |
1.2 |
} else {
|
| 941 |
|
|
d = dp[hp->np-1].r;
|
| 942 |
|
|
if (dp[0].r > d) d = dp[0].r;
|
| 943 |
greg |
2.2 |
mag1 += d * (nextsine - lastsine) *
|
| 944 |
|
|
(b - bright(dp[hp->np-1].v));
|
| 945 |
greg |
1.2 |
}
|
| 946 |
|
|
dp += hp->np;
|
| 947 |
greg |
2.2 |
lastsine = nextsine;
|
| 948 |
greg |
1.2 |
}
|
| 949 |
greg |
2.2 |
mag0 *= 2.0*PI / hp->np;
|
| 950 |
greg |
1.2 |
phi = 2.0*PI * (double)j/hp->np;
|
| 951 |
gwlarson |
2.8 |
cosp = tcos(phi); sinp = tsin(phi);
|
| 952 |
greg |
1.2 |
xd += mag0*cosp - mag1*sinp;
|
| 953 |
|
|
yd += mag0*sinp + mag1*cosp;
|
| 954 |
|
|
}
|
| 955 |
|
|
for (i = 0; i < 3; i++)
|
| 956 |
greg |
2.16 |
gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
|
| 957 |
greg |
1.1 |
}
|
| 958 |
|
|
|
| 959 |
|
|
|
| 960 |
greg |
2.9 |
void
|
| 961 |
greg |
2.14 |
dirgradient( /* compute direction gradient */
|
| 962 |
|
|
FVECT gv,
|
| 963 |
|
|
AMBSAMP *da, /* assumes standard ordering */
|
| 964 |
greg |
2.23 |
AMBHEMI *hp
|
| 965 |
greg |
2.14 |
)
|
| 966 |
greg |
1.1 |
{
|
| 967 |
greg |
2.23 |
int i, j;
|
| 968 |
greg |
1.2 |
double mag;
|
| 969 |
|
|
double phi, xd, yd;
|
| 970 |
greg |
2.23 |
AMBSAMP *dp;
|
| 971 |
greg |
1.2 |
|
| 972 |
|
|
xd = yd = 0.0;
|
| 973 |
|
|
for (j = 0; j < hp->np; j++) {
|
| 974 |
|
|
dp = da + j;
|
| 975 |
|
|
mag = 0.0;
|
| 976 |
|
|
for (i = 0; i < hp->nt; i++) {
|
| 977 |
|
|
#ifdef DEBUG
|
| 978 |
|
|
if (dp->t != i || dp->p != j)
|
| 979 |
|
|
error(CONSISTENCY,
|
| 980 |
|
|
"division order in dirgradient");
|
| 981 |
|
|
#endif
|
| 982 |
greg |
2.2 |
/* tan(t) */
|
| 983 |
|
|
mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
|
| 984 |
greg |
1.2 |
dp += hp->np;
|
| 985 |
|
|
}
|
| 986 |
|
|
phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
|
| 987 |
gwlarson |
2.8 |
xd += mag * tcos(phi);
|
| 988 |
|
|
yd += mag * tsin(phi);
|
| 989 |
greg |
1.2 |
}
|
| 990 |
|
|
for (i = 0; i < 3; i++)
|
| 991 |
greg |
2.16 |
gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
|
| 992 |
greg |
1.1 |
}
|
| 993 |
greg |
2.25 |
|
| 994 |
|
|
#endif /* ! NEWAMB */
|