ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.22
Committed: Sun Sep 26 15:51:15 2010 UTC (13 years, 7 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad4R1
Changes since 2.21: +2 -1 lines
Log Message:
Added checknorm() macro to avoid normalization errors with gcc --fast-math

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.22 static const char RCSid[] = "$Id: ambcomp.c,v 2.21 2007/12/31 18:19:42 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * Routines to compute "ambient" values using Monte Carlo
6 greg 2.9 *
7     * Declarations of external symbols in ambient.h
8     */
9    
10 greg 2.10 #include "copyright.h"
11 greg 1.1
12     #include "ray.h"
13    
14     #include "ambient.h"
15    
16     #include "random.h"
17    
18    
19 greg 2.15 void
20 greg 2.14 inithemi( /* initialize sampling hemisphere */
21     register AMBHEMI *hp,
22 greg 2.16 COLOR ac,
23 greg 2.14 RAY *r,
24     double wt
25     )
26 greg 1.1 {
27 greg 2.16 double d;
28 greg 2.14 register int i;
29     /* set number of divisions */
30 greg 2.16 if (ambacc <= FTINY &&
31 greg 2.20 wt > (d = 0.8*intens(ac)*r->rweight/(ambdiv*minweight)))
32 greg 2.16 wt = d; /* avoid ray termination */
33     hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
34 greg 2.14 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
35     if (hp->nt < i)
36     hp->nt = i;
37     hp->np = PI * hp->nt + 0.5;
38     /* set number of super-samples */
39 greg 2.15 hp->ns = ambssamp * wt + 0.5;
40 greg 2.16 /* assign coefficient */
41 greg 2.14 copycolor(hp->acoef, ac);
42 greg 2.16 d = 1.0/(hp->nt*hp->np);
43     scalecolor(hp->acoef, d);
44 greg 2.14 /* make axes */
45     VCOPY(hp->uz, r->ron);
46     hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
47     for (i = 0; i < 3; i++)
48     if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
49     break;
50     if (i >= 3)
51     error(CONSISTENCY, "bad ray direction in inithemi");
52     hp->uy[i] = 1.0;
53     fcross(hp->ux, hp->uy, hp->uz);
54     normalize(hp->ux);
55     fcross(hp->uy, hp->uz, hp->ux);
56 greg 1.1 }
57    
58    
59 greg 2.9 int
60 greg 2.14 divsample( /* sample a division */
61     register AMBSAMP *dp,
62     AMBHEMI *h,
63     RAY *r
64     )
65 greg 1.1 {
66     RAY ar;
67 greg 1.11 int hlist[3];
68     double spt[2];
69 greg 1.1 double xd, yd, zd;
70     double b2;
71     double phi;
72 greg 1.2 register int i;
73 greg 2.15 /* ambient coefficient for weight */
74 greg 2.16 if (ambacc > FTINY)
75     setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
76     else
77     copycolor(ar.rcoef, h->acoef);
78 greg 2.14 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
79 greg 1.4 return(-1);
80 greg 2.17 if (ambacc > FTINY) {
81     multcolor(ar.rcoef, h->acoef);
82     scalecolor(ar.rcoef, 1./AVGREFL);
83     }
84 greg 1.1 hlist[0] = r->rno;
85     hlist[1] = dp->t;
86     hlist[2] = dp->p;
87 greg 1.13 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
88 greg 1.11 zd = sqrt((dp->t + spt[0])/h->nt);
89     phi = 2.0*PI * (dp->p + spt[1])/h->np;
90 gwlarson 2.8 xd = tcos(phi) * zd;
91     yd = tsin(phi) * zd;
92 greg 1.1 zd = sqrt(1.0 - zd*zd);
93 greg 1.2 for (i = 0; i < 3; i++)
94     ar.rdir[i] = xd*h->ux[i] +
95     yd*h->uy[i] +
96     zd*h->uz[i];
97 greg 2.22 checknorm(ar.rdir);
98 greg 1.2 dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
99 greg 1.1 rayvalue(&ar);
100     ndims--;
101 greg 2.16 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
102 greg 1.1 addcolor(dp->v, ar.rcol);
103 greg 2.9 /* use rt to improve gradient calc */
104     if (ar.rt > FTINY && ar.rt < FHUGE)
105     dp->r += 1.0/ar.rt;
106 greg 1.1 /* (re)initialize error */
107     if (dp->n++) {
108     b2 = bright(dp->v)/dp->n - bright(ar.rcol);
109     b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
110     dp->k = b2/(dp->n*dp->n);
111     } else
112     dp->k = 0.0;
113 greg 1.4 return(0);
114 greg 1.1 }
115    
116    
117 greg 2.14 static int
118     ambcmp( /* decreasing order */
119     const void *p1,
120     const void *p2
121     )
122     {
123     const AMBSAMP *d1 = (const AMBSAMP *)p1;
124     const AMBSAMP *d2 = (const AMBSAMP *)p2;
125    
126     if (d1->k < d2->k)
127     return(1);
128     if (d1->k > d2->k)
129     return(-1);
130     return(0);
131     }
132    
133    
134     static int
135     ambnorm( /* standard order */
136     const void *p1,
137     const void *p2
138     )
139     {
140     const AMBSAMP *d1 = (const AMBSAMP *)p1;
141     const AMBSAMP *d2 = (const AMBSAMP *)p2;
142     register int c;
143    
144     if ( (c = d1->t - d2->t) )
145     return(c);
146     return(d1->p - d2->p);
147     }
148    
149    
150 greg 1.1 double
151 greg 2.14 doambient( /* compute ambient component */
152     COLOR acol,
153     RAY *r,
154     double wt,
155     FVECT pg,
156     FVECT dg
157     )
158 greg 1.1 {
159     double b, d;
160     AMBHEMI hemi;
161     AMBSAMP *div;
162     AMBSAMP dnew;
163     register AMBSAMP *dp;
164     double arad;
165 greg 2.19 int divcnt;
166 greg 1.1 register int i, j;
167     /* initialize hemisphere */
168 greg 2.16 inithemi(&hemi, acol, r, wt);
169 greg 2.19 divcnt = hemi.nt * hemi.np;
170 greg 2.17 /* initialize */
171     if (pg != NULL)
172     pg[0] = pg[1] = pg[2] = 0.0;
173     if (dg != NULL)
174     dg[0] = dg[1] = dg[2] = 0.0;
175 greg 2.16 setcolor(acol, 0.0, 0.0, 0.0);
176 greg 2.19 if (divcnt == 0)
177 greg 1.1 return(0.0);
178 greg 2.14 /* allocate super-samples */
179 greg 2.15 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
180 greg 2.19 div = (AMBSAMP *)malloc(divcnt*sizeof(AMBSAMP));
181 greg 1.1 if (div == NULL)
182     error(SYSTEM, "out of memory in doambient");
183     } else
184     div = NULL;
185     /* sample the divisions */
186     arad = 0.0;
187     if ((dp = div) == NULL)
188     dp = &dnew;
189 greg 2.19 divcnt = 0;
190 greg 1.1 for (i = 0; i < hemi.nt; i++)
191     for (j = 0; j < hemi.np; j++) {
192     dp->t = i; dp->p = j;
193     setcolor(dp->v, 0.0, 0.0, 0.0);
194 greg 1.2 dp->r = 0.0;
195 greg 1.1 dp->n = 0;
196 greg 2.16 if (divsample(dp, &hemi, r) < 0) {
197 greg 2.19 if (div != NULL)
198     dp++;
199 greg 2.16 continue;
200     }
201 greg 2.6 arad += dp->r;
202 greg 2.19 divcnt++;
203 greg 1.1 if (div != NULL)
204     dp++;
205 greg 2.6 else
206 greg 1.1 addcolor(acol, dp->v);
207     }
208 greg 2.21 if (!divcnt) {
209     if (div != NULL)
210     free((void *)div);
211 greg 2.19 return(0.0); /* no samples taken */
212 greg 2.21 }
213 greg 2.19 if (divcnt < hemi.nt*hemi.np) {
214     pg = dg = NULL; /* incomplete sampling */
215     hemi.ns = 0;
216     } else if (arad > FTINY && divcnt/arad < minarad) {
217 greg 2.15 hemi.ns = 0; /* close enough */
218 greg 2.19 } else if (hemi.ns > 0) { /* else perform super-sampling? */
219 greg 1.4 comperrs(div, &hemi); /* compute errors */
220 greg 2.19 qsort(div, divcnt, sizeof(AMBSAMP), ambcmp); /* sort divs */
221 greg 1.1 /* super-sample */
222 greg 2.15 for (i = hemi.ns; i > 0; i--) {
223 schorsch 2.11 dnew = *div;
224 greg 2.16 if (divsample(&dnew, &hemi, r) < 0) {
225     dp++;
226     continue;
227     }
228     dp = div; /* reinsert */
229 greg 2.19 j = divcnt < i ? divcnt : i;
230 greg 1.1 while (--j > 0 && dnew.k < dp[1].k) {
231 schorsch 2.11 *dp = *(dp+1);
232 greg 1.1 dp++;
233     }
234 schorsch 2.11 *dp = dnew;
235 greg 1.1 }
236 greg 1.2 if (pg != NULL || dg != NULL) /* restore order */
237 greg 2.19 qsort(div, divcnt, sizeof(AMBSAMP), ambnorm);
238 greg 1.1 }
239     /* compute returned values */
240 greg 1.3 if (div != NULL) {
241 greg 2.19 arad = 0.0; /* note: divcnt may be < nt*np */
242     for (i = hemi.nt*hemi.np, dp = div; i-- > 0; dp++) {
243 greg 1.3 arad += dp->r;
244     if (dp->n > 1) {
245     b = 1.0/dp->n;
246     scalecolor(dp->v, b);
247     dp->r *= b;
248     dp->n = 1;
249     }
250     addcolor(acol, dp->v);
251     }
252 greg 1.5 b = bright(acol);
253 greg 1.6 if (b > FTINY) {
254 greg 2.17 b = 1.0/b; /* compute & normalize gradient(s) */
255 greg 1.6 if (pg != NULL) {
256     posgradient(pg, div, &hemi);
257     for (i = 0; i < 3; i++)
258     pg[i] *= b;
259     }
260     if (dg != NULL) {
261     dirgradient(dg, div, &hemi);
262     for (i = 0; i < 3; i++)
263     dg[i] *= b;
264     }
265 greg 1.5 }
266 greg 2.9 free((void *)div);
267 greg 1.3 }
268 greg 1.1 if (arad <= FTINY)
269 greg 1.16 arad = maxarad;
270 greg 2.3 else
271 greg 2.19 arad = (divcnt+hemi.ns)/arad;
272 greg 1.15 if (pg != NULL) { /* reduce radius if gradient large */
273     d = DOT(pg,pg);
274     if (d*arad*arad > 1.0)
275     arad = 1.0/sqrt(d);
276     }
277 greg 1.16 if (arad < minarad) {
278 greg 1.1 arad = minarad;
279 greg 1.16 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
280     d = 1.0/arad/sqrt(d);
281     for (i = 0; i < 3; i++)
282     pg[i] *= d;
283     }
284     }
285 greg 2.3 if ((arad /= sqrt(wt)) > maxarad)
286     arad = maxarad;
287     return(arad);
288 greg 1.1 }
289    
290    
291 greg 2.9 void
292 greg 2.14 comperrs( /* compute initial error estimates */
293     AMBSAMP *da, /* assumes standard ordering */
294     register AMBHEMI *hp
295     )
296 greg 1.1 {
297     double b, b2;
298     int i, j;
299     register AMBSAMP *dp;
300     /* sum differences from neighbors */
301     dp = da;
302     for (i = 0; i < hp->nt; i++)
303     for (j = 0; j < hp->np; j++) {
304 greg 1.6 #ifdef DEBUG
305     if (dp->t != i || dp->p != j)
306     error(CONSISTENCY,
307     "division order in comperrs");
308     #endif
309 greg 1.1 b = bright(dp[0].v);
310     if (i > 0) { /* from above */
311     b2 = bright(dp[-hp->np].v) - b;
312     b2 *= b2 * 0.25;
313     dp[0].k += b2;
314     dp[-hp->np].k += b2;
315     }
316     if (j > 0) { /* from behind */
317     b2 = bright(dp[-1].v) - b;
318     b2 *= b2 * 0.25;
319     dp[0].k += b2;
320     dp[-1].k += b2;
321 greg 1.4 } else { /* around */
322     b2 = bright(dp[hp->np-1].v) - b;
323 greg 1.1 b2 *= b2 * 0.25;
324     dp[0].k += b2;
325 greg 1.4 dp[hp->np-1].k += b2;
326 greg 1.1 }
327     dp++;
328     }
329     /* divide by number of neighbors */
330     dp = da;
331     for (j = 0; j < hp->np; j++) /* top row */
332     (dp++)->k *= 1.0/3.0;
333     if (hp->nt < 2)
334     return;
335     for (i = 1; i < hp->nt-1; i++) /* central region */
336     for (j = 0; j < hp->np; j++)
337     (dp++)->k *= 0.25;
338     for (j = 0; j < hp->np; j++) /* bottom row */
339     (dp++)->k *= 1.0/3.0;
340     }
341    
342    
343 greg 2.9 void
344 greg 2.14 posgradient( /* compute position gradient */
345     FVECT gv,
346     AMBSAMP *da, /* assumes standard ordering */
347     register AMBHEMI *hp
348     )
349 greg 1.1 {
350 greg 1.2 register int i, j;
351 greg 2.2 double nextsine, lastsine, b, d;
352 greg 1.2 double mag0, mag1;
353     double phi, cosp, sinp, xd, yd;
354     register AMBSAMP *dp;
355    
356     xd = yd = 0.0;
357     for (j = 0; j < hp->np; j++) {
358     dp = da + j;
359     mag0 = mag1 = 0.0;
360 greg 2.2 lastsine = 0.0;
361 greg 1.2 for (i = 0; i < hp->nt; i++) {
362     #ifdef DEBUG
363     if (dp->t != i || dp->p != j)
364     error(CONSISTENCY,
365     "division order in posgradient");
366     #endif
367     b = bright(dp->v);
368     if (i > 0) {
369     d = dp[-hp->np].r;
370     if (dp[0].r > d) d = dp[0].r;
371 greg 2.2 /* sin(t)*cos(t)^2 */
372     d *= lastsine * (1.0 - (double)i/hp->nt);
373 greg 1.2 mag0 += d*(b - bright(dp[-hp->np].v));
374     }
375 greg 2.2 nextsine = sqrt((double)(i+1)/hp->nt);
376 greg 1.2 if (j > 0) {
377     d = dp[-1].r;
378     if (dp[0].r > d) d = dp[0].r;
379 greg 2.2 mag1 += d * (nextsine - lastsine) *
380     (b - bright(dp[-1].v));
381 greg 1.2 } else {
382     d = dp[hp->np-1].r;
383     if (dp[0].r > d) d = dp[0].r;
384 greg 2.2 mag1 += d * (nextsine - lastsine) *
385     (b - bright(dp[hp->np-1].v));
386 greg 1.2 }
387     dp += hp->np;
388 greg 2.2 lastsine = nextsine;
389 greg 1.2 }
390 greg 2.2 mag0 *= 2.0*PI / hp->np;
391 greg 1.2 phi = 2.0*PI * (double)j/hp->np;
392 gwlarson 2.8 cosp = tcos(phi); sinp = tsin(phi);
393 greg 1.2 xd += mag0*cosp - mag1*sinp;
394     yd += mag0*sinp + mag1*cosp;
395     }
396     for (i = 0; i < 3; i++)
397 greg 2.16 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
398 greg 1.1 }
399    
400    
401 greg 2.9 void
402 greg 2.14 dirgradient( /* compute direction gradient */
403     FVECT gv,
404     AMBSAMP *da, /* assumes standard ordering */
405     register AMBHEMI *hp
406     )
407 greg 1.1 {
408 greg 1.2 register int i, j;
409     double mag;
410     double phi, xd, yd;
411     register AMBSAMP *dp;
412    
413     xd = yd = 0.0;
414     for (j = 0; j < hp->np; j++) {
415     dp = da + j;
416     mag = 0.0;
417     for (i = 0; i < hp->nt; i++) {
418     #ifdef DEBUG
419     if (dp->t != i || dp->p != j)
420     error(CONSISTENCY,
421     "division order in dirgradient");
422     #endif
423 greg 2.2 /* tan(t) */
424     mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
425 greg 1.2 dp += hp->np;
426     }
427     phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
428 gwlarson 2.8 xd += mag * tcos(phi);
429     yd += mag * tsin(phi);
430 greg 1.2 }
431     for (i = 0; i < 3; i++)
432 greg 2.16 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
433 greg 1.1 }