ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.18
Committed: Mon Jun 6 19:14:28 2005 UTC (18 years, 10 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad3R7P1
Changes since 2.17: +3 -2 lines
Log Message:
(Very) minor optimization

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.18 static const char RCSid[] = "$Id: ambcomp.c,v 2.17 2005/06/04 06:10:12 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * Routines to compute "ambient" values using Monte Carlo
6 greg 2.9 *
7     * Declarations of external symbols in ambient.h
8     */
9    
10 greg 2.10 #include "copyright.h"
11 greg 1.1
12     #include "ray.h"
13    
14     #include "ambient.h"
15    
16     #include "random.h"
17    
18    
19 greg 2.15 void
20 greg 2.14 inithemi( /* initialize sampling hemisphere */
21     register AMBHEMI *hp,
22 greg 2.16 COLOR ac,
23 greg 2.14 RAY *r,
24     double wt
25     )
26 greg 1.1 {
27 greg 2.16 double d;
28 greg 2.14 register int i;
29     /* set number of divisions */
30 greg 2.16 if (ambacc <= FTINY &&
31     wt > (d = 0.8*bright(ac)*r->rweight/(ambdiv*minweight)))
32     wt = d; /* avoid ray termination */
33     hp->nt = sqrt(ambdiv * wt / PI) + 0.5;
34 greg 2.14 i = ambacc > FTINY ? 3 : 1; /* minimum number of samples */
35     if (hp->nt < i)
36     hp->nt = i;
37     hp->np = PI * hp->nt + 0.5;
38     /* set number of super-samples */
39 greg 2.15 hp->ns = ambssamp * wt + 0.5;
40 greg 2.16 /* assign coefficient */
41 greg 2.14 copycolor(hp->acoef, ac);
42 greg 2.16 d = 1.0/(hp->nt*hp->np);
43     scalecolor(hp->acoef, d);
44 greg 2.14 /* make axes */
45     VCOPY(hp->uz, r->ron);
46     hp->uy[0] = hp->uy[1] = hp->uy[2] = 0.0;
47     for (i = 0; i < 3; i++)
48     if (hp->uz[i] < 0.6 && hp->uz[i] > -0.6)
49     break;
50     if (i >= 3)
51     error(CONSISTENCY, "bad ray direction in inithemi");
52     hp->uy[i] = 1.0;
53     fcross(hp->ux, hp->uy, hp->uz);
54     normalize(hp->ux);
55     fcross(hp->uy, hp->uz, hp->ux);
56 greg 1.1 }
57    
58    
59 greg 2.9 int
60 greg 2.14 divsample( /* sample a division */
61     register AMBSAMP *dp,
62     AMBHEMI *h,
63     RAY *r
64     )
65 greg 1.1 {
66     RAY ar;
67 greg 1.11 int hlist[3];
68     double spt[2];
69 greg 1.1 double xd, yd, zd;
70     double b2;
71     double phi;
72 greg 1.2 register int i;
73 greg 2.15 /* ambient coefficient for weight */
74 greg 2.16 if (ambacc > FTINY)
75     setcolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
76     else
77     copycolor(ar.rcoef, h->acoef);
78 greg 2.14 if (rayorigin(&ar, AMBIENT, r, ar.rcoef) < 0)
79 greg 1.4 return(-1);
80 greg 2.17 if (ambacc > FTINY) {
81     multcolor(ar.rcoef, h->acoef);
82     scalecolor(ar.rcoef, 1./AVGREFL);
83     }
84 greg 1.1 hlist[0] = r->rno;
85     hlist[1] = dp->t;
86     hlist[2] = dp->p;
87 greg 1.13 multisamp(spt, 2, urand(ilhash(hlist,3)+dp->n));
88 greg 1.11 zd = sqrt((dp->t + spt[0])/h->nt);
89     phi = 2.0*PI * (dp->p + spt[1])/h->np;
90 gwlarson 2.8 xd = tcos(phi) * zd;
91     yd = tsin(phi) * zd;
92 greg 1.1 zd = sqrt(1.0 - zd*zd);
93 greg 1.2 for (i = 0; i < 3; i++)
94     ar.rdir[i] = xd*h->ux[i] +
95     yd*h->uy[i] +
96     zd*h->uz[i];
97     dimlist[ndims++] = dp->t*h->np + dp->p + 90171;
98 greg 1.1 rayvalue(&ar);
99     ndims--;
100 greg 2.16 multcolor(ar.rcol, ar.rcoef); /* apply coefficient */
101 greg 1.1 addcolor(dp->v, ar.rcol);
102 greg 2.9 /* use rt to improve gradient calc */
103     if (ar.rt > FTINY && ar.rt < FHUGE)
104     dp->r += 1.0/ar.rt;
105 greg 1.1 /* (re)initialize error */
106     if (dp->n++) {
107     b2 = bright(dp->v)/dp->n - bright(ar.rcol);
108     b2 = b2*b2 + dp->k*((dp->n-1)*(dp->n-1));
109     dp->k = b2/(dp->n*dp->n);
110     } else
111     dp->k = 0.0;
112 greg 1.4 return(0);
113 greg 1.1 }
114    
115    
116 greg 2.14 static int
117     ambcmp( /* decreasing order */
118     const void *p1,
119     const void *p2
120     )
121     {
122     const AMBSAMP *d1 = (const AMBSAMP *)p1;
123     const AMBSAMP *d2 = (const AMBSAMP *)p2;
124    
125     if (d1->k < d2->k)
126     return(1);
127     if (d1->k > d2->k)
128     return(-1);
129     return(0);
130     }
131    
132    
133     static int
134     ambnorm( /* standard order */
135     const void *p1,
136     const void *p2
137     )
138     {
139     const AMBSAMP *d1 = (const AMBSAMP *)p1;
140     const AMBSAMP *d2 = (const AMBSAMP *)p2;
141     register int c;
142    
143     if ( (c = d1->t - d2->t) )
144     return(c);
145     return(d1->p - d2->p);
146     }
147    
148    
149 greg 1.1 double
150 greg 2.14 doambient( /* compute ambient component */
151     COLOR acol,
152     RAY *r,
153     double wt,
154     FVECT pg,
155     FVECT dg
156     )
157 greg 1.1 {
158     double b, d;
159     AMBHEMI hemi;
160     AMBSAMP *div;
161     AMBSAMP dnew;
162     register AMBSAMP *dp;
163     double arad;
164 greg 2.15 int ndivs;
165 greg 1.1 register int i, j;
166     /* initialize hemisphere */
167 greg 2.16 inithemi(&hemi, acol, r, wt);
168 greg 1.1 ndivs = hemi.nt * hemi.np;
169 greg 2.17 /* initialize */
170     if (pg != NULL)
171     pg[0] = pg[1] = pg[2] = 0.0;
172     if (dg != NULL)
173     dg[0] = dg[1] = dg[2] = 0.0;
174 greg 2.16 setcolor(acol, 0.0, 0.0, 0.0);
175 greg 1.1 if (ndivs == 0)
176     return(0.0);
177 greg 2.14 /* allocate super-samples */
178 greg 2.15 if (hemi.ns > 0 || pg != NULL || dg != NULL) {
179 greg 1.1 div = (AMBSAMP *)malloc(ndivs*sizeof(AMBSAMP));
180     if (div == NULL)
181     error(SYSTEM, "out of memory in doambient");
182     } else
183     div = NULL;
184     /* sample the divisions */
185     arad = 0.0;
186     if ((dp = div) == NULL)
187     dp = &dnew;
188     for (i = 0; i < hemi.nt; i++)
189     for (j = 0; j < hemi.np; j++) {
190     dp->t = i; dp->p = j;
191     setcolor(dp->v, 0.0, 0.0, 0.0);
192 greg 1.2 dp->r = 0.0;
193 greg 1.1 dp->n = 0;
194 greg 2.16 if (divsample(dp, &hemi, r) < 0) {
195 greg 2.18 if (div == NULL) continue;
196     dp++;
197 greg 2.17 hemi.ns = 0; /* incomplete sampling */
198     pg = dg = NULL;
199 greg 2.16 continue;
200     }
201 greg 2.6 arad += dp->r;
202 greg 1.1 if (div != NULL)
203     dp++;
204 greg 2.6 else
205 greg 1.1 addcolor(acol, dp->v);
206     }
207 greg 2.15 if (hemi.ns > 0 && arad > FTINY && ndivs/arad < minarad)
208     hemi.ns = 0; /* close enough */
209     else if (hemi.ns > 0) { /* else perform super-sampling */
210 greg 1.4 comperrs(div, &hemi); /* compute errors */
211 greg 1.1 qsort(div, ndivs, sizeof(AMBSAMP), ambcmp); /* sort divs */
212     /* super-sample */
213 greg 2.15 for (i = hemi.ns; i > 0; i--) {
214 schorsch 2.11 dnew = *div;
215 greg 2.16 if (divsample(&dnew, &hemi, r) < 0) {
216     dp++;
217     continue;
218     }
219     dp = div; /* reinsert */
220 greg 1.1 j = ndivs < i ? ndivs : i;
221     while (--j > 0 && dnew.k < dp[1].k) {
222 schorsch 2.11 *dp = *(dp+1);
223 greg 1.1 dp++;
224     }
225 schorsch 2.11 *dp = dnew;
226 greg 1.1 }
227 greg 1.2 if (pg != NULL || dg != NULL) /* restore order */
228 greg 1.1 qsort(div, ndivs, sizeof(AMBSAMP), ambnorm);
229     }
230     /* compute returned values */
231 greg 1.3 if (div != NULL) {
232 greg 2.6 arad = 0.0;
233 greg 1.3 for (i = ndivs, dp = div; i-- > 0; dp++) {
234     arad += dp->r;
235     if (dp->n > 1) {
236     b = 1.0/dp->n;
237     scalecolor(dp->v, b);
238     dp->r *= b;
239     dp->n = 1;
240     }
241     addcolor(acol, dp->v);
242     }
243 greg 1.5 b = bright(acol);
244 greg 1.6 if (b > FTINY) {
245 greg 2.17 b = 1.0/b; /* compute & normalize gradient(s) */
246 greg 1.6 if (pg != NULL) {
247     posgradient(pg, div, &hemi);
248     for (i = 0; i < 3; i++)
249     pg[i] *= b;
250     }
251     if (dg != NULL) {
252     dirgradient(dg, div, &hemi);
253     for (i = 0; i < 3; i++)
254     dg[i] *= b;
255     }
256 greg 1.5 }
257 greg 2.9 free((void *)div);
258 greg 1.3 }
259 greg 1.1 if (arad <= FTINY)
260 greg 1.16 arad = maxarad;
261 greg 2.3 else
262 greg 2.15 arad = (ndivs+hemi.ns)/arad;
263 greg 1.15 if (pg != NULL) { /* reduce radius if gradient large */
264     d = DOT(pg,pg);
265     if (d*arad*arad > 1.0)
266     arad = 1.0/sqrt(d);
267     }
268 greg 1.16 if (arad < minarad) {
269 greg 1.1 arad = minarad;
270 greg 1.16 if (pg != NULL && d*arad*arad > 1.0) { /* cap gradient */
271     d = 1.0/arad/sqrt(d);
272     for (i = 0; i < 3; i++)
273     pg[i] *= d;
274     }
275     }
276 greg 2.3 if ((arad /= sqrt(wt)) > maxarad)
277     arad = maxarad;
278     return(arad);
279 greg 1.1 }
280    
281    
282 greg 2.9 void
283 greg 2.14 comperrs( /* compute initial error estimates */
284     AMBSAMP *da, /* assumes standard ordering */
285     register AMBHEMI *hp
286     )
287 greg 1.1 {
288     double b, b2;
289     int i, j;
290     register AMBSAMP *dp;
291     /* sum differences from neighbors */
292     dp = da;
293     for (i = 0; i < hp->nt; i++)
294     for (j = 0; j < hp->np; j++) {
295 greg 1.6 #ifdef DEBUG
296     if (dp->t != i || dp->p != j)
297     error(CONSISTENCY,
298     "division order in comperrs");
299     #endif
300 greg 1.1 b = bright(dp[0].v);
301     if (i > 0) { /* from above */
302     b2 = bright(dp[-hp->np].v) - b;
303     b2 *= b2 * 0.25;
304     dp[0].k += b2;
305     dp[-hp->np].k += b2;
306     }
307     if (j > 0) { /* from behind */
308     b2 = bright(dp[-1].v) - b;
309     b2 *= b2 * 0.25;
310     dp[0].k += b2;
311     dp[-1].k += b2;
312 greg 1.4 } else { /* around */
313     b2 = bright(dp[hp->np-1].v) - b;
314 greg 1.1 b2 *= b2 * 0.25;
315     dp[0].k += b2;
316 greg 1.4 dp[hp->np-1].k += b2;
317 greg 1.1 }
318     dp++;
319     }
320     /* divide by number of neighbors */
321     dp = da;
322     for (j = 0; j < hp->np; j++) /* top row */
323     (dp++)->k *= 1.0/3.0;
324     if (hp->nt < 2)
325     return;
326     for (i = 1; i < hp->nt-1; i++) /* central region */
327     for (j = 0; j < hp->np; j++)
328     (dp++)->k *= 0.25;
329     for (j = 0; j < hp->np; j++) /* bottom row */
330     (dp++)->k *= 1.0/3.0;
331     }
332    
333    
334 greg 2.9 void
335 greg 2.14 posgradient( /* compute position gradient */
336     FVECT gv,
337     AMBSAMP *da, /* assumes standard ordering */
338     register AMBHEMI *hp
339     )
340 greg 1.1 {
341 greg 1.2 register int i, j;
342 greg 2.2 double nextsine, lastsine, b, d;
343 greg 1.2 double mag0, mag1;
344     double phi, cosp, sinp, xd, yd;
345     register AMBSAMP *dp;
346    
347     xd = yd = 0.0;
348     for (j = 0; j < hp->np; j++) {
349     dp = da + j;
350     mag0 = mag1 = 0.0;
351 greg 2.2 lastsine = 0.0;
352 greg 1.2 for (i = 0; i < hp->nt; i++) {
353     #ifdef DEBUG
354     if (dp->t != i || dp->p != j)
355     error(CONSISTENCY,
356     "division order in posgradient");
357     #endif
358     b = bright(dp->v);
359     if (i > 0) {
360     d = dp[-hp->np].r;
361     if (dp[0].r > d) d = dp[0].r;
362 greg 2.2 /* sin(t)*cos(t)^2 */
363     d *= lastsine * (1.0 - (double)i/hp->nt);
364 greg 1.2 mag0 += d*(b - bright(dp[-hp->np].v));
365     }
366 greg 2.2 nextsine = sqrt((double)(i+1)/hp->nt);
367 greg 1.2 if (j > 0) {
368     d = dp[-1].r;
369     if (dp[0].r > d) d = dp[0].r;
370 greg 2.2 mag1 += d * (nextsine - lastsine) *
371     (b - bright(dp[-1].v));
372 greg 1.2 } else {
373     d = dp[hp->np-1].r;
374     if (dp[0].r > d) d = dp[0].r;
375 greg 2.2 mag1 += d * (nextsine - lastsine) *
376     (b - bright(dp[hp->np-1].v));
377 greg 1.2 }
378     dp += hp->np;
379 greg 2.2 lastsine = nextsine;
380 greg 1.2 }
381 greg 2.2 mag0 *= 2.0*PI / hp->np;
382 greg 1.2 phi = 2.0*PI * (double)j/hp->np;
383 gwlarson 2.8 cosp = tcos(phi); sinp = tsin(phi);
384 greg 1.2 xd += mag0*cosp - mag1*sinp;
385     yd += mag0*sinp + mag1*cosp;
386     }
387     for (i = 0; i < 3; i++)
388 greg 2.16 gv[i] = (xd*hp->ux[i] + yd*hp->uy[i])*(hp->nt*hp->np)/PI;
389 greg 1.1 }
390    
391    
392 greg 2.9 void
393 greg 2.14 dirgradient( /* compute direction gradient */
394     FVECT gv,
395     AMBSAMP *da, /* assumes standard ordering */
396     register AMBHEMI *hp
397     )
398 greg 1.1 {
399 greg 1.2 register int i, j;
400     double mag;
401     double phi, xd, yd;
402     register AMBSAMP *dp;
403    
404     xd = yd = 0.0;
405     for (j = 0; j < hp->np; j++) {
406     dp = da + j;
407     mag = 0.0;
408     for (i = 0; i < hp->nt; i++) {
409     #ifdef DEBUG
410     if (dp->t != i || dp->p != j)
411     error(CONSISTENCY,
412     "division order in dirgradient");
413     #endif
414 greg 2.2 /* tan(t) */
415     mag += bright(dp->v)/sqrt(hp->nt/(i+.5) - 1.0);
416 greg 1.2 dp += hp->np;
417     }
418     phi = 2.0*PI * (j+.5)/hp->np + PI/2.0;
419 gwlarson 2.8 xd += mag * tcos(phi);
420     yd += mag * tsin(phi);
421 greg 1.2 }
422     for (i = 0; i < 3; i++)
423 greg 2.16 gv[i] = xd*hp->ux[i] + yd*hp->uy[i];
424 greg 1.1 }