ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/rt/ambcomp.c
Revision: 2.100
Committed: Mon Apr 28 19:30:01 2025 UTC (5 days, 13 hours ago) by greg
Content type: text/plain
Branch: MAIN
Changes since 2.99: +10 -17 lines
Log Message:
refactor: Simplified new resampling code without changing results

File Contents

# User Rev Content
1 greg 1.1 #ifndef lint
2 greg 2.100 static const char RCSid[] = "$Id: ambcomp.c,v 2.99 2025/04/27 20:20:01 greg Exp $";
3 greg 1.1 #endif
4     /*
5     * Routines to compute "ambient" values using Monte Carlo
6 greg 2.9 *
7 greg 2.27 * Hessian calculations based on "Practical Hessian-Based Error Control
8     * for Irradiance Caching" by Schwarzhaupt, Wann Jensen, & Jarosz
9     * from ACM SIGGRAPH Asia 2012 conference proceedings.
10     *
11 greg 2.46 * Added book-keeping optimization to avoid calculations that would
12     * cancel due to traversal both directions on edges that are adjacent
13     * to same-valued triangles. This cuts about half of Hessian math.
14     *
15 greg 2.9 * Declarations of external symbols in ambient.h
16     */
17    
18 greg 2.10 #include "copyright.h"
19 greg 1.1
20     #include "ray.h"
21 greg 2.25 #include "ambient.h"
22     #include "random.h"
23 greg 1.1
24 greg 2.86 #ifndef MINADIV
25     #define MINADIV 7 /* minimum # divisions in each dimension */
26     #endif
27 greg 2.99 #ifndef MINSDIST
28     #define MINSDIST 0.25 /* def. min. spacing = 1/4th division */
29     #endif
30 greg 2.86
31 greg 2.26 typedef struct {
32 greg 2.90 FVECT p; /* intersection point */
33 greg 2.83 float d; /* reciprocal distance */
34 greg 2.90 SCOLOR v; /* hemisphere sample value */
35 greg 2.44 } AMBSAMP; /* sample value */
36    
37     typedef struct {
38 greg 2.26 RAY *rp; /* originating ray sample */
39     int ns; /* number of samples per axis */
40 greg 2.61 int sampOK; /* acquired full sample set? */
41 greg 2.92 int atyp; /* RAMBIENT or TAMBIENT */
42 greg 2.90 SCOLOR acoef; /* division contribution coefficient */
43     SCOLOR acol; /* accumulated color */
44 greg 2.92 FVECT onrm; /* oriented unperturbed surface normal */
45 greg 2.61 FVECT ux, uy; /* tangent axis unit vectors */
46 greg 2.44 AMBSAMP sa[1]; /* sample array (extends struct) */
47 greg 2.26 } AMBHEMI; /* ambient sample hemisphere */
48    
49 greg 2.56 #define AI(h,i,j) ((i)*(h)->ns + (j))
50     #define ambsam(h,i,j) (h)->sa[AI(h,i,j)]
51 greg 2.26
52 greg 2.27 typedef struct {
53 greg 2.35 FVECT r_i, r_i1, e_i, rcp, rI2_eJ2;
54     double I1, I2;
55 greg 2.27 } FFTRI; /* vectors and coefficients for Hessian calculation */
56    
57 greg 2.26
58 greg 2.61 static int
59 greg 2.73 ambcollision( /* proposed direciton collides? */
60     AMBHEMI *hp,
61     int i,
62     int j,
63     FVECT dv
64     )
65     {
66 greg 2.74 double cos_thresh;
67     int ii, jj;
68 greg 2.99
69     cos_thresh = (PI*MINSDIST)/(double)hp->ns;
70 greg 2.74 cos_thresh = 1. - .5*cos_thresh*cos_thresh;
71     /* check existing neighbors */
72 greg 2.73 for (ii = i-1; ii <= i+1; ii++) {
73     if (ii < 0) continue;
74     if (ii >= hp->ns) break;
75     for (jj = j-1; jj <= j+1; jj++) {
76     AMBSAMP *ap;
77     FVECT avec;
78     double dprod;
79     if (jj < 0) continue;
80     if (jj >= hp->ns) break;
81     if ((ii==i) & (jj==j)) continue;
82     ap = &ambsam(hp,ii,jj);
83 greg 2.74 if (ap->d <= .5/FHUGE)
84     continue; /* no one home */
85 greg 2.73 VSUB(avec, ap->p, hp->rp->rop);
86     dprod = DOT(avec, dv);
87     if (dprod >= cos_thresh*VLEN(avec))
88     return(1); /* collision */
89     }
90     }
91 greg 2.74 return(0); /* nothing to worry about */
92 greg 2.73 }
93    
94    
95 greg 2.99 #define XLOTSIZ 251 /* size of used car lot */
96     #define CFIRST 0 /* first corner */
97     #define COTHER (CFIRST+4) /* non-corner sample */
98     #define CMAXTARGET (int)(XLOTSIZ*MINSDIST/(1-MINSDIST))
99     #define CXCOPY(d,s) (excharr[d][0]=excharr[s][0], excharr[d][1]=excharr[s][1])
100    
101     static int
102     psample_class(double ss[2]) /* classify patch sample */
103     {
104     if (ss[0] < MINSDIST) {
105     if (ss[1] < MINSDIST)
106     return(CFIRST);
107     if (ss[1] > 1.-MINSDIST)
108     return(CFIRST+2);
109     } else if (ss[0] > 1.-MINSDIST) {
110     if (ss[1] < MINSDIST)
111     return(CFIRST+1);
112     if (ss[1] > 1.-MINSDIST)
113     return(CFIRST+3);
114     }
115     return(COTHER); /* not in a corner */
116     }
117    
118     static void
119     trade_patchsamp(double ss[2]) /* trade in problem patch position */
120     {
121     static float excharr[XLOTSIZ][2];
122     static short gterm[COTHER+1];
123     double srep[2];
124     int sclass, rclass;
125     int x;
126     /* reset on corner overload */
127     if (gterm[COTHER-1] >= (CMAXTARGET+XLOTSIZ)/2)
128     memset(gterm, 0, sizeof(gterm));
129     /* (re-)initialize? */
130     while (gterm[COTHER] < XLOTSIZ) {
131     excharr[gterm[COTHER]][0] = frandom();
132     excharr[gterm[COTHER]][1] = frandom();
133     ++gterm[COTHER];
134     } /* get trade-in candidate... */
135     sclass = psample_class(ss); /* submitted corner or not? */
136     switch (sclass) {
137     case COTHER: /* trade mid-edge with corner/any */
138     x = irandom( gterm[COTHER-1] > CMAXTARGET
139     ? gterm[COTHER-1] : XLOTSIZ );
140     break;
141     case CFIRST: /* kick out of first corner */
142     x = gterm[CFIRST] + irandom(XLOTSIZ - gterm[CFIRST]);
143     break;
144     default: /* kick out of 2nd-4th corner */
145     x = irandom(XLOTSIZ - (gterm[sclass] - gterm[sclass-1]));
146     x += (x >= gterm[sclass-1])*(gterm[sclass] - gterm[sclass-1]);
147     break;
148     }
149 greg 2.100 srep[0] = excharr[x][0]; /* save selected replacement (result) */
150 greg 2.99 srep[1] = excharr[x][1];
151 greg 2.100 /* identify replacement class */
152 greg 2.99 for (rclass = CFIRST; rclass < COTHER; rclass++)
153     if (x < gterm[rclass])
154 greg 2.100 break; /* repark to keep classes grouped */
155     while (rclass > sclass) { /* replacement group after submitted? */
156 greg 2.99 CXCOPY(x, gterm[rclass-1]);
157 greg 2.100 x = gterm[--rclass]++;
158     }
159     while (rclass < sclass) { /* replacement group before submitted? */
160 greg 2.99 --gterm[rclass];
161     CXCOPY(x, gterm[rclass]);
162 greg 2.100 x = gterm[rclass++];
163 greg 2.99 }
164 greg 2.100 excharr[x][0] = ss[0]; /* complete the trade-in */
165 greg 2.99 excharr[x][1] = ss[1];
166     ss[0] = srep[0];
167     ss[1] = srep[1];
168     }
169    
170     #undef CXCOPY
171     #undef XLOTSIZ
172     #undef COTHER
173     #undef CFIRST
174    
175    
176 greg 2.73 static int
177 greg 2.61 ambsample( /* initial ambient division sample */
178     AMBHEMI *hp,
179     int i,
180     int j,
181     int n
182 greg 2.26 )
183     {
184 greg 2.61 AMBSAMP *ap = &ambsam(hp,i,j);
185     RAY ar;
186 greg 2.41 int hlist[3], ii;
187 greg 2.94 double ss[2];
188 greg 2.88 RREAL spt[2];
189     double zd;
190 greg 2.61 /* generate hemispherical sample */
191 greg 2.26 /* ambient coefficient for weight */
192     if (ambacc > FTINY)
193 greg 2.90 setscolor(ar.rcoef, AVGREFL, AVGREFL, AVGREFL);
194 greg 2.26 else
195 greg 2.90 copyscolor(ar.rcoef, hp->acoef);
196 greg 2.92 if (rayorigin(&ar, hp->atyp, hp->rp, ar.rcoef) < 0)
197 greg 2.41 return(0);
198 greg 2.26 if (ambacc > FTINY) {
199 greg 2.90 smultscolor(ar.rcoef, hp->acoef);
200     scalescolor(ar.rcoef, 1./AVGREFL);
201 greg 2.41 }
202     hlist[0] = hp->rp->rno;
203 greg 2.94 hlist[1] = AI(hp,i,j);
204     hlist[2] = samplendx;
205     multisamp(ss, 2, urand(ilhash(hlist,3)+n));
206 greg 2.99 patch_redo:
207 greg 2.94 square2disk(spt, (j+ss[1])/hp->ns, (i+ss[0])/hp->ns);
208 greg 2.26 zd = sqrt(1. - spt[0]*spt[0] - spt[1]*spt[1]);
209     for (ii = 3; ii--; )
210 greg 2.61 ar.rdir[ii] = spt[0]*hp->ux[ii] +
211 greg 2.26 spt[1]*hp->uy[ii] +
212 greg 2.92 zd*hp->onrm[ii];
213 greg 2.61 checknorm(ar.rdir);
214 greg 2.99 /* avoid coincident samples */
215     if (!n & (hp->ns >= 4) && ambcollision(hp, i, j, ar.rdir)) {
216     trade_patchsamp(ss);
217     goto patch_redo;
218 greg 2.73 }
219 greg 2.56 dimlist[ndims++] = AI(hp,i,j) + 90171;
220 greg 2.61 rayvalue(&ar); /* evaluate ray */
221     ndims--;
222 greg 2.83 zd = raydistance(&ar);
223     if (zd <= FTINY)
224 greg 2.61 return(0); /* should never happen */
225 greg 2.90 smultscolor(ar.rcol, ar.rcoef); /* apply coefficient */
226 greg 2.83 if (zd*ap->d < 1.0) /* new/closer distance? */
227     ap->d = 1.0/zd;
228 greg 2.61 if (!n) { /* record first vertex & value */
229 greg 2.83 if (zd > 10.0*thescene.cusize + 1000.)
230     zd = 10.0*thescene.cusize + 1000.;
231     VSUM(ap->p, ar.rorg, ar.rdir, zd);
232 greg 2.90 copyscolor(ap->v, ar.rcol);
233 greg 2.61 } else { /* else update recorded value */
234 greg 2.90 sopscolor(hp->acol, -=, ap->v);
235 greg 2.61 zd = 1.0/(double)(n+1);
236 greg 2.90 scalescolor(ar.rcol, zd);
237 greg 2.61 zd *= (double)n;
238 greg 2.90 scalescolor(ap->v, zd);
239     saddscolor(ap->v, ar.rcol);
240 greg 2.61 }
241 greg 2.90 saddscolor(hp->acol, ap->v); /* add to our sum */
242 greg 2.41 return(1);
243     }
244    
245    
246 greg 2.82 /* Estimate variance based on ambient division differences */
247 greg 2.41 static float *
248     getambdiffs(AMBHEMI *hp)
249     {
250 greg 2.93 const double normf = 1./(pbright(hp->acoef) + FTINY);
251 greg 2.94 float *earr = (float *)calloc(2*hp->ns*hp->ns, sizeof(float));
252     float *ep;
253 greg 2.42 AMBSAMP *ap;
254 greg 2.81 double b, b1, d2;
255 greg 2.41 int i, j;
256    
257     if (earr == NULL) /* out of memory? */
258     return(NULL);
259 greg 2.81 /* sum squared neighbor diffs */
260 greg 2.95 ap = hp->sa;
261     ep = earr + hp->ns*hp->ns; /* original estimates to scratch */
262     for (i = 0; i < hp->ns; i++)
263 greg 2.42 for (j = 0; j < hp->ns; j++, ap++, ep++) {
264 greg 2.90 b = pbright(ap[0].v);
265 greg 2.41 if (i) { /* from above */
266 greg 2.90 b1 = pbright(ap[-hp->ns].v);
267 greg 2.82 d2 = b - b1;
268 greg 2.89 d2 *= d2*normf/(b + b1 + FTINY);
269 greg 2.41 ep[0] += d2;
270     ep[-hp->ns] += d2;
271     }
272 greg 2.55 if (!j) continue;
273     /* from behind */
274 greg 2.90 b1 = pbright(ap[-1].v);
275 greg 2.82 d2 = b - b1;
276 greg 2.89 d2 *= d2*normf/(b + b1 + FTINY);
277 greg 2.55 ep[0] += d2;
278     ep[-1] += d2;
279     if (!i) continue;
280     /* diagonal */
281 greg 2.90 b1 = pbright(ap[-hp->ns-1].v);
282 greg 2.82 d2 = b - b1;
283 greg 2.89 d2 *= d2*normf/(b + b1 + FTINY);
284 greg 2.55 ep[0] += d2;
285     ep[-hp->ns-1] += d2;
286 greg 2.41 }
287     /* correct for number of neighbors */
288 greg 2.95 ep = earr + hp->ns*hp->ns;
289     ep[0] *= 6./3.;
290     ep[hp->ns-1] *= 6./3.;
291     ep[(hp->ns-1)*hp->ns] *= 6./3.;
292     ep[(hp->ns-1)*hp->ns + hp->ns-1] *= 6./3.;
293 greg 2.41 for (i = 1; i < hp->ns-1; i++) {
294 greg 2.95 ep[i*hp->ns] *= 6./5.;
295     ep[i*hp->ns + hp->ns-1] *= 6./5.;
296 greg 2.41 }
297     for (j = 1; j < hp->ns-1; j++) {
298 greg 2.95 ep[j] *= 6./5.;
299     ep[(hp->ns-1)*hp->ns + j] *= 6./5.;
300 greg 2.93 }
301 greg 2.95 /* blur final map to reduce bias */
302 greg 2.93 for (i = 0; i < hp->ns-1; i++) {
303 greg 2.94 float *ep2;
304 greg 2.93 ep = earr + i*hp->ns;
305 greg 2.94 ep2 = ep + hp->ns*hp->ns;
306     for (j = 0; j < hp->ns-1; j++, ep++, ep2++) {
307 greg 2.95 ep[0] += .5*ep2[0] + .125*(ep2[1] + ep2[hp->ns]);
308 greg 2.94 ep[1] += .125*ep2[0];
309     ep[hp->ns] += .125*ep2[0];
310 greg 2.93 }
311 greg 2.41 }
312     return(earr);
313     }
314    
315    
316 greg 2.43 /* Perform super-sampling on hemisphere (introduces bias) */
317 greg 2.41 static void
318 greg 2.61 ambsupersamp(AMBHEMI *hp, int cnt)
319 greg 2.41 {
320     float *earr = getambdiffs(hp);
321 greg 2.54 double e2rem = 0;
322 greg 2.41 float *ep;
323 greg 2.55 int i, j, n, nss;
324 greg 2.41
325     if (earr == NULL) /* just skip calc. if no memory */
326     return;
327 greg 2.54 /* accumulate estimated variances */
328 greg 2.55 for (ep = earr + hp->ns*hp->ns; ep > earr; )
329     e2rem += *--ep;
330 greg 2.41 ep = earr; /* perform super-sampling */
331 greg 2.81 for (i = 0; i < hp->ns; i++)
332     for (j = 0; j < hp->ns; j++) {
333 greg 2.55 if (e2rem <= FTINY)
334     goto done; /* nothing left to do */
335     nss = *ep/e2rem*cnt + frandom();
336 greg 2.62 for (n = 1; n <= nss && ambsample(hp,i,j,n); n++)
337 greg 2.77 if (!--cnt) goto done;
338 greg 2.61 e2rem -= *ep++; /* update remainder */
339 greg 2.41 }
340 greg 2.55 done:
341 greg 2.41 free(earr);
342     }
343    
344    
345 greg 2.61 static AMBHEMI *
346     samp_hemi( /* sample indirect hemisphere */
347 greg 2.90 SCOLOR rcol,
348 greg 2.61 RAY *r,
349     double wt
350     )
351     {
352 greg 2.92 int backside = (wt < 0);
353 greg 2.61 AMBHEMI *hp;
354     double d;
355     int n, i, j;
356 greg 2.77 /* insignificance check */
357 greg 2.90 d = sintens(rcol);
358     if (d <= FTINY)
359 greg 2.77 return(NULL);
360 greg 2.61 /* set number of divisions */
361 greg 2.92 if (backside) wt = -wt;
362 greg 2.61 if (ambacc <= FTINY &&
363 greg 2.94 wt > (d *= 0.8*r->rweight/(ambdiv*minweight + 1e-20)))
364 greg 2.61 wt = d; /* avoid ray termination */
365     n = sqrt(ambdiv * wt) + 0.5;
366 greg 2.86 i = 1 + (MINADIV-1)*(ambacc > FTINY);
367     if (n < i) /* use minimum number of samples? */
368 greg 2.61 n = i;
369     /* allocate sampling array */
370     hp = (AMBHEMI *)malloc(sizeof(AMBHEMI) + sizeof(AMBSAMP)*(n*n - 1));
371     if (hp == NULL)
372     error(SYSTEM, "out of memory in samp_hemi");
373 greg 2.92
374     if (backside) {
375     hp->atyp = TAMBIENT;
376     hp->onrm[0] = -r->ron[0];
377     hp->onrm[1] = -r->ron[1];
378     hp->onrm[2] = -r->ron[2];
379     } else {
380     hp->atyp = RAMBIENT;
381     VCOPY(hp->onrm, r->ron);
382     }
383 greg 2.61 hp->rp = r;
384     hp->ns = n;
385 greg 2.90 scolorblack(hp->acol);
386 greg 2.62 memset(hp->sa, 0, sizeof(AMBSAMP)*n*n);
387 greg 2.61 hp->sampOK = 0;
388     /* assign coefficient */
389 greg 2.90 copyscolor(hp->acoef, rcol);
390 greg 2.61 d = 1.0/(n*n);
391 greg 2.90 scalescolor(hp->acoef, d);
392 greg 2.61 /* make tangent plane axes */
393 greg 2.92 if (!getperpendicular(hp->ux, hp->onrm, 1))
394 greg 2.61 error(CONSISTENCY, "bad ray direction in samp_hemi");
395 greg 2.92 VCROSS(hp->uy, hp->onrm, hp->ux);
396 greg 2.61 /* sample divisions */
397     for (i = hp->ns; i--; )
398     for (j = hp->ns; j--; )
399     hp->sampOK += ambsample(hp, i, j, 0);
400 greg 2.90 copyscolor(rcol, hp->acol);
401 greg 2.61 if (!hp->sampOK) { /* utter failure? */
402     free(hp);
403     return(NULL);
404     }
405     if (hp->sampOK < hp->ns*hp->ns) {
406     hp->sampOK *= -1; /* soft failure */
407     return(hp);
408     }
409 greg 2.86 if (hp->sampOK <= MINADIV*MINADIV)
410     return(hp); /* don't bother super-sampling */
411 greg 2.61 n = ambssamp*wt + 0.5;
412 greg 2.94 if (n >= 4*hp->ns) { /* perform super-sampling? */
413 greg 2.61 ambsupersamp(hp, n);
414 greg 2.90 copyscolor(rcol, hp->acol);
415 greg 2.61 }
416     return(hp); /* all is well */
417     }
418    
419    
420 greg 2.46 /* Return brightness of farthest ambient sample */
421     static double
422 greg 2.56 back_ambval(AMBHEMI *hp, const int n1, const int n2, const int n3)
423 greg 2.46 {
424 greg 2.56 if (hp->sa[n1].d <= hp->sa[n2].d) {
425     if (hp->sa[n1].d <= hp->sa[n3].d)
426 greg 2.90 return(hp->sa[n1].v[0]);
427     return(hp->sa[n3].v[0]);
428 greg 2.56 }
429     if (hp->sa[n2].d <= hp->sa[n3].d)
430 greg 2.90 return(hp->sa[n2].v[0]);
431     return(hp->sa[n3].v[0]);
432 greg 2.46 }
433    
434    
435 greg 2.27 /* Compute vectors and coefficients for Hessian/gradient calcs */
436     static void
437 greg 2.56 comp_fftri(FFTRI *ftp, AMBHEMI *hp, const int n0, const int n1)
438 greg 2.27 {
439 greg 2.56 double rdot_cp, dot_e, dot_er, rdot_r, rdot_r1, J2;
440     int ii;
441    
442     VSUB(ftp->r_i, hp->sa[n0].p, hp->rp->rop);
443     VSUB(ftp->r_i1, hp->sa[n1].p, hp->rp->rop);
444     VSUB(ftp->e_i, hp->sa[n1].p, hp->sa[n0].p);
445 greg 2.35 VCROSS(ftp->rcp, ftp->r_i, ftp->r_i1);
446     rdot_cp = 1.0/DOT(ftp->rcp,ftp->rcp);
447 greg 2.27 dot_e = DOT(ftp->e_i,ftp->e_i);
448     dot_er = DOT(ftp->e_i, ftp->r_i);
449 greg 2.32 rdot_r = 1.0/DOT(ftp->r_i,ftp->r_i);
450     rdot_r1 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
451     ftp->I1 = acos( DOT(ftp->r_i, ftp->r_i1) * sqrt(rdot_r*rdot_r1) ) *
452 greg 2.35 sqrt( rdot_cp );
453 greg 2.32 ftp->I2 = ( DOT(ftp->e_i, ftp->r_i1)*rdot_r1 - dot_er*rdot_r +
454 greg 2.35 dot_e*ftp->I1 )*0.5*rdot_cp;
455 greg 2.32 J2 = ( 0.5*(rdot_r - rdot_r1) - dot_er*ftp->I2 ) / dot_e;
456 greg 2.46 for (ii = 3; ii--; )
457     ftp->rI2_eJ2[ii] = ftp->I2*ftp->r_i[ii] + J2*ftp->e_i[ii];
458 greg 2.27 }
459    
460    
461 greg 2.28 /* Compose 3x3 matrix from two vectors */
462 greg 2.27 static void
463     compose_matrix(FVECT mat[3], FVECT va, FVECT vb)
464     {
465     mat[0][0] = 2.0*va[0]*vb[0];
466     mat[1][1] = 2.0*va[1]*vb[1];
467     mat[2][2] = 2.0*va[2]*vb[2];
468     mat[0][1] = mat[1][0] = va[0]*vb[1] + va[1]*vb[0];
469     mat[0][2] = mat[2][0] = va[0]*vb[2] + va[2]*vb[0];
470     mat[1][2] = mat[2][1] = va[1]*vb[2] + va[2]*vb[1];
471     }
472    
473    
474     /* Compute partial 3x3 Hessian matrix for edge */
475     static void
476     comp_hessian(FVECT hess[3], FFTRI *ftp, FVECT nrm)
477     {
478 greg 2.35 FVECT ncp;
479 greg 2.27 FVECT m1[3], m2[3], m3[3], m4[3];
480     double d1, d2, d3, d4;
481     double I3, J3, K3;
482     int i, j;
483     /* compute intermediate coefficients */
484     d1 = 1.0/DOT(ftp->r_i,ftp->r_i);
485     d2 = 1.0/DOT(ftp->r_i1,ftp->r_i1);
486     d3 = 1.0/DOT(ftp->e_i,ftp->e_i);
487     d4 = DOT(ftp->e_i, ftp->r_i);
488 greg 2.35 I3 = ( DOT(ftp->e_i, ftp->r_i1)*d2*d2 - d4*d1*d1 + 3.0/d3*ftp->I2 )
489     / ( 4.0*DOT(ftp->rcp,ftp->rcp) );
490 greg 2.27 J3 = 0.25*d3*(d1*d1 - d2*d2) - d4*d3*I3;
491     K3 = d3*(ftp->I2 - I3/d1 - 2.0*d4*J3);
492     /* intermediate matrices */
493 greg 2.35 VCROSS(ncp, nrm, ftp->e_i);
494     compose_matrix(m1, ncp, ftp->rI2_eJ2);
495 greg 2.27 compose_matrix(m2, ftp->r_i, ftp->r_i);
496     compose_matrix(m3, ftp->e_i, ftp->e_i);
497     compose_matrix(m4, ftp->r_i, ftp->e_i);
498 greg 2.35 d1 = DOT(nrm, ftp->rcp);
499 greg 2.27 d2 = -d1*ftp->I2;
500     d1 *= 2.0;
501     for (i = 3; i--; ) /* final matrix sum */
502     for (j = 3; j--; ) {
503     hess[i][j] = m1[i][j] + d1*( I3*m2[i][j] + K3*m3[i][j] +
504     2.0*J3*m4[i][j] );
505     hess[i][j] += d2*(i==j);
506 greg 2.46 hess[i][j] *= -1.0/PI;
507 greg 2.27 }
508     }
509    
510    
511     /* Reverse hessian calculation result for edge in other direction */
512     static void
513     rev_hessian(FVECT hess[3])
514     {
515     int i;
516    
517     for (i = 3; i--; ) {
518     hess[i][0] = -hess[i][0];
519     hess[i][1] = -hess[i][1];
520     hess[i][2] = -hess[i][2];
521     }
522     }
523    
524    
525     /* Add to radiometric Hessian from the given triangle */
526     static void
527     add2hessian(FVECT hess[3], FVECT ehess1[3],
528 greg 2.46 FVECT ehess2[3], FVECT ehess3[3], double v)
529 greg 2.27 {
530     int i, j;
531    
532     for (i = 3; i--; )
533     for (j = 3; j--; )
534     hess[i][j] += v*( ehess1[i][j] + ehess2[i][j] + ehess3[i][j] );
535     }
536    
537    
538     /* Compute partial displacement form factor gradient for edge */
539     static void
540     comp_gradient(FVECT grad, FFTRI *ftp, FVECT nrm)
541     {
542 greg 2.35 FVECT ncp;
543 greg 2.27 double f1;
544     int i;
545    
546 greg 2.35 f1 = 2.0*DOT(nrm, ftp->rcp);
547     VCROSS(ncp, nrm, ftp->e_i);
548 greg 2.27 for (i = 3; i--; )
549 greg 2.46 grad[i] = (0.5/PI)*( ftp->I1*ncp[i] + f1*ftp->rI2_eJ2[i] );
550 greg 2.27 }
551    
552    
553     /* Reverse gradient calculation result for edge in other direction */
554     static void
555     rev_gradient(FVECT grad)
556     {
557     grad[0] = -grad[0];
558     grad[1] = -grad[1];
559     grad[2] = -grad[2];
560     }
561    
562    
563     /* Add to displacement gradient from the given triangle */
564     static void
565 greg 2.46 add2gradient(FVECT grad, FVECT egrad1, FVECT egrad2, FVECT egrad3, double v)
566 greg 2.27 {
567     int i;
568    
569     for (i = 3; i--; )
570     grad[i] += v*( egrad1[i] + egrad2[i] + egrad3[i] );
571     }
572    
573    
574     /* Compute anisotropic radii and eigenvector directions */
575 greg 2.53 static void
576 greg 2.27 eigenvectors(FVECT uv[2], float ra[2], FVECT hessian[3])
577     {
578     double hess2[2][2];
579     FVECT a, b;
580     double evalue[2], slope1, xmag1;
581     int i;
582     /* project Hessian to sample plane */
583     for (i = 3; i--; ) {
584     a[i] = DOT(hessian[i], uv[0]);
585     b[i] = DOT(hessian[i], uv[1]);
586     }
587     hess2[0][0] = DOT(uv[0], a);
588     hess2[0][1] = DOT(uv[0], b);
589     hess2[1][0] = DOT(uv[1], a);
590     hess2[1][1] = DOT(uv[1], b);
591 greg 2.38 /* compute eigenvalue(s) */
592     i = quadratic(evalue, 1.0, -hess2[0][0]-hess2[1][1],
593     hess2[0][0]*hess2[1][1]-hess2[0][1]*hess2[1][0]);
594     if (i == 1) /* double-root (circle) */
595     evalue[1] = evalue[0];
596     if (!i || ((evalue[0] = fabs(evalue[0])) <= FTINY*FTINY) |
597 greg 2.53 ((evalue[1] = fabs(evalue[1])) <= FTINY*FTINY) ) {
598     ra[0] = ra[1] = maxarad;
599     return;
600     }
601 greg 2.27 if (evalue[0] > evalue[1]) {
602 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[0]));
603     ra[1] = sqrt(sqrt(4.0/evalue[1]));
604 greg 2.27 slope1 = evalue[1];
605     } else {
606 greg 2.29 ra[0] = sqrt(sqrt(4.0/evalue[1]));
607     ra[1] = sqrt(sqrt(4.0/evalue[0]));
608 greg 2.27 slope1 = evalue[0];
609     }
610     /* compute unit eigenvectors */
611     if (fabs(hess2[0][1]) <= FTINY)
612     return; /* uv OK as is */
613     slope1 = (slope1 - hess2[0][0]) / hess2[0][1];
614     xmag1 = sqrt(1.0/(1.0 + slope1*slope1));
615     for (i = 3; i--; ) {
616     b[i] = xmag1*uv[0][i] + slope1*xmag1*uv[1][i];
617     a[i] = slope1*xmag1*uv[0][i] - xmag1*uv[1][i];
618     }
619     VCOPY(uv[0], a);
620     VCOPY(uv[1], b);
621     }
622    
623    
624 greg 2.26 static void
625     ambHessian( /* anisotropic radii & pos. gradient */
626     AMBHEMI *hp,
627     FVECT uv[2], /* returned */
628 greg 2.28 float ra[2], /* returned (optional) */
629     float pg[2] /* returned (optional) */
630 greg 2.26 )
631     {
632 greg 2.27 static char memerrmsg[] = "out of memory in ambHessian()";
633     FVECT (*hessrow)[3] = NULL;
634     FVECT *gradrow = NULL;
635     FVECT hessian[3];
636     FVECT gradient;
637     FFTRI fftr;
638     int i, j;
639     /* be sure to assign unit vectors */
640     VCOPY(uv[0], hp->ux);
641     VCOPY(uv[1], hp->uy);
642     /* clock-wise vertex traversal from sample POV */
643     if (ra != NULL) { /* initialize Hessian row buffer */
644 greg 2.28 hessrow = (FVECT (*)[3])malloc(sizeof(FVECT)*3*(hp->ns-1));
645 greg 2.27 if (hessrow == NULL)
646     error(SYSTEM, memerrmsg);
647     memset(hessian, 0, sizeof(hessian));
648     } else if (pg == NULL) /* bogus call? */
649     return;
650     if (pg != NULL) { /* initialize form factor row buffer */
651 greg 2.28 gradrow = (FVECT *)malloc(sizeof(FVECT)*(hp->ns-1));
652 greg 2.27 if (gradrow == NULL)
653     error(SYSTEM, memerrmsg);
654     memset(gradient, 0, sizeof(gradient));
655     }
656     /* compute first row of edges */
657     for (j = 0; j < hp->ns-1; j++) {
658 greg 2.56 comp_fftri(&fftr, hp, AI(hp,0,j), AI(hp,0,j+1));
659 greg 2.27 if (hessrow != NULL)
660 greg 2.92 comp_hessian(hessrow[j], &fftr, hp->onrm);
661 greg 2.27 if (gradrow != NULL)
662 greg 2.92 comp_gradient(gradrow[j], &fftr, hp->onrm);
663 greg 2.27 }
664     /* sum each row of triangles */
665     for (i = 0; i < hp->ns-1; i++) {
666     FVECT hesscol[3]; /* compute first vertical edge */
667     FVECT gradcol;
668 greg 2.56 comp_fftri(&fftr, hp, AI(hp,i,0), AI(hp,i+1,0));
669 greg 2.27 if (hessrow != NULL)
670 greg 2.92 comp_hessian(hesscol, &fftr, hp->onrm);
671 greg 2.27 if (gradrow != NULL)
672 greg 2.92 comp_gradient(gradcol, &fftr, hp->onrm);
673 greg 2.27 for (j = 0; j < hp->ns-1; j++) {
674     FVECT hessdia[3]; /* compute triangle contributions */
675     FVECT graddia;
676 greg 2.46 double backg;
677 greg 2.56 backg = back_ambval(hp, AI(hp,i,j),
678     AI(hp,i,j+1), AI(hp,i+1,j));
679 greg 2.27 /* diagonal (inner) edge */
680 greg 2.56 comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j));
681 greg 2.27 if (hessrow != NULL) {
682 greg 2.92 comp_hessian(hessdia, &fftr, hp->onrm);
683 greg 2.27 rev_hessian(hesscol);
684     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
685     }
686 greg 2.39 if (gradrow != NULL) {
687 greg 2.92 comp_gradient(graddia, &fftr, hp->onrm);
688 greg 2.27 rev_gradient(gradcol);
689     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
690     }
691     /* initialize edge in next row */
692 greg 2.56 comp_fftri(&fftr, hp, AI(hp,i+1,j+1), AI(hp,i+1,j));
693 greg 2.27 if (hessrow != NULL)
694 greg 2.92 comp_hessian(hessrow[j], &fftr, hp->onrm);
695 greg 2.27 if (gradrow != NULL)
696 greg 2.92 comp_gradient(gradrow[j], &fftr, hp->onrm);
697 greg 2.27 /* new column edge & paired triangle */
698 greg 2.56 backg = back_ambval(hp, AI(hp,i+1,j+1),
699     AI(hp,i+1,j), AI(hp,i,j+1));
700     comp_fftri(&fftr, hp, AI(hp,i,j+1), AI(hp,i+1,j+1));
701 greg 2.27 if (hessrow != NULL) {
702 greg 2.92 comp_hessian(hesscol, &fftr, hp->onrm);
703 greg 2.27 rev_hessian(hessdia);
704     add2hessian(hessian, hessrow[j], hessdia, hesscol, backg);
705     if (i < hp->ns-2)
706     rev_hessian(hessrow[j]);
707     }
708     if (gradrow != NULL) {
709 greg 2.92 comp_gradient(gradcol, &fftr, hp->onrm);
710 greg 2.27 rev_gradient(graddia);
711     add2gradient(gradient, gradrow[j], graddia, gradcol, backg);
712     if (i < hp->ns-2)
713     rev_gradient(gradrow[j]);
714     }
715     }
716     }
717     /* release row buffers */
718     if (hessrow != NULL) free(hessrow);
719     if (gradrow != NULL) free(gradrow);
720    
721     if (ra != NULL) /* extract eigenvectors & radii */
722     eigenvectors(uv, ra, hessian);
723 greg 2.32 if (pg != NULL) { /* tangential position gradient */
724     pg[0] = DOT(gradient, uv[0]);
725     pg[1] = DOT(gradient, uv[1]);
726 greg 2.27 }
727     }
728    
729    
730     /* Compute direction gradient from a hemispherical sampling */
731     static void
732     ambdirgrad(AMBHEMI *hp, FVECT uv[2], float dg[2])
733     {
734 greg 2.41 AMBSAMP *ap;
735     double dgsum[2];
736     int n;
737     FVECT vd;
738     double gfact;
739 greg 2.27
740 greg 2.29 dgsum[0] = dgsum[1] = 0.0; /* sum values times -tan(theta) */
741 greg 2.27 for (ap = hp->sa, n = hp->ns*hp->ns; n--; ap++) {
742     /* use vector for azimuth + 90deg */
743     VSUB(vd, ap->p, hp->rp->rop);
744 greg 2.29 /* brightness over cosine factor */
745 greg 2.92 gfact = ap->v[0] / DOT(hp->onrm, vd);
746 greg 2.40 /* sine = proj_radius/vd_length */
747     dgsum[0] -= DOT(uv[1], vd) * gfact;
748     dgsum[1] += DOT(uv[0], vd) * gfact;
749 greg 2.26 }
750 greg 2.29 dg[0] = dgsum[0] / (hp->ns*hp->ns);
751     dg[1] = dgsum[1] / (hp->ns*hp->ns);
752 greg 2.26 }
753    
754 greg 2.27
755 greg 2.49 /* Compute potential light leak direction flags for cache value */
756     static uint32
757     ambcorral(AMBHEMI *hp, FVECT uv[2], const double r0, const double r1)
758 greg 2.47 {
759 greg 2.50 const double max_d = 1.0/(minarad*ambacc + 0.001);
760 greg 2.66 const double ang_res = 0.5*PI/hp->ns;
761     const double ang_step = ang_res/((int)(16/PI*ang_res) + 1.01);
762 greg 2.51 double avg_d = 0;
763 greg 2.50 uint32 flgs = 0;
764 greg 2.58 FVECT vec;
765 greg 2.62 double u, v;
766 greg 2.58 double ang, a1;
767 greg 2.50 int i, j;
768 greg 2.52 /* don't bother for a few samples */
769 greg 2.72 if (hp->ns < 8)
770 greg 2.52 return(0);
771     /* check distances overhead */
772 greg 2.51 for (i = hp->ns*3/4; i-- > hp->ns>>2; )
773     for (j = hp->ns*3/4; j-- > hp->ns>>2; )
774     avg_d += ambsam(hp,i,j).d;
775     avg_d *= 4.0/(hp->ns*hp->ns);
776 greg 2.52 if (avg_d*r0 >= 1.0) /* ceiling too low for corral? */
777     return(0);
778     if (avg_d >= max_d) /* insurance */
779 greg 2.51 return(0);
780     /* else circle around perimeter */
781 greg 2.47 for (i = 0; i < hp->ns; i++)
782     for (j = 0; j < hp->ns; j += !i|(i==hp->ns-1) ? 1 : hp->ns-1) {
783     AMBSAMP *ap = &ambsam(hp,i,j);
784 greg 2.50 if ((ap->d <= FTINY) | (ap->d >= max_d))
785     continue; /* too far or too near */
786 greg 2.47 VSUB(vec, ap->p, hp->rp->rop);
787 greg 2.62 u = DOT(vec, uv[0]);
788     v = DOT(vec, uv[1]);
789     if ((r0*r0*u*u + r1*r1*v*v) * ap->d*ap->d <= u*u + v*v)
790 greg 2.49 continue; /* occluder outside ellipse */
791     ang = atan2a(v, u); /* else set direction flags */
792 greg 2.66 for (a1 = ang-ang_res; a1 <= ang+ang_res; a1 += ang_step)
793 greg 2.50 flgs |= 1L<<(int)(16/PI*(a1 + 2.*PI*(a1 < 0)));
794 greg 2.47 }
795 greg 2.49 return(flgs);
796 greg 2.47 }
797    
798    
799 greg 2.26 int
800     doambient( /* compute ambient component */
801 greg 2.90 SCOLOR rcol, /* input/output color */
802 greg 2.26 RAY *r,
803 greg 2.92 double wt, /* negative for back side */
804 greg 2.27 FVECT uv[2], /* returned (optional) */
805     float ra[2], /* returned (optional) */
806     float pg[2], /* returned (optional) */
807 greg 2.49 float dg[2], /* returned (optional) */
808     uint32 *crlp /* returned (optional) */
809 greg 2.26 )
810     {
811 greg 2.61 AMBHEMI *hp = samp_hemi(rcol, r, wt);
812 greg 2.41 FVECT my_uv[2];
813 greg 2.61 double d, K;
814 greg 2.41 AMBSAMP *ap;
815 greg 2.61 int i;
816     /* clear return values */
817 greg 2.26 if (uv != NULL)
818     memset(uv, 0, sizeof(FVECT)*2);
819     if (ra != NULL)
820     ra[0] = ra[1] = 0.0;
821     if (pg != NULL)
822     pg[0] = pg[1] = 0.0;
823     if (dg != NULL)
824     dg[0] = dg[1] = 0.0;
825 greg 2.49 if (crlp != NULL)
826     *crlp = 0;
827 greg 2.61 if (hp == NULL) /* sampling falure? */
828     return(0);
829    
830     if ((ra == NULL) & (pg == NULL) & (dg == NULL) ||
831 greg 2.86 (hp->sampOK < 0) | (hp->ns < MINADIV)) {
832 greg 2.61 free(hp); /* Hessian not requested/possible */
833     return(-1); /* value-only return value */
834 greg 2.26 }
835 greg 2.91 if ((d = scolor_mean(rcol)) > FTINY) {
836     d = 0.99*(hp->ns*hp->ns)/d; /* normalize avg. values */
837 greg 2.38 K = 0.01;
838 greg 2.45 } else { /* or fall back on geometric Hessian */
839 greg 2.38 K = 1.0;
840     pg = NULL;
841     dg = NULL;
842 greg 2.53 crlp = NULL;
843 greg 2.38 }
844 greg 2.90 ap = hp->sa; /* single channel from here on... */
845 greg 2.26 for (i = hp->ns*hp->ns; i--; ap++)
846 greg 2.90 ap->v[0] = scolor_mean(ap->v)*d + K;
847 greg 2.26
848     if (uv == NULL) /* make sure we have axis pointers */
849     uv = my_uv;
850     /* compute radii & pos. gradient */
851     ambHessian(hp, uv, ra, pg);
852 greg 2.29
853 greg 2.26 if (dg != NULL) /* compute direction gradient */
854     ambdirgrad(hp, uv, dg);
855 greg 2.29
856 greg 2.28 if (ra != NULL) { /* scale/clamp radii */
857 greg 2.35 if (pg != NULL) {
858     if (ra[0]*(d = fabs(pg[0])) > 1.0)
859     ra[0] = 1.0/d;
860     if (ra[1]*(d = fabs(pg[1])) > 1.0)
861     ra[1] = 1.0/d;
862 greg 2.48 if (ra[0] > ra[1])
863     ra[0] = ra[1];
864 greg 2.35 }
865 greg 2.29 if (ra[0] < minarad) {
866     ra[0] = minarad;
867     if (ra[1] < minarad)
868     ra[1] = minarad;
869     }
870 greg 2.92 ra[0] *= d = 1.0/sqrt(fabs(wt));
871 greg 2.26 if ((ra[1] *= d) > 2.0*ra[0])
872     ra[1] = 2.0*ra[0];
873 greg 2.28 if (ra[1] > maxarad) {
874     ra[1] = maxarad;
875     if (ra[0] > maxarad)
876     ra[0] = maxarad;
877     }
878 greg 2.53 /* flag encroached directions */
879 greg 2.87 if (crlp != NULL) /* XXX doesn't update with changes to ambacc */
880 greg 2.49 *crlp = ambcorral(hp, uv, ra[0]*ambacc, ra[1]*ambacc);
881 greg 2.35 if (pg != NULL) { /* cap gradient if necessary */
882     d = pg[0]*pg[0]*ra[0]*ra[0] + pg[1]*pg[1]*ra[1]*ra[1];
883     if (d > 1.0) {
884     d = 1.0/sqrt(d);
885     pg[0] *= d;
886     pg[1] *= d;
887     }
888     }
889 greg 2.26 }
890     free(hp); /* clean up and return */
891     return(1);
892     }