#!/bin/csh -f # RCSid: $Id: psquish.csh,v 3.5 2008/11/10 19:08:19 greg Exp $ set Lmin=.0001 # minimum visible world luminance set Ldmin=1 # minimum display luminance set Ldmax=100 # maximum display luminance set nsteps=100 # number of steps in perceptual histogram set cvratio=0.05 # fraction of pixels to ignore in envelope clipping set td=/tmp set tf0=$td/tf$$ set tf1=$td/hist$$ set tf1b=$td/hist$$.diff set tf2=$td/cumt$$ set tf3=$td/histeq$$.cal set tf4=$td/cf$$.cal set tf=($tf0 $tf1 $tf1b $tf2 $tf3 $tf4) if ( "$argv[1]" == "-a" ) then set adaptive shift argv endif if ( $#argv != 1 ) then echo "Usage: $0 [-a] input.hdr > output.hdr" exit 1 endif set ifile=$1 set ibase=$ifile:t if ( "$ibase" =~ *.hdr ) set ibase=$ibase:r set ibase=$ibase:t onintr quit pextrem -o $ifile > $tf0 set Lmin=`rcalc -e 'L=179*(.265*$3+.67*$4+.065*$5)' -e 'cond=1.5-recno;$1=if('L-$Lmin,L,$Lmin')' $tf0` set Lmax=`rcalc -e 'L=179*(.265*$3+.67*$4+.065*$5)' -e 'cond=recno-1.5;$1=if('$Ldmax-L,$Ldmax,L')' $tf0` cat > $tf3 << _EOF_ min(a,b) : if(a-b, b, a); WE : 179; { Radiance white luminous efficacy } Lmin : $Lmin ; { minimum visible luminance } Lmax : $Lmax ; { maximum picture luminance } Ldmin : $Ldmin ; { minimum output luminance } Ldmax : $Ldmax ; { maximum output luminance } Stepsiz : (Bl(Lmax)-Bl(Lmin))/ $nsteps ; { brightness step size } { Logarithmic brightness function } Bl(L) : log(L); Lb(B) : exp(B); BLw(Lw) : Bl(Ldmin) + (Bl(Ldmax)-Bl(Ldmin))*cf(Bl(Lw)); { first derivative functions } Bl1(L) : 1/L; Lb1(B) : exp(B); { histogram equalization function } lin = li(1); Lw = WE/le(1) * lin; Lout = Lb(BLw(Lw)); mult = if(Lw-Lmin, (Lout-Ldmin)/(Ldmax-Ldmin)/lin, 0) ; _EOF_ if ( $?adaptive ) then cat >> $tf3 << _EOF_ { Ferwerda contrast sensitivity function } { log10 of cone threshold luminance } ltp(lLa) : if(-2.6 - lLa, -.72, if(lLa - 1.9, lLa - 1.255, (.249*lLa + .65)^2.7 - .72)); { log10 of rod threshold luminance } lts(lLa) : if(-3.94 - lLa, -2.86, if(lLa - -1.44, lLa - .395, (.405*lLa + 1.6)^2.18 - 2.86)); { threshold is minimum of rods and cones } ldL2(lLa) : min(ltp(lLa),lts(lLa)); dL(La) : 10^ldL2(log10(La)); { derivative clamping function } clamp2(L, bLw) : dL(Lb(bLw))/dL(L)/Lb1(bLw)/(Bl(Ldmax)-Bl(Ldmin))/Bl1(L); clamp(L) : clamp2(L, BLw(L)); { shift direction for histogram } shiftdir(B) : if(cf(B) - (B - Bl(Lmin))/(Bl(Ldmax) - Bl(Lmin)), 1, -1); { Scotopic/Photopic color adjustment } sL(r,g,b) : .062*r + .608*g + .330*b; { approx. scotopic brightness } BotMesopic : 10^-2.25; { top of scotopic range } TopMesopic : 10^0.75; { bottom of photopic range } incolor = if(Lw-TopMesopic, 1, if(BotMesopic-Lw, 0, (Lw-BotMesopic)/(TopMesopic-BotMesopic))); slf = (1 - incolor)*sL(ri(1),gi(1),bi(1)); ro = mult*(incolor*ri(1) + slf); go = mult*(incolor*gi(1) + slf); bo = mult*(incolor*bi(1) + slf); _EOF_ else cat >> $tf3 << _EOF_ { derivative clamping function } clamp2(L, bLw) : Lb(bLw)/L/Lb1(bLw)/(Bl(Ldmax)-Bl(Ldmin))/Bl1(L); clamp(L) : clamp2(L, BLw(L)); { shift direction for histogram } shiftdir(B) : -1; ro = mult*ri(1); go = mult*gi(1); bo = mult*bi(1); _EOF_ endif # Compute brightness histogram pfilt -1 -p 1 -x 128 -y 128 $ifile | pvalue -o -b -d -h -H \ | rcalc -f $tf3 -e 'Lw=WE*$1;$1=if(Lw-Lmin,Bl(Lw),-1)' \ | histo `ev "log($Lmin)" "log($Lmax)"` $nsteps > $tf1 # Clamp frequency distribution set totcount=`sed 's/^.*[ ]//' $tf1 | total` set margin=`ev "floor($totcount*$cvratio+.5)"` while ( 1 ) # Compute mapping function sed 's/^.*[ ]//' $tf1 | total -1 -r \ | rcalc -e '$1=$1/'$totcount | rlam $tf1 - \ | tabfunc -i 0 cf > $tf4 # Compute difference with visible envelope rcalc -f $tf4 -f $tf3 -e "T:$totcount*Stepsiz" \ -e 'clfq=floor(T*clamp(Lb($1))+.5)' \ -e '$1=$2-clfq;$2=shiftdir($1)' $tf1 > $tf1b if (`sed 's/[ ].*$//' $tf1b | total` >= 0) then # Nothing visible? -- just normalize pfilt -1 -e `pextrem $ifile | rcalc -e 'cond=recno-1.5;$1=1/(.265*$3+.67*$4+.065*$5)'` $ifile goto quit endif # Check to see if we're close enough if (`rcalc -e '$1=if($1,$1,0)' $tf1b | total` <= $margin) break # Squash frequency distribution set diffs=(`sed 's/[ ].*$//' $tf1b`) set shftd=(`sed 's/^.*[ ]//' $tf1b`) while ( 1 ) set maxi=0 set maxd=0 set i=$nsteps while ( $i > 0 ) if ( $diffs[$i] > $maxd ) then set maxd=$diffs[$i] set maxi=$i endif @ i-- end if ( $maxd == 0 ) break set i=0 tryagain: set r=$shftd[$maxi] while ( $i == 0 ) @ t= $maxi + $r if ( $t < 1 || $t > $nsteps ) then @ shftd[$maxi]= -($shftd[$maxi]) goto tryagain endif if ( $diffs[$t] < 0 ) set i=$t @ r+= $shftd[$maxi] end if ( $diffs[$i] <= -$diffs[$maxi] ) then @ diffs[$i]+= $diffs[$maxi] set diffs[$maxi]=0 else @ diffs[$maxi]+= $diffs[$i] set diffs[$i]=0 endif end # Mung histogram echo $diffs | tr ' ' '\012' | rlam $tf1 - \ | rcalc -f $tf4 -f $tf3 -e "T:$totcount*Stepsiz" \ -e 'clfq=floor(T*clamp(Lb($1))+.5)' \ -e '$1=$1;$2=$3+clfq' > $tf1b mv -f $tf1b $tf1 end # Plot the mapping function if we are in debug mode if ( $?DEBUG ) then cat > ${ibase}_histo.plt << _EOF_ include=curve.plt title="Brightness Frequency Distribution" subtitle= $ibase ymin=0 xlabel="Perceptual Brightness B(Lw)" ylabel="Frequency Count" Alabel="Histogram" Alintype=0 Blabel="Envelope" Bsymsize=0 Adata= _EOF_ (cat $tf1; echo \;; echo Bdata=) >> ${ibase}_histo.plt rcalc -f $tf4 -f $tf3 -e "T:$totcount*Stepsiz" \ -e '$1=$1;$2=T*clamp(Lb($1))' $tf1 \ >> ${ibase}_histo.plt cat > ${ibase}_brmap.plt << _EOF_ include=line.plt title="Brightness Mapping Function" subtitle= $ibase xlabel="World Luminance (log cd/m^2)" ylabel="Display Luminance (cd/m^2)" ymax= $Ldmax Adata= _EOF_ cnt 100 | rcalc -f $tf4 -f $tf3 -e '$1=lx;$2=Lb(BLw(10^lx))' \ -e 'lx=$1/99*(log10(Lmax)-log10(Lmin))+log10(Lmin)' \ >> ${ibase}_brmap.plt if ( $?DISPLAY ) then bgraph ${ibase}_histo.plt ${ibase}_brmap.plt | x11meta & endif endif # Map our picture getinfo < $ifile | egrep '^((VIEW|PIXASPECT|PRIMARIES)=|[^ ]*(rpict|rview|pinterp) )' pcomb -f $tf4 -f $tf3 $ifile quit: rm -f $tf