| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: pmapgen.c,v 2.3 2003/02/22 02:07:27 greg Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* pmapgen.c: general routines for 2-D perspective mappings.
|
| 6 |
* These routines are independent of the poly structure,
|
| 7 |
* so we do not think in terms of texture and screen space.
|
| 8 |
*
|
| 9 |
* Paul Heckbert 5 Nov 85, 12 Dec 85
|
| 10 |
*/
|
| 11 |
|
| 12 |
#include <stdio.h>
|
| 13 |
#include "pmap.h"
|
| 14 |
#include "mx3.h"
|
| 15 |
|
| 16 |
#define TOLERANCE 1e-13
|
| 17 |
#define ZERO(x) ((x)<TOLERANCE && (x)>-TOLERANCE)
|
| 18 |
|
| 19 |
#define X(i) qdrl[i][0] /* quadrilateral x and y */
|
| 20 |
#define Y(i) qdrl[i][1]
|
| 21 |
|
| 22 |
/*
|
| 23 |
* pmap_quad_rect: find mapping between quadrilateral and rectangle.
|
| 24 |
* The correspondence is:
|
| 25 |
*
|
| 26 |
* qdrl[0] --> (u0,v0)
|
| 27 |
* qdrl[1] --> (u1,v0)
|
| 28 |
* qdrl[2] --> (u1,v1)
|
| 29 |
* qdrl[3] --> (u0,v1)
|
| 30 |
*
|
| 31 |
* This method of computing the adjoint numerically is cheaper than
|
| 32 |
* computing it symbolically.
|
| 33 |
*/
|
| 34 |
|
| 35 |
extern int
|
| 36 |
pmap_quad_rect(
|
| 37 |
double u0, /* bounds of rectangle */
|
| 38 |
double v0,
|
| 39 |
double u1,
|
| 40 |
double v1,
|
| 41 |
double qdrl[4][2], /* vertices of quadrilateral */
|
| 42 |
double QR[3][3] /* qdrl->rect transform (returned) */
|
| 43 |
)
|
| 44 |
{
|
| 45 |
int ret;
|
| 46 |
double du, dv;
|
| 47 |
double RQ[3][3]; /* rect->qdrl transform */
|
| 48 |
|
| 49 |
du = u1-u0;
|
| 50 |
dv = v1-v0;
|
| 51 |
if (du==0. || dv==0.) {
|
| 52 |
fprintf(stderr, "pmap_quad_rect: null rectangle\n");
|
| 53 |
return PMAP_BAD;
|
| 54 |
}
|
| 55 |
|
| 56 |
/* first find mapping from unit uv square to xy quadrilateral */
|
| 57 |
ret = pmap_square_quad(qdrl, RQ);
|
| 58 |
if (ret==PMAP_BAD) return PMAP_BAD;
|
| 59 |
|
| 60 |
/* concatenate transform from uv rectangle (u0,v0,u1,v1) to unit square */
|
| 61 |
RQ[0][0] /= du;
|
| 62 |
RQ[1][0] /= dv;
|
| 63 |
RQ[2][0] -= RQ[0][0]*u0 + RQ[1][0]*v0;
|
| 64 |
RQ[0][1] /= du;
|
| 65 |
RQ[1][1] /= dv;
|
| 66 |
RQ[2][1] -= RQ[0][1]*u0 + RQ[1][1]*v0;
|
| 67 |
RQ[0][2] /= du;
|
| 68 |
RQ[1][2] /= dv;
|
| 69 |
RQ[2][2] -= RQ[0][2]*u0 + RQ[1][2]*v0;
|
| 70 |
|
| 71 |
/* now RQ is transform from uv rectangle to xy quadrilateral */
|
| 72 |
/* QR = inverse transform, which maps xy to uv */
|
| 73 |
if (mx3d_adjoint(RQ, QR)==0.)
|
| 74 |
fprintf(stderr, "pmap_quad_rect: warning: determinant=0\n");
|
| 75 |
return ret;
|
| 76 |
}
|
| 77 |
|
| 78 |
/*
|
| 79 |
* pmap_square_quad: find mapping between unit square and quadrilateral.
|
| 80 |
* The correspondence is:
|
| 81 |
*
|
| 82 |
* (0,0) --> qdrl[0]
|
| 83 |
* (1,0) --> qdrl[1]
|
| 84 |
* (1,1) --> qdrl[2]
|
| 85 |
* (0,1) --> qdrl[3]
|
| 86 |
*/
|
| 87 |
|
| 88 |
extern int
|
| 89 |
pmap_square_quad(
|
| 90 |
register double qdrl[4][2], /* vertices of quadrilateral */
|
| 91 |
register double SQ[3][3] /* square->qdrl transform */
|
| 92 |
)
|
| 93 |
{
|
| 94 |
double px, py;
|
| 95 |
|
| 96 |
px = X(0)-X(1)+X(2)-X(3);
|
| 97 |
py = Y(0)-Y(1)+Y(2)-Y(3);
|
| 98 |
|
| 99 |
if (ZERO(px) && ZERO(py)) { /* affine */
|
| 100 |
SQ[0][0] = X(1)-X(0);
|
| 101 |
SQ[1][0] = X(2)-X(1);
|
| 102 |
SQ[2][0] = X(0);
|
| 103 |
SQ[0][1] = Y(1)-Y(0);
|
| 104 |
SQ[1][1] = Y(2)-Y(1);
|
| 105 |
SQ[2][1] = Y(0);
|
| 106 |
SQ[0][2] = 0.;
|
| 107 |
SQ[1][2] = 0.;
|
| 108 |
SQ[2][2] = 1.;
|
| 109 |
return PMAP_LINEAR;
|
| 110 |
}
|
| 111 |
else { /* perspective */
|
| 112 |
double dx1, dx2, dy1, dy2, del;
|
| 113 |
|
| 114 |
dx1 = X(1)-X(2);
|
| 115 |
dx2 = X(3)-X(2);
|
| 116 |
dy1 = Y(1)-Y(2);
|
| 117 |
dy2 = Y(3)-Y(2);
|
| 118 |
del = DET2(dx1,dx2, dy1,dy2);
|
| 119 |
if (del==0.) {
|
| 120 |
fprintf(stderr, "pmap_square_quad: bad mapping\n");
|
| 121 |
return PMAP_BAD;
|
| 122 |
}
|
| 123 |
SQ[0][2] = DET2(px,dx2, py,dy2)/del;
|
| 124 |
SQ[1][2] = DET2(dx1,px, dy1,py)/del;
|
| 125 |
SQ[2][2] = 1.;
|
| 126 |
SQ[0][0] = X(1)-X(0)+SQ[0][2]*X(1);
|
| 127 |
SQ[1][0] = X(3)-X(0)+SQ[1][2]*X(3);
|
| 128 |
SQ[2][0] = X(0);
|
| 129 |
SQ[0][1] = Y(1)-Y(0)+SQ[0][2]*Y(1);
|
| 130 |
SQ[1][1] = Y(3)-Y(0)+SQ[1][2]*Y(3);
|
| 131 |
SQ[2][1] = Y(0);
|
| 132 |
return PMAP_PERSP;
|
| 133 |
}
|
| 134 |
}
|