/* Copyright (c) 1994 Regents of the University of California */ #ifndef lint static char SCCSid[] = "$SunId$ LBL"; #endif /* * Interpolate and extrapolate pictures with different view parameters. * * Greg Ward 09Dec89 */ #include "standard.h" #include #include "view.h" #include "color.h" #include "resolu.h" #define LOG2 0.69314718055994530942 #define pscan(y) (ourpict+(y)*hresolu) #define sscan(y) (ourspict+(y)*hresolu) #define wscan(y) (ourweigh+(y)*hresolu) #define zscan(y) (ourzbuf+(y)*hresolu) #define averaging (ourweigh != NULL) #define MAXWT 1000. /* maximum pixel weight (averaging) */ #define F_FORE 1 /* fill foreground */ #define F_BACK 2 /* fill background */ #define PACKSIZ 256 /* max. calculation packet size */ #define RTCOM "rtrace -h- -ovl -fff " #define ABS(x) ((x)>0?(x):-(x)) struct position {int x,y; float z;}; #define NSTEPS 64 /* number steps in overlap prescan */ #define MINSTEP 4 /* minimum worthwhile preview step */ struct bound {int min,max;}; VIEW ourview = STDVIEW; /* desired view */ int hresolu = 512; /* horizontal resolution */ int vresolu = 512; /* vertical resolution */ double pixaspect = 1.0; /* pixel aspect ratio */ double zeps = .02; /* allowed z epsilon */ COLR *ourpict; /* output picture (COLR's) */ COLOR *ourspict; /* output pixel sums (averaging) */ float *ourweigh = NULL; /* output pixel weights (averaging) */ float *ourzbuf; /* corresponding z-buffer */ char *progname; int fillo = F_FORE|F_BACK; /* selected fill options */ int fillsamp = 0; /* sample separation (0 == inf) */ extern int backfill(), rcalfill(); /* fill functions */ int (*fillfunc)() = backfill; /* selected fill function */ COLR backcolr = BLKCOLR; /* background color */ COLOR backcolor = BLKCOLOR; /* background color (float) */ double backz = 0.0; /* background z value */ int normdist = 1; /* normalized distance? */ double ourexp = -1; /* original picture exposure */ int expadj = 0; /* exposure adjustment (f-stops) */ double rexpadj = 1; /* real exposure adjustment */ VIEW theirview = STDVIEW; /* input view */ int gotview; /* got input view? */ int wrongformat = 0; /* input in another format? */ RESOLU tresolu; /* input resolution */ double theirexp; /* input picture exposure */ MAT4 theirs2ours; /* transformation matrix */ int hasmatrix = 0; /* has transformation matrix */ int PDesc[3] = {-1,-1,-1}; /* rtrace process descriptor */ #define childpid (PDesc[2]) unsigned short queue[PACKSIZ][2]; /* pending pixels */ int packsiz; /* actual packet size */ int queuesiz; /* number of pixels pending */ extern double movepixel(); main(argc, argv) /* interpolate pictures */ int argc; char *argv[]; { #define check(ol,al) if (argv[i][ol] || \ badarg(argc-i-1,argv+i+1,al)) \ goto badopt int gotvfile = 0; int doavg = -1; char *zfile = NULL; char *expcomp = NULL; char *err; int i, rval; progname = argv[0]; for (i = 1; i < argc && argv[i][0] == '-'; i++) { rval = getviewopt(&ourview, argc-i, argv+i); if (rval >= 0) { i += rval; continue; } switch (argv[i][1]) { case 'e': /* exposure */ check(2,"f"); expcomp = argv[++i]; break; case 't': /* threshold */ check(2,"f"); zeps = atof(argv[++i]); break; case 'a': /* average */ check(2,NULL); doavg = 1; break; case 'q': /* quick (no avg.) */ check(2,NULL); doavg = 0; break; case 'n': /* dist. normalized? */ check(2,NULL); normdist = !normdist; break; case 'f': /* fill type */ switch (argv[i][2]) { case '0': /* none */ check(3,NULL); fillo = 0; break; case 'f': /* foreground */ check(3,NULL); fillo = F_FORE; break; case 'b': /* background */ check(3,NULL); fillo = F_BACK; break; case 'a': /* all */ check(3,NULL); fillo = F_FORE|F_BACK; break; case 's': /* sample */ check(3,"i"); fillsamp = atoi(argv[++i]); break; case 'c': /* color */ check(3,"fff"); fillfunc = backfill; setcolor(backcolor, atof(argv[i+1]), atof(argv[i+2]), atof(argv[i+3])); setcolr(backcolr, colval(backcolor,RED), colval(backcolor,GRN), colval(backcolor,BLU)); i += 3; break; case 'z': /* z value */ check(3,"f"); fillfunc = backfill; backz = atof(argv[++i]); break; case 'r': /* rtrace */ check(3,"s"); fillfunc = rcalfill; calstart(RTCOM, argv[++i]); break; default: goto badopt; } break; case 'z': /* z file */ check(2,"s"); zfile = argv[++i]; break; case 'x': /* x resolution */ check(2,"i"); hresolu = atoi(argv[++i]); break; case 'y': /* y resolution */ check(2,"i"); vresolu = atoi(argv[++i]); break; case 'p': /* pixel aspect */ if (argv[i][2] != 'a') goto badopt; check(3,"f"); pixaspect = atof(argv[++i]); break; case 'v': /* view file */ if (argv[i][2] != 'f') goto badopt; check(3,"s"); gotvfile = viewfile(argv[++i], &ourview, 0, 0); if (gotvfile < 0) syserror(argv[i]); else if (gotvfile == 0) { fprintf(stderr, "%s: bad view file\n", argv[i]); exit(1); } break; default: badopt: fprintf(stderr, "%s: command line error at '%s'\n", progname, argv[i]); goto userr; } } /* check arguments */ if ((argc-i)%2) goto userr; if (fillsamp == 1) fillo &= ~F_BACK; if (doavg < 0) doavg = (argc-i) > 2; if (expcomp != NULL) if (expcomp[0] == '+' | expcomp[0] == '-') { expadj = atof(expcomp) + (expcomp[0]=='+' ? .5 : -.5); if (doavg) rexpadj = pow(2.0, atof(expcomp)); else rexpadj = pow(2.0, (double)expadj); } else { if (!isflt(expcomp)) goto userr; rexpadj = atof(expcomp); expadj = log(rexpadj)/LOG2 + (rexpadj>1 ? .5 : -.5); if (!doavg) rexpadj = pow(2.0, (double)expadj); } /* set view */ if ((err = setview(&ourview)) != NULL) { fprintf(stderr, "%s: %s\n", progname, err); exit(1); } normaspect(viewaspect(&ourview), &pixaspect, &hresolu, &vresolu); /* allocate frame */ if (doavg) { ourspict = (COLOR *)bmalloc(hresolu*vresolu*sizeof(COLOR)); ourweigh = (float *)bmalloc(hresolu*vresolu*sizeof(float)); if (ourspict == NULL | ourweigh == NULL) syserror(progname); } else { ourpict = (COLR *)bmalloc(hresolu*vresolu*sizeof(COLR)); if (ourpict == NULL) syserror(progname); } ourzbuf = (float *)bmalloc(hresolu*vresolu*sizeof(float)); if (ourzbuf == NULL) syserror(progname); bzero((char *)ourzbuf, hresolu*vresolu*sizeof(float)); /* new header */ newheader("RADIANCE", stdout); /* get input */ for ( ; i < argc; i += 2) addpicture(argv[i], argv[i+1]); /* fill in spaces */ if (fillo&F_BACK) backpicture(fillfunc, fillsamp); else fillpicture(fillfunc); /* close calculation */ caldone(); /* aft clipping */ clipaft(); /* add to header */ printargs(argc, argv, stdout); if (gotvfile) { fputs(VIEWSTR, stdout); fprintview(&ourview, stdout); putc('\n', stdout); } if (pixaspect < .99 | pixaspect > 1.01) fputaspect(pixaspect, stdout); if (ourexp > 0) ourexp *= rexpadj; else ourexp = rexpadj; if (ourexp < .995 | ourexp > 1.005) fputexpos(ourexp, stdout); fputformat(COLRFMT, stdout); putc('\n', stdout); /* write picture */ writepicture(); /* write z file */ if (zfile != NULL) writedistance(zfile); exit(0); userr: fprintf(stderr, "Usage: %s [view opts][-t eps][-z zout][-e spec][-a|-q][-fT][-n] pfile zspec ..\n", progname); exit(1); #undef check } headline(s) /* process header string */ char *s; { char fmt[32]; if (isheadid(s)) return; if (formatval(fmt, s)) { wrongformat = strcmp(fmt, COLRFMT); return; } putc('\t', stdout); fputs(s, stdout); if (isexpos(s)) { theirexp *= exposval(s); return; } if (isview(s) && sscanview(&theirview, s) > 0) gotview++; } addpicture(pfile, zspec) /* add picture to output */ char *pfile, *zspec; { FILE *pfp; int zfd; char *err; COLR *scanin; float *zin; struct position *plast; struct bound *xlim, ylim; int y; /* open picture file */ if ((pfp = fopen(pfile, "r")) == NULL) syserror(pfile); /* get header with exposure and view */ theirexp = 1.0; gotview = 0; printf("%s:\n", pfile); getheader(pfp, headline, NULL); if (wrongformat || !gotview || !fgetsresolu(&tresolu, pfp)) { fprintf(stderr, "%s: picture format error\n", pfile); exit(1); } if (ourexp <= 0) ourexp = theirexp; else if (ABS(theirexp-ourexp) > .01*ourexp) fprintf(stderr, "%s: different exposure (warning)\n", pfile); if (err = setview(&theirview)) { fprintf(stderr, "%s: %s\n", pfile, err); exit(1); } /* compute transformation */ hasmatrix = pixform(theirs2ours, &theirview, &ourview); /* get z specification or file */ zin = (float *)malloc(scanlen(&tresolu)*sizeof(float)); if (zin == NULL) syserror(progname); if ((zfd = open(zspec, O_RDONLY)) == -1) { double zvalue; register int x; if (!isflt(zspec) || (zvalue = atof(zspec)) <= 0.0) syserror(zspec); for (x = scanlen(&tresolu); x-- > 0; ) zin[x] = zvalue; } /* compute transferrable perimeter */ xlim = (struct bound *)malloc(numscans(&tresolu)*sizeof(struct bound)); if (xlim == NULL) syserror(progname); if (!getperim(xlim, &ylim, zin, zfd)) { /* overlapping area? */ free((char *)zin); free((char *)xlim); if (zfd != -1) close(zfd); fclose(pfp); return; } /* allocate scanlines */ scanin = (COLR *)malloc(scanlen(&tresolu)*sizeof(COLR)); plast = (struct position *)calloc(scanlen(&tresolu), sizeof(struct position)); if (scanin == NULL | plast == NULL) syserror(progname); /* skip to starting point */ for (y = 0; y < ylim.min; y++) if (freadcolrs(scanin, scanlen(&tresolu), pfp) < 0) { fprintf(stderr, "%s: read error\n", pfile); exit(1); } if (zfd != -1 && lseek(zfd, (long)ylim.min*scanlen(&tresolu)*sizeof(float), 0) < 0) syserror(zspec); /* load image */ for (y = ylim.min; y <= ylim.max; y++) { if (freadcolrs(scanin, scanlen(&tresolu), pfp) < 0) { fprintf(stderr, "%s: read error\n", pfile); exit(1); } if (zfd != -1 && read(zfd, (char *)zin, scanlen(&tresolu)*sizeof(float)) < scanlen(&tresolu)*sizeof(float)) syserror(zspec); addscanline(xlim+y, y, scanin, zin, plast); } /* clean up */ free((char *)xlim); free((char *)scanin); free((char *)zin); free((char *)plast); fclose(pfp); if (zfd != -1) close(zfd); } pixform(xfmat, vw1, vw2) /* compute view1 to view2 matrix */ register MAT4 xfmat; register VIEW *vw1, *vw2; { double m4t[4][4]; if (vw1->type != VT_PER && vw1->type != VT_PAR) return(0); if (vw2->type != VT_PER && vw2->type != VT_PAR) return(0); setident4(xfmat); xfmat[0][0] = vw1->hvec[0]; xfmat[0][1] = vw1->hvec[1]; xfmat[0][2] = vw1->hvec[2]; xfmat[1][0] = vw1->vvec[0]; xfmat[1][1] = vw1->vvec[1]; xfmat[1][2] = vw1->vvec[2]; xfmat[2][0] = vw1->vdir[0]; xfmat[2][1] = vw1->vdir[1]; xfmat[2][2] = vw1->vdir[2]; xfmat[3][0] = vw1->vp[0]; xfmat[3][1] = vw1->vp[1]; xfmat[3][2] = vw1->vp[2]; setident4(m4t); m4t[0][0] = vw2->hvec[0]/vw2->hn2; m4t[1][0] = vw2->hvec[1]/vw2->hn2; m4t[2][0] = vw2->hvec[2]/vw2->hn2; m4t[3][0] = -DOT(vw2->vp,vw2->hvec)/vw2->hn2; m4t[0][1] = vw2->vvec[0]/vw2->vn2; m4t[1][1] = vw2->vvec[1]/vw2->vn2; m4t[2][1] = vw2->vvec[2]/vw2->vn2; m4t[3][1] = -DOT(vw2->vp,vw2->vvec)/vw2->vn2; m4t[0][2] = vw2->vdir[0]; m4t[1][2] = vw2->vdir[1]; m4t[2][2] = vw2->vdir[2]; m4t[3][2] = -DOT(vw2->vp,vw2->vdir); multmat4(xfmat, xfmat, m4t); return(1); } addscanline(xl, y, pline, zline, lasty) /* add scanline to output */ struct bound *xl; int y; COLR *pline; float *zline; struct position *lasty; /* input/output */ { FVECT pos; struct position lastx, newpos; double wt; register int x; lastx.z = 0; for (x = xl->max; x >= xl->min; x--) { pix2loc(pos, &tresolu, x, y); pos[2] = zline[x]; if ((wt = movepixel(pos)) <= FTINY) { lasty[x].z = lastx.z = 0; /* mark invalid */ continue; } /* add pixel to our image */ newpos.x = pos[0] * hresolu; newpos.y = pos[1] * vresolu; newpos.z = zline[x]; addpixel(&newpos, &lastx, &lasty[x], pline[x], wt, pos[2]); lasty[x].x = lastx.x = newpos.x; lasty[x].y = lastx.y = newpos.y; lasty[x].z = lastx.z = newpos.z; } } addpixel(p0, p1, p2, pix, w, z) /* fill in pixel parallelogram */ struct position *p0, *p1, *p2; COLR pix; double w; double z; { double zt = 2.*zeps*p0->z; /* threshold */ COLOR pval; /* converted+weighted pixel */ int s1x, s1y, s2x, s2y; /* step sizes */ int l1, l2, c1, c2; /* side lengths and counters */ int p1isy; /* p0p1 along y? */ int x1, y1; /* p1 position */ register int x, y; /* final position */ /* compute vector p0p1 */ if (fillo&F_FORE && ABS(p1->z-p0->z) <= zt) { s1x = p1->x - p0->x; s1y = p1->y - p0->y; l1 = ABS(s1x); if (p1isy = (ABS(s1y) > l1)) l1 = ABS(s1y); else if (l1 < 1) l1 = 1; } else { l1 = s1x = s1y = 1; p1isy = -1; } /* compute vector p0p2 */ if (fillo&F_FORE && ABS(p2->z-p0->z) <= zt) { s2x = p2->x - p0->x; s2y = p2->y - p0->y; if (p1isy == 1) l2 = ABS(s2x); else { l2 = ABS(s2y); if (p1isy != 0 && ABS(s2x) > l2) l2 = ABS(s2x); } if (l2 < 1) l2 = 1; } else l2 = s2x = s2y = 1; /* fill the parallelogram */ if (averaging) { colr_color(pval, pix); scalecolor(pval, w); } for (c1 = l1; c1-- > 0; ) { x1 = p0->x + c1*s1x/l1; y1 = p0->y + c1*s1y/l1; for (c2 = l2; c2-- > 0; ) { x = x1 + c2*s2x/l2; if (x < 0 || x >= hresolu) continue; y = y1 + c2*s2y/l2; if (y < 0 || y >= vresolu) continue; if (averaging) { if (zscan(y)[x] <= 0 || zscan(y)[x]-z > zeps*zscan(y)[x]) { copycolor(sscan(y)[x], pval); wscan(y)[x] = w; zscan(y)[x] = z; } else if (z-zscan(y)[x] <= zeps*zscan(y)[x]) { addcolor(sscan(y)[x], pval); wscan(y)[x] += w; } } else if (zscan(y)[x] <= 0 || zscan(y)[x]-z > zeps*zscan(y)[x]) { copycolr(pscan(y)[x], pix); zscan(y)[x] = z; } } } } double movepixel(pos) /* reposition image point */ register FVECT pos; { FVECT pt, tdir, odir; double d; register int i; if (pos[2] <= 0) /* empty pixel */ return(0); if (!averaging && hasmatrix) { pos[0] += theirview.hoff - .5; pos[1] += theirview.voff - .5; if (theirview.type == VT_PER) { if (normdist) /* adjust distance */ pos[2] /= sqrt(1. + pos[0]*pos[0]*theirview.hn2 + pos[1]*pos[1]*theirview.vn2); pos[0] *= pos[2]; pos[1] *= pos[2]; } multp3(pos, pos, theirs2ours); if (pos[2] <= 0) return(0); if (ourview.type == VT_PER) { pos[0] /= pos[2]; pos[1] /= pos[2]; } pos[0] += .5 - ourview.hoff; pos[1] += .5 - ourview.voff; } else { if (viewray(pt, tdir, &theirview, pos[0], pos[1]) < -FTINY) return(0); if (!normdist && theirview.type == VT_PER) /* adjust */ pos[2] *= sqrt(1. + pos[0]*pos[0]*theirview.hn2 + pos[1]*pos[1]*theirview.vn2); pt[0] += tdir[0]*pos[2]; pt[1] += tdir[1]*pos[2]; pt[2] += tdir[2]*pos[2]; viewloc(pos, &ourview, pt); if (pos[2] <= 0) return(0); } if (pos[0] < 0 || pos[0] >= 1-FTINY || pos[1] < 0 || pos[1] >= 1-FTINY) return(0); if (!averaging) return(1); if (ourview.type == VT_PAR) /* compute our direction */ VCOPY(odir, ourview.vdir); else for (i = 0; i < 3; i++) odir[i] = (pt[i] - ourview.vp[i])/pos[2]; d = DOT(odir,tdir); /* compute pixel weight */ if (d >= 1.-1./MAXWT/MAXWT) return(MAXWT); /* clip to maximum weight */ return(1./sqrt(1.-d)); } getperim(xl, yl, zline, zfd) /* compute overlapping image area */ register struct bound *xl; struct bound *yl; float *zline; int zfd; { int step; FVECT pos; register int x, y; /* set up step size */ if (scanlen(&tresolu) < numscans(&tresolu)) step = scanlen(&tresolu)/NSTEPS; else step = numscans(&tresolu)/NSTEPS; if (step < MINSTEP) { /* not worth cropping? */ yl->min = 0; yl->max = numscans(&tresolu) - 1; x = scanlen(&tresolu) - 1; for (y = numscans(&tresolu); y--; ) { xl[y].min = 0; xl[y].max = x; } return(1); } yl->min = 32000; yl->max = 0; /* search for points on image */ for (y = step - 1; y < numscans(&tresolu); y += step) { if (zfd != -1) { if (lseek(zfd, (long)y*scanlen(&tresolu)*sizeof(float), 0) < 0) syserror("lseek"); if (read(zfd, (char *)zline, scanlen(&tresolu)*sizeof(float)) < scanlen(&tresolu)*sizeof(float)) syserror("read"); } xl[y].min = 32000; xl[y].max = 0; /* x max */ for (x = scanlen(&tresolu); (x -= step) > 0; ) { pix2loc(pos, &tresolu, x, y); pos[2] = zline[x]; if (movepixel(pos) > FTINY) { xl[y].max = x + step - 1; xl[y].min = x - step + 1; /* x min */ if (xl[y].min < 0) xl[y].min = 0; for (x = step - 1; x < xl[y].max; x += step) { pix2loc(pos, &tresolu, x, y); pos[2] = zline[x]; if (movepixel(pos) > FTINY) { xl[y].min = x - step + 1; break; } } if (y < yl->min) /* y limits */ yl->min = y - step + 1; yl->max = y + step - 1; break; } } /* fill in between */ if (y < step) { xl[y-1].min = xl[y].min; xl[y-1].max = xl[y].max; } else { if (xl[y].min < xl[y-step].min) xl[y-1].min = xl[y].min; else xl[y-1].min = xl[y-step].min; if (xl[y].max > xl[y-step].max) xl[y-1].max = xl[y].max; else xl[y-1].max = xl[y-step].max; } for (x = 2; x < step; x++) copystruct(xl+y-x, xl+y-1); } if (yl->max >= numscans(&tresolu)) yl->max = numscans(&tresolu) - 1; y -= step; for (x = numscans(&tresolu) - 1; x > y; x--) /* fill bottom rows */ copystruct(xl+x, xl+y); return(yl->max >= yl->min); } backpicture(fill, samp) /* background fill algorithm */ int (*fill)(); int samp; { int *yback, xback; int y; register int x, i; /* get back buffer */ yback = (int *)malloc(hresolu*sizeof(int)); if (yback == NULL) syserror(progname); for (x = 0; x < hresolu; x++) yback[x] = -2; /* * Xback and yback are the pixel locations of suitable * background values in each direction. * A value of -2 means unassigned, and -1 means * that there is no suitable background in this direction. */ /* fill image */ for (y = 0; y < vresolu; y++) { xback = -2; for (x = 0; x < hresolu; x++) if (zscan(y)[x] <= 0) { /* empty pixel */ /* * First, find background from above or below. * (farthest assigned pixel) */ if (yback[x] == -2) { for (i = y+1; i < vresolu; i++) if (zscan(i)[x] > 0) break; if (i < vresolu && (y <= 0 || zscan(y-1)[x] < zscan(i)[x])) yback[x] = i; else yback[x] = y-1; } /* * Next, find background from left or right. */ if (xback == -2) { for (i = x+1; i < hresolu; i++) if (zscan(y)[i] > 0) break; if (i < hresolu && (x <= 0 || zscan(y)[x-1] < zscan(y)[i])) xback = i; else xback = x-1; } /* * If we have no background for this pixel, * use the given fill function. */ if (xback < 0 && yback[x] < 0) goto fillit; /* * Compare, and use the background that is * farther, unless one of them is next to us. * If the background is too distant, call * the fill function. */ if ( yback[x] < 0 || (xback >= 0 && ABS(x-xback) <= 1) || ( ABS(y-yback[x]) > 1 && zscan(yback[x])[x] < zscan(y)[xback] ) ) { if (samp > 0 && ABS(x-xback) >= samp) goto fillit; if (averaging) { copycolor(sscan(y)[x], sscan(y)[xback]); wscan(y)[x] = wscan(y)[xback]; } else copycolr(pscan(y)[x], pscan(y)[xback]); zscan(y)[x] = zscan(y)[xback]; } else { if (samp > 0 && ABS(y-yback[x]) > samp) goto fillit; if (averaging) { copycolor(sscan(y)[x], sscan(yback[x])[x]); wscan(y)[x] = wscan(yback[x])[x]; } else copycolr(pscan(y)[x], pscan(yback[x])[x]); zscan(y)[x] = zscan(yback[x])[x]; } continue; fillit: (*fill)(x,y); if (fill == rcalfill) { /* use it */ clearqueue(); xback = x; yback[x] = y; } } else { /* full pixel */ yback[x] = -2; xback = -2; } } free((char *)yback); } fillpicture(fill) /* paint in empty pixels using fill */ int (*fill)(); { register int x, y; for (y = 0; y < vresolu; y++) for (x = 0; x < hresolu; x++) if (zscan(y)[x] <= 0) (*fill)(x,y); } clipaft() /* perform aft clipping as indicated */ { register int x, y; double tstdist; double yzn2, vx; if (ourview.vaft <= FTINY) return; tstdist = ourview.vaft - ourview.vfore; for (y = 0; y < vresolu; y++) { if (ourview.type == VT_PER) { /* adjust distance */ yzn2 = (y+.5)/vresolu + ourview.voff - .5; yzn2 = 1. + yzn2*yzn2*ourview.vn2; tstdist = (ourview.vaft - ourview.vfore)*sqrt(yzn2); } for (x = 0; x < hresolu; x++) if (zscan(y)[x] > tstdist) { if (ourview.type == VT_PER) { vx = (x+.5)/hresolu + ourview.hoff - .5; if (zscan(y)[x] <= (ourview.vaft - ourview.vfore) * sqrt(vx*vx*ourview.hn2 + yzn2)) continue; } if (averaging) bzero(sscan(y)[x], sizeof(COLOR)); else bzero(pscan(y)[x], sizeof(COLR)); zscan(y)[x] = 0.0; } } } writepicture() /* write out picture (alters buffer) */ { int y; register int x; double d; fprtresolu(hresolu, vresolu, stdout); for (y = vresolu-1; y >= 0; y--) if (averaging) { for (x = 0; x < hresolu; x++) { /* average pixels */ d = rexpadj/wscan(y)[x]; scalecolor(sscan(y)[x], d); } if (fwritescan(sscan(y), hresolu, stdout) < 0) syserror(progname); } else { if (expadj) shiftcolrs(pscan(y), hresolu, expadj); if (fwritecolrs(pscan(y), hresolu, stdout) < 0) syserror(progname); } } writedistance(fname) /* write out z file */ char *fname; { int donorm = normdist && ourview.type == VT_PER && !averaging && hasmatrix; int fd; int y; float *zout; if ((fd = open(fname, O_WRONLY|O_CREAT|O_TRUNC, 0666)) == -1) syserror(fname); if (donorm && (zout = (float *)malloc(hresolu*sizeof(float))) == NULL) syserror(progname); for (y = vresolu-1; y >= 0; y--) { if (donorm) { double vx, yzn2; register int x; yzn2 = (y+.5)/vresolu + ourview.voff - .5; yzn2 = 1. + yzn2*yzn2*ourview.vn2; for (x = 0; x < hresolu; x++) { vx = (x+.5)/hresolu + ourview.hoff - .5; zout[x] = zscan(y)[x] * sqrt(vx*vx*ourview.hn2 + yzn2); } } else zout = zscan(y); if (write(fd, (char *)zout, hresolu*sizeof(float)) < hresolu*sizeof(float)) syserror(fname); } if (donorm) free((char *)zout); close(fd); } backfill(x, y) /* fill pixel with background */ int x, y; { if (averaging) { copycolor(sscan(y)[x], backcolor); wscan(y)[x] = 1; } else copycolr(pscan(y)[x], backcolr); zscan(y)[x] = backz; } calstart(prog, args) /* start fill calculation */ char *prog, *args; { char combuf[512]; char *argv[64]; int rval; register char **wp, *cp; if (childpid != -1) { fprintf(stderr, "%s: too many calculations\n", progname); exit(1); } strcpy(combuf, prog); strcat(combuf, args); cp = combuf; wp = argv; for ( ; ; ) { while (isspace(*cp)) /* nullify spaces */ *cp++ = '\0'; if (!*cp) /* all done? */ break; *wp++ = cp; /* add argument to list */ while (*++cp && !isspace(*cp)) ; } *wp = NULL; /* start process */ if ((rval = open_process(PDesc, argv)) < 0) syserror(progname); if (rval == 0) { fprintf(stderr, "%s: command not found\n", argv[0]); exit(1); } packsiz = rval/(6*sizeof(float)) - 1; if (packsiz > PACKSIZ) packsiz = PACKSIZ; queuesiz = 0; } caldone() /* done with calculation */ { if (childpid == -1) return; clearqueue(); close_process(PDesc); childpid = -1; } rcalfill(x, y) /* fill with ray-calculated pixel */ int x, y; { if (queuesiz >= packsiz) /* flush queue if needed */ clearqueue(); /* add position to queue */ queue[queuesiz][0] = x; queue[queuesiz][1] = y; queuesiz++; } clearqueue() /* process queue */ { FVECT orig, dir; float fbuf[6*(PACKSIZ+1)]; register float *fbp; register int i; if (queuesiz == 0) return; fbp = fbuf; for (i = 0; i < queuesiz; i++) { viewray(orig, dir, &ourview, (queue[i][0]+.5)/hresolu, (queue[i][1]+.5)/vresolu); *fbp++ = orig[0]; *fbp++ = orig[1]; *fbp++ = orig[2]; *fbp++ = dir[0]; *fbp++ = dir[1]; *fbp++ = dir[2]; } /* mark end and get results */ bzero((char *)fbp, 6*sizeof(float)); if (process(PDesc, fbuf, fbuf, 4*sizeof(float)*queuesiz, 6*sizeof(float)*(queuesiz+1)) != 4*sizeof(float)*queuesiz) { fprintf(stderr, "%s: error reading from rtrace process\n", progname); exit(1); } fbp = fbuf; for (i = 0; i < queuesiz; i++) { if (ourexp > 0 && ourexp != 1.0) { fbp[0] *= ourexp; fbp[1] *= ourexp; fbp[2] *= ourexp; } if (averaging) { setcolor(sscan(queue[i][1])[queue[i][0]], fbp[0], fbp[1], fbp[2]); wscan(queue[i][1])[queue[i][0]] = 1; } else setcolr(pscan(queue[i][1])[queue[i][0]], fbp[0], fbp[1], fbp[2]); zscan(queue[i][1])[queue[i][0]] = fbp[3]; fbp += 4; } queuesiz = 0; } syserror(s) /* report error and exit */ char *s; { perror(s); exit(1); }