1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: pcond4.c,v 3.20 2015/08/21 05:48:28 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* Routines for veiling glare and loss of acuity. |
6 |
*/ |
7 |
|
8 |
#include "pcond.h" |
9 |
|
10 |
/************** VEILING STUFF *****************/ |
11 |
|
12 |
#define VADAPT 0.08 /* fraction of adaptation from veil */ |
13 |
|
14 |
static COLOR *veilimg = NULL; /* veiling image */ |
15 |
|
16 |
#define veilscan(y) (veilimg+(y)*fvxr) |
17 |
|
18 |
static float (*raydir)[3] = NULL; /* ray direction for each pixel */ |
19 |
|
20 |
#define rdirscan(y) (raydir+(y)*fvxr) |
21 |
|
22 |
static void compraydir(void); |
23 |
#if ADJ_VEIL |
24 |
static void smoothveil(void); |
25 |
#endif |
26 |
|
27 |
|
28 |
static void |
29 |
compraydir(void) /* compute ray directions */ |
30 |
{ |
31 |
FVECT rorg, rdir; |
32 |
double h, v; |
33 |
int x, y; |
34 |
|
35 |
if (raydir != NULL) /* already done? */ |
36 |
return; |
37 |
raydir = (float (*)[3])malloc(fvxr*fvyr*3*sizeof(float)); |
38 |
if (raydir == NULL) |
39 |
syserror("malloc"); |
40 |
|
41 |
for (y = 0; y < fvyr; y++) { |
42 |
switch (inpres.rt) { |
43 |
case YMAJOR: case YMAJOR|XDECR: |
44 |
v = (y+.5)/fvyr; break; |
45 |
case YMAJOR|YDECR: case YMAJOR|YDECR|XDECR: |
46 |
v = 1. - (y+.5)/fvyr; break; |
47 |
case 0: case YDECR: |
48 |
h = (y+.5)/fvyr; break; |
49 |
case XDECR: case XDECR|YDECR: |
50 |
h = 1. - (y+.5)/fvyr; break; |
51 |
} |
52 |
for (x = 0; x < fvxr; x++) { |
53 |
switch (inpres.rt) { |
54 |
case YMAJOR: case YMAJOR|YDECR: |
55 |
h = (x+.5)/fvxr; break; |
56 |
case YMAJOR|XDECR: case YMAJOR|XDECR|YDECR: |
57 |
h = 1. - (x+.5)/fvxr; break; |
58 |
case 0: case XDECR: |
59 |
v = (x+.5)/fvxr; break; |
60 |
case YDECR: case YDECR|XDECR: |
61 |
v = 1. - (x+.5)/fvxr; break; |
62 |
} |
63 |
if (viewray(rorg, rdir, &ourview, h, v) |
64 |
>= -FTINY) { |
65 |
rdirscan(y)[x][0] = rdir[0]; |
66 |
rdirscan(y)[x][1] = rdir[1]; |
67 |
rdirscan(y)[x][2] = rdir[2]; |
68 |
} else { |
69 |
rdirscan(y)[x][0] = |
70 |
rdirscan(y)[x][1] = |
71 |
rdirscan(y)[x][2] = 0.0; |
72 |
} |
73 |
} |
74 |
} |
75 |
} |
76 |
|
77 |
|
78 |
void |
79 |
compveil(void) /* compute veiling image */ |
80 |
{ |
81 |
double t2, t2sum; |
82 |
COLOR ctmp, vsum; |
83 |
int px, py; |
84 |
int x, y; |
85 |
|
86 |
if (veilimg != NULL) /* already done? */ |
87 |
return; |
88 |
/* compute ray directions */ |
89 |
compraydir(); |
90 |
/* compute veil image */ |
91 |
veilimg = (COLOR *)malloc(fvxr*fvyr*sizeof(COLOR)); |
92 |
if (veilimg == NULL) |
93 |
syserror("malloc"); |
94 |
for (py = 0; py < fvyr; py++) |
95 |
for (px = 0; px < fvxr; px++) { |
96 |
t2sum = 0.; |
97 |
setcolor(vsum, 0., 0., 0.); |
98 |
for (y = 0; y < fvyr; y++) |
99 |
for (x = 0; x < fvxr; x++) { |
100 |
if (x == px && y == py) continue; |
101 |
t2 = DOT(rdirscan(py)[px], |
102 |
rdirscan(y)[x]); |
103 |
if (t2 <= FTINY) continue; |
104 |
/* use approximation instead |
105 |
t3 = acos(t2); |
106 |
t2 = t2/(t3*t3); |
107 |
*/ |
108 |
t2 *= .5 / (1. - t2); |
109 |
copycolor(ctmp, fovscan(y)[x]); |
110 |
scalecolor(ctmp, t2); |
111 |
addcolor(vsum, ctmp); |
112 |
t2sum += t2; |
113 |
} |
114 |
/* VADAPT of original is subtracted in addveil() */ |
115 |
if (t2sum > FTINY) |
116 |
scalecolor(vsum, VADAPT/t2sum); |
117 |
copycolor(veilscan(py)[px], vsum); |
118 |
} |
119 |
/* modify FOV sample image */ |
120 |
for (y = 0; y < fvyr; y++) |
121 |
for (x = 0; x < fvxr; x++) { |
122 |
scalecolor(fovscan(y)[x], 1.-VADAPT); |
123 |
addcolor(fovscan(y)[x], veilscan(y)[x]); |
124 |
} |
125 |
comphist(); /* recompute histogram */ |
126 |
} |
127 |
|
128 |
|
129 |
#if ADJ_VEIL |
130 |
/* |
131 |
* The following veil adjustment was added to compensate for |
132 |
* the fact that contrast reduction gets confused with veil |
133 |
* in the human visual system. Therefore, we reduce the |
134 |
* veil in portions of the image where our mapping has |
135 |
* already reduced contrast below the target value. |
136 |
* This gets called after the intial veil has been computed |
137 |
* and added to the foveal image, and the mapping has been |
138 |
* determined. |
139 |
*/ |
140 |
void |
141 |
adjveil(void) /* adjust veil image */ |
142 |
{ |
143 |
float *crfptr = crfimg; |
144 |
COLOR *fovptr = fovimg; |
145 |
COLOR *veilptr = veilimg; |
146 |
double s2nits = 1./inpexp; |
147 |
double vl, vl2, fovl, vlsum; |
148 |
double deltavc[3]; |
149 |
int i, j; |
150 |
|
151 |
if (lumf == rgblum) |
152 |
s2nits *= WHTEFFICACY; |
153 |
|
154 |
for (i = fvxr*fvyr; i--; crfptr++, fovptr++, veilptr++) { |
155 |
if (crfptr[0] >= 0.95) |
156 |
continue; |
157 |
vl = plum(veilptr[0]); |
158 |
fovl = (plum(fovptr[0]) - vl) * (1./(1.-VADAPT)); |
159 |
if (vl <= 0.05*fovl) |
160 |
continue; |
161 |
vlsum = vl; |
162 |
for (j = 2; j < 11; j++) { |
163 |
vlsum += crfptr[0]*vl - (1.0 - crfptr[0])*fovl; |
164 |
vl2 = vlsum / (double)j; |
165 |
if (vl2 < 0.0) |
166 |
vl2 = 0.0; |
167 |
crfptr[0] = crfactor(fovl + vl2); |
168 |
} |
169 |
/* desaturation code causes color fringes at this level */ |
170 |
for (j = 3; j--; ) { |
171 |
double vc = colval(veilptr[0],j); |
172 |
double fovc = (colval(fovptr[0],j) - vc) * |
173 |
(1./(1.-VADAPT)); |
174 |
deltavc[j] = (1.-crfptr[0])*(fovl/s2nits - fovc); |
175 |
if (vc + deltavc[j] < 0.0) |
176 |
break; |
177 |
} |
178 |
if (j < 0) |
179 |
addcolor(veilptr[0], deltavc); |
180 |
else |
181 |
scalecolor(veilptr[0], vl2/vl); |
182 |
} |
183 |
smoothveil(); /* smooth our result */ |
184 |
} |
185 |
|
186 |
|
187 |
static void |
188 |
smoothveil(void) /* smooth veil image */ |
189 |
{ |
190 |
COLOR *nveilimg; |
191 |
COLOR *ovptr, *nvptr; |
192 |
int x, y, i; |
193 |
|
194 |
nveilimg = (COLOR *)malloc(fvxr*fvyr*sizeof(COLOR)); |
195 |
if (nveilimg == NULL) |
196 |
return; |
197 |
for (y = 1; y < fvyr-1; y++) { |
198 |
ovptr = veilimg + y*fvxr + 1; |
199 |
nvptr = nveilimg + y*fvxr + 1; |
200 |
for (x = 1; x < fvxr-1; x++, ovptr++, nvptr++) |
201 |
for (i = 3; i--; ) |
202 |
nvptr[0][i] = 0.5 * ovptr[0][i] |
203 |
+ (1./12.) * |
204 |
(ovptr[-1][i] + ovptr[-fvxr][i] + |
205 |
ovptr[1][i] + ovptr[fvxr][i]) |
206 |
+ (1./24.) * |
207 |
(ovptr[-fvxr-1][i] + ovptr[-fvxr+1][i] + |
208 |
ovptr[fvxr-1][i] + ovptr[fvxr+1][i]); |
209 |
} |
210 |
ovptr = veilimg + 1; |
211 |
nvptr = nveilimg + 1; |
212 |
for (x = 1; x < fvxr-1; x++, ovptr++, nvptr++) |
213 |
for (i = 3; i--; ) |
214 |
nvptr[0][i] = 0.5 * ovptr[0][i] |
215 |
+ (1./9.) * |
216 |
(ovptr[-1][i] + ovptr[1][i] + ovptr[fvxr][i]) |
217 |
+ (1./12.) * |
218 |
(ovptr[fvxr-1][i] + ovptr[fvxr+1][i]); |
219 |
ovptr = veilimg + (fvyr-1)*fvxr + 1; |
220 |
nvptr = nveilimg + (fvyr-1)*fvxr + 1; |
221 |
for (x = 1; x < fvxr-1; x++, ovptr++, nvptr++) |
222 |
for (i = 3; i--; ) |
223 |
nvptr[0][i] = 0.5 * ovptr[0][i] |
224 |
+ (1./9.) * |
225 |
(ovptr[-1][i] + ovptr[1][i] + ovptr[-fvxr][i]) |
226 |
+ (1./12.) * |
227 |
(ovptr[-fvxr-1][i] + ovptr[-fvxr+1][i]); |
228 |
ovptr = veilimg + fvxr; |
229 |
nvptr = nveilimg + fvxr; |
230 |
for (y = 1; y < fvyr-1; y++, ovptr += fvxr, nvptr += fvxr) |
231 |
for (i = 3; i--; ) |
232 |
nvptr[0][i] = 0.5 * ovptr[0][i] |
233 |
+ (1./9.) * |
234 |
(ovptr[-fvxr][i] + ovptr[1][i] + ovptr[fvxr][i]) |
235 |
+ (1./12.) * |
236 |
(ovptr[-fvxr+1][i] + ovptr[fvxr+1][i]); |
237 |
ovptr = veilimg + fvxr - 1; |
238 |
nvptr = nveilimg + fvxr - 1; |
239 |
for (y = 1; y < fvyr-1; y++, ovptr += fvxr, nvptr += fvxr) |
240 |
for (i = 3; i--; ) |
241 |
nvptr[0][i] = 0.5 * ovptr[0][i] |
242 |
+ (1./9.) * |
243 |
(ovptr[-fvxr][i] + ovptr[-1][i] + ovptr[fvxr][i]) |
244 |
+ (1./12.) * |
245 |
(ovptr[-fvxr-1][i] + ovptr[fvxr-1][i]); |
246 |
for (i = 3; i--; ) { |
247 |
nveilimg[0][i] = veilimg[0][i]; |
248 |
nveilimg[fvxr-1][i] = veilimg[fvxr-1][i]; |
249 |
nveilimg[(fvyr-1)*fvxr][i] = veilimg[(fvyr-1)*fvxr][i]; |
250 |
nveilimg[fvyr*fvxr-1][i] = veilimg[fvyr*fvxr-1][i]; |
251 |
} |
252 |
free((void *)veilimg); |
253 |
veilimg = nveilimg; |
254 |
} |
255 |
#endif |
256 |
|
257 |
void |
258 |
addveil( /* add veil to scanline */ |
259 |
COLOR *sl, |
260 |
int y |
261 |
) |
262 |
{ |
263 |
int vx, vy; |
264 |
double dx, dy; |
265 |
double lv, uv; |
266 |
int x, i; |
267 |
|
268 |
vy = dy = (y+.5)/numscans(&inpres)*fvyr - .5; |
269 |
while (vy >= fvyr-1) vy--; |
270 |
dy -= (double)vy; |
271 |
for (x = 0; x < scanlen(&inpres); x++) { |
272 |
vx = dx = (x+.5)/scanlen(&inpres)*fvxr - .5; |
273 |
while (vx >= fvxr-1) vx--; |
274 |
dx -= (double)vx; |
275 |
for (i = 0; i < 3; i++) { |
276 |
lv = (1.-dy)*colval(veilscan(vy)[vx],i) + |
277 |
dy*colval(veilscan(vy+1)[vx],i); |
278 |
uv = (1.-dy)*colval(veilscan(vy)[vx+1],i) + |
279 |
dy*colval(veilscan(vy+1)[vx+1],i); |
280 |
colval(sl[x],i) = (1.-VADAPT)*colval(sl[x],i) + |
281 |
(1.-dx)*lv + dx*uv; |
282 |
} |
283 |
} |
284 |
} |
285 |
|
286 |
|
287 |
/****************** ACUITY STUFF *******************/ |
288 |
|
289 |
typedef struct { |
290 |
short sampe; /* sample area size (exponent of 2) */ |
291 |
short nscans; /* number of scanlines in this bar */ |
292 |
int len; /* individual scanline length */ |
293 |
int nread; /* number of scanlines loaded */ |
294 |
COLOR *sdata; /* scanbar data */ |
295 |
} SCANBAR; |
296 |
|
297 |
#define bscan(sb,y) ((COLOR *)(sb)->sdata+((y)%(sb)->nscans)*(sb)->len) |
298 |
|
299 |
SCANBAR *rootbar; /* root scan bar (lowest resolution) */ |
300 |
|
301 |
float *inpacuD = NULL; /* input acuity data (cycles/degree) */ |
302 |
|
303 |
#define tsampr(x,y) inpacuD[(y)*fvxr+(x)] |
304 |
|
305 |
static COLOR * getascan(SCANBAR *sb, int y); |
306 |
static void acusample(COLOR col, int x, int y, double sr); |
307 |
static void ascanval(COLOR col, int x, int y, SCANBAR *sb); |
308 |
static SCANBAR *sballoc(int se, int ns, int sl); |
309 |
|
310 |
double |
311 |
hacuity( /* return visual acuity in cycles/degree */ |
312 |
double La |
313 |
) |
314 |
{ |
315 |
/* functional fit */ |
316 |
return(17.25*atan(1.4*log10(La) + 0.35) + 25.72); |
317 |
} |
318 |
|
319 |
|
320 |
static COLOR * |
321 |
getascan( /* find/read scanline y for scanbar sb */ |
322 |
SCANBAR *sb, |
323 |
int y |
324 |
) |
325 |
{ |
326 |
COLOR *sl0, *sl1, *mysl; |
327 |
int i; |
328 |
|
329 |
if (y < sb->nread - sb->nscans) /* too far back? */ |
330 |
return(NULL); |
331 |
for ( ; y >= sb->nread; sb->nread++) { /* read as necessary */ |
332 |
mysl = bscan(sb, sb->nread); |
333 |
if (sb->sampe == 0) { |
334 |
if (fread2scan(mysl, sb->len, infp, NCSAMP, WLPART) < 0) { |
335 |
fprintf(stderr, "%s: %s: scanline read error\n", |
336 |
progname, infn); |
337 |
exit(1); |
338 |
} |
339 |
} else { |
340 |
sl0 = getascan(sb+1, 2*y); |
341 |
if (sl0 == NULL) |
342 |
return(NULL); |
343 |
sl1 = getascan(sb+1, 2*y+1); |
344 |
for (i = 0; i < sb->len; i++) { |
345 |
copycolor(mysl[i], sl0[2*i]); |
346 |
addcolor(mysl[i], sl0[2*i+1]); |
347 |
addcolor(mysl[i], sl1[2*i]); |
348 |
addcolor(mysl[i], sl1[2*i+1]); |
349 |
scalecolor(mysl[i], 0.25); |
350 |
} |
351 |
} |
352 |
} |
353 |
return(bscan(sb, y)); |
354 |
} |
355 |
|
356 |
|
357 |
void |
358 |
acuscan( /* get acuity-sampled scanline */ |
359 |
COLOR *scln, |
360 |
int y |
361 |
) |
362 |
{ |
363 |
double sr; |
364 |
double dx, dy; |
365 |
int ix, iy; |
366 |
int x; |
367 |
|
368 |
if (inpacuD == NULL) |
369 |
return; |
370 |
/* compute foveal y position */ |
371 |
iy = dy = (y+.5)/numscans(&inpres)*fvyr - .5; |
372 |
while (iy >= fvyr-1) iy--; |
373 |
dy -= (double)iy; |
374 |
for (x = 0; x < scanlen(&inpres); x++) { |
375 |
/* compute foveal x position */ |
376 |
ix = dx = (x+.5)/scanlen(&inpres)*fvxr - .5; |
377 |
while (ix >= fvxr-1) ix--; |
378 |
dx -= (double)ix; |
379 |
/* interpolate sample rate */ |
380 |
sr = (1.-dy)*((1.-dx)*tsampr(ix,iy) + dx*tsampr(ix+1,iy)) + |
381 |
dy*((1.-dx)*tsampr(ix,iy+1) + dx*tsampr(ix+1,iy+1)); |
382 |
|
383 |
acusample(scln[x], x, y, sr); /* compute sample */ |
384 |
} |
385 |
} |
386 |
|
387 |
|
388 |
static void |
389 |
acusample( /* interpolate sample at (x,y) using rate sr */ |
390 |
COLOR col, |
391 |
int x, |
392 |
int y, |
393 |
double sr |
394 |
) |
395 |
{ |
396 |
COLOR c1; |
397 |
double d; |
398 |
SCANBAR *sb0; |
399 |
|
400 |
for (sb0 = rootbar; sb0->sampe != 0 && 1<<sb0[1].sampe > sr; sb0++) |
401 |
; |
402 |
ascanval(col, x, y, sb0); |
403 |
if (sb0->sampe == 0) /* don't extrapolate highest */ |
404 |
return; |
405 |
ascanval(c1, x, y, sb0+1); |
406 |
d = ((1<<sb0->sampe) - sr)/(1<<sb0[1].sampe); |
407 |
scalecolor(col, 1.-d); |
408 |
scalecolor(c1, d); |
409 |
addcolor(col, c1); |
410 |
} |
411 |
|
412 |
|
413 |
static void |
414 |
ascanval( /* interpolate scanbar at orig. coords (x,y) */ |
415 |
COLOR col, |
416 |
int x, |
417 |
int y, |
418 |
SCANBAR *sb |
419 |
) |
420 |
{ |
421 |
COLOR *sl0, *sl1, c1, c1y; |
422 |
double dx, dy; |
423 |
int ix, iy; |
424 |
|
425 |
if (sb->sampe == 0) { /* no need to interpolate */ |
426 |
sl0 = getascan(sb, y); |
427 |
copycolor(col, sl0[x]); |
428 |
return; |
429 |
} |
430 |
/* compute coordinates for sb */ |
431 |
ix = dx = (x+.5)/(1<<sb->sampe) - .5; |
432 |
while (ix >= sb->len-1) ix--; |
433 |
dx -= (double)ix; |
434 |
iy = dy = (y+.5)/(1<<sb->sampe) - .5; |
435 |
while (iy >= (numscans(&inpres)>>sb->sampe)-1) iy--; |
436 |
dy -= (double)iy; |
437 |
/* get scanlines */ |
438 |
sl0 = getascan(sb, iy); |
439 |
#ifdef DEBUG |
440 |
if (sl0 == NULL) |
441 |
error(INTERNAL, "cannot backspace in ascanval"); |
442 |
#endif |
443 |
sl1 = getascan(sb, iy+1); |
444 |
/* 2D linear interpolation */ |
445 |
copycolor(col, sl0[ix]); |
446 |
scalecolor(col, 1.-dx); |
447 |
copycolor(c1, sl0[ix+1]); |
448 |
scalecolor(c1, dx); |
449 |
addcolor(col, c1); |
450 |
copycolor(c1y, sl1[ix]); |
451 |
scalecolor(c1y, 1.-dx); |
452 |
copycolor(c1, sl1[ix+1]); |
453 |
scalecolor(c1, dx); |
454 |
addcolor(c1y, c1); |
455 |
scalecolor(col, 1.-dy); |
456 |
scalecolor(c1y, dy); |
457 |
addcolor(col, c1y); |
458 |
for (ix = 0; ix < 3; ix++) /* make sure no negative */ |
459 |
if (colval(col,ix) < 0.) |
460 |
colval(col,ix) = 0.; |
461 |
} |
462 |
|
463 |
|
464 |
static SCANBAR * |
465 |
sballoc( /* allocate scanbar */ |
466 |
int se, /* sampling rate exponent */ |
467 |
int ns, /* number of scanlines */ |
468 |
int sl /* original scanline length */ |
469 |
) |
470 |
{ |
471 |
SCANBAR *sbarr; |
472 |
SCANBAR *sb; |
473 |
|
474 |
sbarr = sb = (SCANBAR *)malloc((se+1)*sizeof(SCANBAR)); |
475 |
if (sb == NULL) |
476 |
syserror("malloc"); |
477 |
do { |
478 |
sb->len = sl>>se; |
479 |
if (sb->len <= 0) |
480 |
continue; |
481 |
sb->sampe = se; |
482 |
sb->nscans = ns; |
483 |
sb->sdata = (COLOR *)malloc(sb->len*ns*sizeof(COLOR)); |
484 |
if (sb->sdata == NULL) |
485 |
syserror("malloc"); |
486 |
sb->nread = 0; |
487 |
ns <<= 1; |
488 |
sb++; |
489 |
} while (--se >= 0); |
490 |
return(sbarr); |
491 |
} |
492 |
|
493 |
|
494 |
void |
495 |
initacuity(void) /* initialize variable acuity sampling */ |
496 |
{ |
497 |
FVECT diffx, diffy, cp; |
498 |
double omega, maxsr; |
499 |
int x, y, i; |
500 |
|
501 |
compraydir(); /* compute ray directions */ |
502 |
|
503 |
inpacuD = (float *)malloc(fvxr*fvyr*sizeof(float)); |
504 |
if (inpacuD == NULL) |
505 |
syserror("malloc"); |
506 |
maxsr = 1.; /* compute internal sample rates */ |
507 |
for (y = 1; y < fvyr-1; y++) |
508 |
for (x = 1; x < fvxr-1; x++) { |
509 |
for (i = 0; i < 3; i++) { |
510 |
diffx[i] = 0.5*fvxr/scanlen(&inpres) * |
511 |
(rdirscan(y)[x+1][i] - |
512 |
rdirscan(y)[x-1][i]); |
513 |
diffy[i] = 0.5*fvyr/numscans(&inpres) * |
514 |
(rdirscan(y+1)[x][i] - |
515 |
rdirscan(y-1)[x][i]); |
516 |
} |
517 |
fcross(cp, diffx, diffy); |
518 |
omega = 0.5 * sqrt(DOT(cp,cp)); |
519 |
if (omega <= FTINY*FTINY) |
520 |
tsampr(x,y) = 1.; |
521 |
else if ((tsampr(x,y) = PI/180. / sqrt(omega) / |
522 |
hacuity(plum(fovscan(y)[x]))) > maxsr) |
523 |
maxsr = tsampr(x,y); |
524 |
} |
525 |
/* copy perimeter (easier) */ |
526 |
for (x = 1; x < fvxr-1; x++) { |
527 |
tsampr(x,0) = tsampr(x,1); |
528 |
tsampr(x,fvyr-1) = tsampr(x,fvyr-2); |
529 |
} |
530 |
for (y = 0; y < fvyr; y++) { |
531 |
tsampr(0,y) = tsampr(1,y); |
532 |
tsampr(fvxr-1,y) = tsampr(fvxr-2,y); |
533 |
} |
534 |
/* initialize with next power of two */ |
535 |
rootbar = sballoc((int)(log(maxsr)/log(2.))+1, 2, scanlen(&inpres)); |
536 |
} |