1 |
– |
/* Copyright (c) 1996 Regents of the University of California */ |
2 |
– |
|
1 |
|
#ifndef lint |
2 |
< |
static char SCCSid[] = "$SunId$ LBL"; |
2 |
> |
static const char RCSid[] = "$Id$"; |
3 |
|
#endif |
6 |
– |
|
4 |
|
/* |
5 |
|
* Routines for veiling glare and loss of acuity. |
6 |
|
*/ |
11 |
|
|
12 |
|
#define VADAPT 0.08 /* fraction of adaptation from veil */ |
13 |
|
|
14 |
< |
extern COLOR *fovimg; /* foveal (1 degree) averaged image */ |
18 |
< |
extern short fvxr, fvyr; /* foveal image resolution */ |
14 |
> |
static COLOR *veilimg = NULL; /* veiling image */ |
15 |
|
|
20 |
– |
#define fovscan(y) (fovimg+(y)*fvxr) |
21 |
– |
|
22 |
– |
static COLOR *veilimg; /* veiling image */ |
23 |
– |
|
16 |
|
#define veilscan(y) (veilimg+(y)*fvxr) |
17 |
|
|
18 |
|
static float (*raydir)[3] = NULL; /* ray direction for each pixel */ |
19 |
|
|
20 |
|
#define rdirscan(y) (raydir+(y)*fvxr) |
21 |
|
|
22 |
+ |
static void compraydir(void); |
23 |
+ |
#if ADJ_VEIL |
24 |
+ |
static void smoothveil(void); |
25 |
+ |
#endif |
26 |
|
|
27 |
< |
compraydir() /* compute ray directions */ |
27 |
> |
|
28 |
> |
static void |
29 |
> |
compraydir(void) /* compute ray directions */ |
30 |
|
{ |
31 |
|
FVECT rorg, rdir; |
32 |
|
double h, v; |
33 |
< |
register int x, y; |
33 |
> |
int x, y; |
34 |
|
|
35 |
|
if (raydir != NULL) /* already done? */ |
36 |
|
return; |
39 |
|
syserror("malloc"); |
40 |
|
|
41 |
|
for (y = 0; y < fvyr; y++) { |
42 |
< |
switch (inpres.or) { |
42 |
> |
switch (inpres.rt) { |
43 |
|
case YMAJOR: case YMAJOR|XDECR: |
44 |
|
v = (y+.5)/fvyr; break; |
45 |
|
case YMAJOR|YDECR: case YMAJOR|YDECR|XDECR: |
50 |
|
h = 1. - (y+.5)/fvyr; break; |
51 |
|
} |
52 |
|
for (x = 0; x < fvxr; x++) { |
53 |
< |
switch (inpres.or) { |
53 |
> |
switch (inpres.rt) { |
54 |
|
case YMAJOR: case YMAJOR|YDECR: |
55 |
|
h = (x+.5)/fvxr; break; |
56 |
|
case YMAJOR|XDECR: case YMAJOR|XDECR|YDECR: |
75 |
|
} |
76 |
|
|
77 |
|
|
78 |
< |
compveil() /* compute veiling image */ |
78 |
> |
void |
79 |
> |
compveil(void) /* compute veiling image */ |
80 |
|
{ |
81 |
|
double t2, t2sum; |
82 |
|
COLOR ctmp, vsum; |
83 |
|
int px, py; |
84 |
< |
register int x, y; |
84 |
> |
int x, y; |
85 |
> |
|
86 |
> |
if (veilimg != NULL) /* already done? */ |
87 |
> |
return; |
88 |
|
/* compute ray directions */ |
89 |
|
compraydir(); |
90 |
|
/* compute veil image */ |
102 |
|
rdirscan(y)[x]); |
103 |
|
if (t2 <= FTINY) continue; |
104 |
|
/* use approximation instead |
105 |
< |
t2 = acos(t2); |
106 |
< |
t2 = 1./(t2*t2); |
105 |
> |
t3 = acos(t2); |
106 |
> |
t2 = t2/(t3*t3); |
107 |
|
*/ |
108 |
< |
t2 = .5 / (1. - t2); |
108 |
> |
t2 *= .5 / (1. - t2); |
109 |
|
copycolor(ctmp, fovscan(y)[x]); |
110 |
|
scalecolor(ctmp, t2); |
111 |
|
addcolor(vsum, ctmp); |
112 |
|
t2sum += t2; |
113 |
|
} |
114 |
|
/* VADAPT of original is subtracted in addveil() */ |
115 |
< |
scalecolor(vsum, VADAPT/t2sum); |
115 |
> |
if (t2sum > FTINY) |
116 |
> |
scalecolor(vsum, VADAPT/t2sum); |
117 |
|
copycolor(veilscan(py)[px], vsum); |
118 |
|
} |
119 |
+ |
/* modify FOV sample image */ |
120 |
+ |
for (y = 0; y < fvyr; y++) |
121 |
+ |
for (x = 0; x < fvxr; x++) { |
122 |
+ |
scalecolor(fovscan(y)[x], 1.-VADAPT); |
123 |
+ |
addcolor(fovscan(y)[x], veilscan(y)[x]); |
124 |
+ |
} |
125 |
+ |
comphist(); /* recompute histogram */ |
126 |
|
} |
127 |
|
|
128 |
|
|
129 |
< |
addveil(sl, y) /* add veil to scanline */ |
130 |
< |
COLOR *sl; |
131 |
< |
int y; |
129 |
> |
#if ADJ_VEIL |
130 |
> |
/* |
131 |
> |
* The following veil adjustment was added to compensate for |
132 |
> |
* the fact that contrast reduction gets confused with veil |
133 |
> |
* in the human visual system. Therefore, we reduce the |
134 |
> |
* veil in portions of the image where our mapping has |
135 |
> |
* already reduced contrast below the target value. |
136 |
> |
* This gets called after the intial veil has been computed |
137 |
> |
* and added to the foveal image, and the mapping has been |
138 |
> |
* determined. |
139 |
> |
*/ |
140 |
> |
void |
141 |
> |
adjveil(void) /* adjust veil image */ |
142 |
|
{ |
143 |
+ |
float *crfptr = crfimg; |
144 |
+ |
COLOR *fovptr = fovimg; |
145 |
+ |
COLOR *veilptr = veilimg; |
146 |
+ |
double s2nits = 1./inpexp; |
147 |
+ |
double vl, vl2, fovl, vlsum; |
148 |
+ |
double deltavc[3]; |
149 |
+ |
int i, j; |
150 |
+ |
|
151 |
+ |
if (lumf == rgblum) |
152 |
+ |
s2nits *= WHTEFFICACY; |
153 |
+ |
|
154 |
+ |
for (i = fvxr*fvyr; i--; crfptr++, fovptr++, veilptr++) { |
155 |
+ |
if (crfptr[0] >= 0.95) |
156 |
+ |
continue; |
157 |
+ |
vl = plum(veilptr[0]); |
158 |
+ |
fovl = (plum(fovptr[0]) - vl) * (1./(1.-VADAPT)); |
159 |
+ |
if (vl <= 0.05*fovl) |
160 |
+ |
continue; |
161 |
+ |
vlsum = vl; |
162 |
+ |
for (j = 2; j < 11; j++) { |
163 |
+ |
vlsum += crfptr[0]*vl - (1.0 - crfptr[0])*fovl; |
164 |
+ |
vl2 = vlsum / (double)j; |
165 |
+ |
if (vl2 < 0.0) |
166 |
+ |
vl2 = 0.0; |
167 |
+ |
crfptr[0] = crfactor(fovl + vl2); |
168 |
+ |
} |
169 |
+ |
/* desaturation code causes color fringes at this level */ |
170 |
+ |
for (j = 3; j--; ) { |
171 |
+ |
double vc = colval(veilptr[0],j); |
172 |
+ |
double fovc = (colval(fovptr[0],j) - vc) * |
173 |
+ |
(1./(1.-VADAPT)); |
174 |
+ |
deltavc[j] = (1.-crfptr[0])*(fovl/s2nits - fovc); |
175 |
+ |
if (vc + deltavc[j] < 0.0) |
176 |
+ |
break; |
177 |
+ |
} |
178 |
+ |
if (j < 0) |
179 |
+ |
addcolor(veilptr[0], deltavc); |
180 |
+ |
else |
181 |
+ |
scalecolor(veilptr[0], vl2/vl); |
182 |
+ |
} |
183 |
+ |
smoothveil(); /* smooth our result */ |
184 |
+ |
} |
185 |
+ |
|
186 |
+ |
|
187 |
+ |
static void |
188 |
+ |
smoothveil(void) /* smooth veil image */ |
189 |
+ |
{ |
190 |
+ |
COLOR *nveilimg; |
191 |
+ |
COLOR *ovptr, *nvptr; |
192 |
+ |
int x, y, i; |
193 |
+ |
|
194 |
+ |
nveilimg = (COLOR *)malloc(fvxr*fvyr*sizeof(COLOR)); |
195 |
+ |
if (nveilimg == NULL) |
196 |
+ |
return; |
197 |
+ |
for (y = 1; y < fvyr-1; y++) { |
198 |
+ |
ovptr = veilimg + y*fvxr + 1; |
199 |
+ |
nvptr = nveilimg + y*fvxr + 1; |
200 |
+ |
for (x = 1; x < fvxr-1; x++, ovptr++, nvptr++) |
201 |
+ |
for (i = 3; i--; ) |
202 |
+ |
nvptr[0][i] = 0.5 * ovptr[0][i] |
203 |
+ |
+ (1./12.) * |
204 |
+ |
(ovptr[-1][i] + ovptr[-fvxr][i] + |
205 |
+ |
ovptr[1][i] + ovptr[fvxr][i]) |
206 |
+ |
+ (1./24.) * |
207 |
+ |
(ovptr[-fvxr-1][i] + ovptr[-fvxr+1][i] + |
208 |
+ |
ovptr[fvxr-1][i] + ovptr[fvxr+1][i]); |
209 |
+ |
} |
210 |
+ |
ovptr = veilimg + 1; |
211 |
+ |
nvptr = nveilimg + 1; |
212 |
+ |
for (x = 1; x < fvxr-1; x++, ovptr++, nvptr++) |
213 |
+ |
for (i = 3; i--; ) |
214 |
+ |
nvptr[0][i] = 0.5 * ovptr[0][i] |
215 |
+ |
+ (1./9.) * |
216 |
+ |
(ovptr[-1][i] + ovptr[1][i] + ovptr[fvxr][i]) |
217 |
+ |
+ (1./12.) * |
218 |
+ |
(ovptr[fvxr-1][i] + ovptr[fvxr+1][i]); |
219 |
+ |
ovptr = veilimg + (fvyr-1)*fvxr + 1; |
220 |
+ |
nvptr = nveilimg + (fvyr-1)*fvxr + 1; |
221 |
+ |
for (x = 1; x < fvxr-1; x++, ovptr++, nvptr++) |
222 |
+ |
for (i = 3; i--; ) |
223 |
+ |
nvptr[0][i] = 0.5 * ovptr[0][i] |
224 |
+ |
+ (1./9.) * |
225 |
+ |
(ovptr[-1][i] + ovptr[1][i] + ovptr[-fvxr][i]) |
226 |
+ |
+ (1./12.) * |
227 |
+ |
(ovptr[-fvxr-1][i] + ovptr[-fvxr+1][i]); |
228 |
+ |
ovptr = veilimg + fvxr; |
229 |
+ |
nvptr = nveilimg + fvxr; |
230 |
+ |
for (y = 1; y < fvyr-1; y++, ovptr += fvxr, nvptr += fvxr) |
231 |
+ |
for (i = 3; i--; ) |
232 |
+ |
nvptr[0][i] = 0.5 * ovptr[0][i] |
233 |
+ |
+ (1./9.) * |
234 |
+ |
(ovptr[-fvxr][i] + ovptr[1][i] + ovptr[fvxr][i]) |
235 |
+ |
+ (1./12.) * |
236 |
+ |
(ovptr[-fvxr+1][i] + ovptr[fvxr+1][i]); |
237 |
+ |
ovptr = veilimg + fvxr - 1; |
238 |
+ |
nvptr = nveilimg + fvxr - 1; |
239 |
+ |
for (y = 1; y < fvyr-1; y++, ovptr += fvxr, nvptr += fvxr) |
240 |
+ |
for (i = 3; i--; ) |
241 |
+ |
nvptr[0][i] = 0.5 * ovptr[0][i] |
242 |
+ |
+ (1./9.) * |
243 |
+ |
(ovptr[-fvxr][i] + ovptr[-1][i] + ovptr[fvxr][i]) |
244 |
+ |
+ (1./12.) * |
245 |
+ |
(ovptr[-fvxr-1][i] + ovptr[fvxr-1][i]); |
246 |
+ |
for (i = 3; i--; ) { |
247 |
+ |
nveilimg[0][i] = veilimg[0][i]; |
248 |
+ |
nveilimg[fvxr-1][i] = veilimg[fvxr-1][i]; |
249 |
+ |
nveilimg[(fvyr-1)*fvxr][i] = veilimg[(fvyr-1)*fvxr][i]; |
250 |
+ |
nveilimg[fvyr*fvxr-1][i] = veilimg[fvyr*fvxr-1][i]; |
251 |
+ |
} |
252 |
+ |
free((void *)veilimg); |
253 |
+ |
veilimg = nveilimg; |
254 |
+ |
} |
255 |
+ |
#endif |
256 |
+ |
|
257 |
+ |
void |
258 |
+ |
addveil( /* add veil to scanline */ |
259 |
+ |
COLOR *sl, |
260 |
+ |
int y |
261 |
+ |
) |
262 |
+ |
{ |
263 |
|
int vx, vy; |
264 |
|
double dx, dy; |
265 |
|
double lv, uv; |
266 |
< |
register int x, i; |
266 |
> |
int x, i; |
267 |
|
|
268 |
|
vy = dy = (y+.5)/numscans(&inpres)*fvyr - .5; |
269 |
< |
if (vy >= fvyr-1) vy--; |
269 |
> |
while (vy >= fvyr-1) vy--; |
270 |
|
dy -= (double)vy; |
271 |
|
for (x = 0; x < scanlen(&inpres); x++) { |
272 |
|
vx = dx = (x+.5)/scanlen(&inpres)*fvxr - .5; |
273 |
< |
if (vx >= fvxr-1) vx--; |
273 |
> |
while (vx >= fvxr-1) vx--; |
274 |
|
dx -= (double)vx; |
275 |
|
for (i = 0; i < 3; i++) { |
276 |
|
lv = (1.-dy)*colval(veilscan(vy)[vx],i) + |
286 |
|
|
287 |
|
/****************** ACUITY STUFF *******************/ |
288 |
|
|
289 |
< |
typedef struct scanbar { |
290 |
< |
short sampr; /* sample area size (power of 2) */ |
289 |
> |
typedef struct { |
290 |
> |
short sampe; /* sample area size (exponent of 2) */ |
291 |
|
short nscans; /* number of scanlines in this bar */ |
292 |
|
int len; /* individual scanline length */ |
153 |
– |
struct scanbar *next; /* next higher resolution scanbar */ |
293 |
|
int nread; /* number of scanlines loaded */ |
294 |
< |
/* followed by the scanline data */ |
294 |
> |
COLOR *sdata; /* scanbar data */ |
295 |
|
} SCANBAR; |
296 |
|
|
297 |
< |
#define bscan(sb,y) ((COLOR *)((sb)+1)+((y)%(sb)->nscans)*(sb)->len) |
297 |
> |
#define bscan(sb,y) ((COLOR *)(sb)->sdata+((y)%(sb)->nscans)*(sb)->len) |
298 |
|
|
299 |
|
SCANBAR *rootbar; /* root scan bar (lowest resolution) */ |
300 |
|
|
301 |
< |
float *inpacuD; /* input acuity data (cycles/degree) */ |
301 |
> |
float *inpacuD = NULL; /* input acuity data (cycles/degree) */ |
302 |
|
|
303 |
|
#define tsampr(x,y) inpacuD[(y)*fvxr+(x)] |
304 |
|
|
305 |
+ |
static COLOR * getascan(SCANBAR *sb, int y); |
306 |
+ |
static void acusample(COLOR col, int x, int y, double sr); |
307 |
+ |
static void ascanval(COLOR col, int x, int y, SCANBAR *sb); |
308 |
+ |
static SCANBAR *sballoc(int se, int ns, int sl); |
309 |
|
|
310 |
|
double |
311 |
< |
hacuity(La) /* return visual acuity in cycles/degree */ |
312 |
< |
double La; |
313 |
< |
{ /* data due to S. Shaler (we should fit it!) */ |
314 |
< |
#define NPOINTS 20 |
315 |
< |
static float l10lum[NPOINTS] = { |
316 |
< |
-3.10503,-2.66403,-2.37703,-2.09303,-1.64403,-1.35803, |
174 |
< |
-1.07403,-0.67203,-0.38503,-0.10103,0.29397,0.58097,0.86497, |
175 |
< |
1.25697,1.54397,1.82797,2.27597,2.56297,2.84697,3.24897 |
176 |
< |
}; |
177 |
< |
static float resfreq[NPOINTS] = { |
178 |
< |
2.09,3.28,3.79,4.39,6.11,8.83,10.94,18.66,23.88,31.05,37.42, |
179 |
< |
37.68,41.60,43.16,45.30,47.00,48.43,48.32,51.06,51.09 |
180 |
< |
}; |
181 |
< |
double l10La; |
182 |
< |
register int i; |
183 |
< |
/* check limits */ |
184 |
< |
if (La <= 7.85e-4) |
185 |
< |
return(resfreq[0]); |
186 |
< |
if (La >= 1.78e3) |
187 |
< |
return(resfreq[NPOINTS-1]); |
188 |
< |
/* interpolate data */ |
189 |
< |
l10La = log10(La); |
190 |
< |
for (i = 0; i < NPOINTS-2 && l10lum[i+1] <= l10La; i++) |
191 |
< |
; |
192 |
< |
return( ( (l10lum[i+1] - l10La)*resfreq[i] + |
193 |
< |
(l10La - l10lum[i])*resfreq[i+1] ) / |
194 |
< |
(l10lum[i+1] - l10lum[i]) ); |
195 |
< |
#undef NPOINTS |
311 |
> |
hacuity( /* return visual acuity in cycles/degree */ |
312 |
> |
double La |
313 |
> |
) |
314 |
> |
{ |
315 |
> |
/* functional fit */ |
316 |
> |
return(17.25*atan(1.4*log10(La) + 0.35) + 25.72); |
317 |
|
} |
318 |
|
|
319 |
|
|
320 |
< |
COLOR * |
321 |
< |
getascan(sb, y) /* find/read scanline y for scanbar sb */ |
322 |
< |
register SCANBAR *sb; |
323 |
< |
int y; |
320 |
> |
static COLOR * |
321 |
> |
getascan( /* find/read scanline y for scanbar sb */ |
322 |
> |
SCANBAR *sb, |
323 |
> |
int y |
324 |
> |
) |
325 |
|
{ |
326 |
< |
register COLOR *sl0, *sl1, *mysl; |
327 |
< |
register int i; |
326 |
> |
COLOR *sl0, *sl1, *mysl; |
327 |
> |
int i; |
328 |
|
|
329 |
< |
if (y < sb->nread - sb->nscans) { |
330 |
< |
fprintf(stderr, "%s: internal - cannot backspace in getascan\n", |
209 |
< |
progname); |
210 |
< |
exit(1); |
211 |
< |
} |
329 |
> |
if (y < sb->nread - sb->nscans) /* too far back? */ |
330 |
> |
return(NULL); |
331 |
|
for ( ; y >= sb->nread; sb->nread++) { /* read as necessary */ |
332 |
|
mysl = bscan(sb, sb->nread); |
333 |
< |
if (sb->sampr == 1) { |
334 |
< |
if (freadscan(mysl, sb->len, infp) < 0) { |
333 |
> |
if (sb->sampe == 0) { |
334 |
> |
if (fread2scan(mysl, sb->len, infp, NCSAMP, WLPART) < 0) { |
335 |
|
fprintf(stderr, "%s: %s: scanline read error\n", |
336 |
|
progname, infn); |
337 |
|
exit(1); |
338 |
|
} |
339 |
|
} else { |
340 |
< |
sl0 = getascan(sb->next, 2*y); |
341 |
< |
sl1 = getascan(sb->next, 2*y+1); |
340 |
> |
sl0 = getascan(sb+1, 2*y); |
341 |
> |
if (sl0 == NULL) |
342 |
> |
return(NULL); |
343 |
> |
sl1 = getascan(sb+1, 2*y+1); |
344 |
|
for (i = 0; i < sb->len; i++) { |
345 |
|
copycolor(mysl[i], sl0[2*i]); |
346 |
|
addcolor(mysl[i], sl0[2*i+1]); |
354 |
|
} |
355 |
|
|
356 |
|
|
357 |
< |
acuscan(scln, y) /* get acuity-sampled scanline */ |
358 |
< |
COLOR *scln; |
359 |
< |
int y; |
357 |
> |
void |
358 |
> |
acuscan( /* get acuity-sampled scanline */ |
359 |
> |
COLOR *scln, |
360 |
> |
int y |
361 |
> |
) |
362 |
|
{ |
363 |
|
double sr; |
364 |
|
double dx, dy; |
365 |
|
int ix, iy; |
366 |
< |
register int x; |
366 |
> |
int x; |
367 |
> |
|
368 |
> |
if (inpacuD == NULL) |
369 |
> |
return; |
370 |
|
/* compute foveal y position */ |
371 |
|
iy = dy = (y+.5)/numscans(&inpres)*fvyr - .5; |
372 |
< |
if (iy >= fvyr-1) iy--; |
372 |
> |
while (iy >= fvyr-1) iy--; |
373 |
|
dy -= (double)iy; |
374 |
|
for (x = 0; x < scanlen(&inpres); x++) { |
375 |
|
/* compute foveal x position */ |
376 |
|
ix = dx = (x+.5)/scanlen(&inpres)*fvxr - .5; |
377 |
< |
if (ix >= fvxr-1) ix--; |
377 |
> |
while (ix >= fvxr-1) ix--; |
378 |
|
dx -= (double)ix; |
379 |
|
/* interpolate sample rate */ |
380 |
|
sr = (1.-dy)*((1.-dx)*tsampr(ix,iy) + dx*tsampr(ix+1,iy)) + |
385 |
|
} |
386 |
|
|
387 |
|
|
388 |
< |
acusample(col, x, y, sr) /* interpolate sample at (x,y) using rate sr */ |
389 |
< |
COLOR col; |
390 |
< |
int x, y; |
391 |
< |
double sr; |
388 |
> |
static void |
389 |
> |
acusample( /* interpolate sample at (x,y) using rate sr */ |
390 |
> |
COLOR col, |
391 |
> |
int x, |
392 |
> |
int y, |
393 |
> |
double sr |
394 |
> |
) |
395 |
|
{ |
396 |
|
COLOR c1; |
397 |
|
double d; |
398 |
< |
register SCANBAR *sb0; |
398 |
> |
SCANBAR *sb0; |
399 |
|
|
400 |
< |
for (sb0 = rootbar; sb0->next != NULL && sb0->next->sampr > sr; |
272 |
< |
sb0 = sb0->next) |
400 |
> |
for (sb0 = rootbar; sb0->sampe != 0 && 1<<sb0[1].sampe > sr; sb0++) |
401 |
|
; |
402 |
|
ascanval(col, x, y, sb0); |
403 |
< |
if (sb0->next == NULL) /* don't extrapolate highest */ |
403 |
> |
if (sb0->sampe == 0) /* don't extrapolate highest */ |
404 |
|
return; |
405 |
< |
ascanval(c1, x, y, sb0->next); |
406 |
< |
d = (sb0->sampr - sr)/(sb0->sampr - sb0->next->sampr); |
405 |
> |
ascanval(c1, x, y, sb0+1); |
406 |
> |
d = ((1<<sb0->sampe) - sr)/(1<<sb0[1].sampe); |
407 |
|
scalecolor(col, 1.-d); |
408 |
|
scalecolor(c1, d); |
409 |
|
addcolor(col, c1); |
410 |
|
} |
411 |
|
|
412 |
|
|
413 |
< |
ascanval(col, x, y, sb) /* interpolate scanbar at orig. coords (x,y) */ |
414 |
< |
COLOR col; |
415 |
< |
int x, y; |
416 |
< |
SCANBAR *sb; |
413 |
> |
static void |
414 |
> |
ascanval( /* interpolate scanbar at orig. coords (x,y) */ |
415 |
> |
COLOR col, |
416 |
> |
int x, |
417 |
> |
int y, |
418 |
> |
SCANBAR *sb |
419 |
> |
) |
420 |
|
{ |
421 |
|
COLOR *sl0, *sl1, c1, c1y; |
422 |
|
double dx, dy; |
423 |
|
int ix, iy; |
424 |
|
|
425 |
< |
ix = dx = (x+.5)/sb->sampr - .5; |
426 |
< |
if (ix >= sb->len-1) ix--; |
425 |
> |
if (sb->sampe == 0) { /* no need to interpolate */ |
426 |
> |
sl0 = getascan(sb, y); |
427 |
> |
copycolor(col, sl0[x]); |
428 |
> |
return; |
429 |
> |
} |
430 |
> |
/* compute coordinates for sb */ |
431 |
> |
ix = dx = (x+.5)/(1<<sb->sampe) - .5; |
432 |
> |
while (ix >= sb->len-1) ix--; |
433 |
|
dx -= (double)ix; |
434 |
< |
iy = dy = (y+.5)/sb->sampr - .5; |
435 |
< |
if (iy >= numscans(&inpres)/sb->sampr-1) iy--; |
434 |
> |
iy = dy = (y+.5)/(1<<sb->sampe) - .5; |
435 |
> |
while (iy >= (numscans(&inpres)>>sb->sampe)-1) iy--; |
436 |
|
dy -= (double)iy; |
437 |
|
/* get scanlines */ |
438 |
|
sl0 = getascan(sb, iy); |
439 |
+ |
#ifdef DEBUG |
440 |
+ |
if (sl0 == NULL) |
441 |
+ |
error(INTERNAL, "cannot backspace in ascanval"); |
442 |
+ |
#endif |
443 |
|
sl1 = getascan(sb, iy+1); |
444 |
|
/* 2D linear interpolation */ |
445 |
|
copycolor(col, sl0[ix]); |
455 |
|
scalecolor(col, 1.-dy); |
456 |
|
scalecolor(c1y, dy); |
457 |
|
addcolor(col, c1y); |
458 |
+ |
for (ix = 0; ix < 3; ix++) /* make sure no negative */ |
459 |
+ |
if (colval(col,ix) < 0.) |
460 |
+ |
colval(col,ix) = 0.; |
461 |
|
} |
462 |
|
|
463 |
|
|
464 |
< |
SCANBAR * |
465 |
< |
sballoc(sr, ns, sl) /* allocate scanbar */ |
466 |
< |
int sr; /* sampling rate */ |
467 |
< |
int ns; /* number of scanlines */ |
468 |
< |
int sl; /* original scanline length */ |
464 |
> |
static SCANBAR * |
465 |
> |
sballoc( /* allocate scanbar */ |
466 |
> |
int se, /* sampling rate exponent */ |
467 |
> |
int ns, /* number of scanlines */ |
468 |
> |
int sl /* original scanline length */ |
469 |
> |
) |
470 |
|
{ |
471 |
< |
register SCANBAR *sb; |
471 |
> |
SCANBAR *sbarr; |
472 |
> |
SCANBAR *sb; |
473 |
|
|
474 |
< |
sb = (SCANBAR *)malloc(sizeof(SCANBAR)+(sl/sr)*ns*sizeof(COLOR)); |
474 |
> |
sbarr = sb = (SCANBAR *)malloc((se+1)*sizeof(SCANBAR)); |
475 |
|
if (sb == NULL) |
476 |
|
syserror("malloc"); |
477 |
< |
sb->nscans = ns; |
478 |
< |
sb->len = sl/sr; |
479 |
< |
sb->nread = 0; |
480 |
< |
if ((sb->sampr = sr) > 1) |
481 |
< |
sb->next = sballoc(sr/2, ns*2, sl); |
482 |
< |
else |
483 |
< |
sb->next = NULL; |
484 |
< |
return(sb); |
477 |
> |
do { |
478 |
> |
sb->len = sl>>se; |
479 |
> |
if (sb->len <= 0) |
480 |
> |
continue; |
481 |
> |
sb->sampe = se; |
482 |
> |
sb->nscans = ns; |
483 |
> |
sb->sdata = (COLOR *)malloc(sb->len*ns*sizeof(COLOR)); |
484 |
> |
if (sb->sdata == NULL) |
485 |
> |
syserror("malloc"); |
486 |
> |
sb->nread = 0; |
487 |
> |
ns <<= 1; |
488 |
> |
sb++; |
489 |
> |
} while (--se >= 0); |
490 |
> |
return(sbarr); |
491 |
|
} |
492 |
|
|
493 |
|
|
494 |
< |
initacuity() /* initialize variable acuity sampling */ |
494 |
> |
void |
495 |
> |
initacuity(void) /* initialize variable acuity sampling */ |
496 |
|
{ |
497 |
|
FVECT diffx, diffy, cp; |
498 |
|
double omega, maxsr; |
499 |
< |
register int x, y, i; |
500 |
< |
|
499 |
> |
int x, y, i; |
500 |
> |
|
501 |
|
compraydir(); /* compute ray directions */ |
502 |
|
|
503 |
|
inpacuD = (float *)malloc(fvxr*fvyr*sizeof(float)); |
516 |
|
} |
517 |
|
fcross(cp, diffx, diffy); |
518 |
|
omega = 0.5 * sqrt(DOT(cp,cp)); |
519 |
< |
if (omega <= FTINY) |
519 |
> |
if (omega <= FTINY*FTINY) |
520 |
|
tsampr(x,y) = 1.; |
521 |
|
else if ((tsampr(x,y) = PI/180. / sqrt(omega) / |
522 |
|
hacuity(plum(fovscan(y)[x]))) > maxsr) |
528 |
|
tsampr(x,fvyr-1) = tsampr(x,fvyr-2); |
529 |
|
} |
530 |
|
for (y = 0; y < fvyr; y++) { |
531 |
< |
tsampr(y,0) = tsampr(y,1); |
532 |
< |
tsampr(y,fvxr-1) = tsampr(y,fvxr-2); |
531 |
> |
tsampr(0,y) = tsampr(1,y); |
532 |
> |
tsampr(fvxr-1,y) = tsampr(fvxr-2,y); |
533 |
|
} |
534 |
|
/* initialize with next power of two */ |
535 |
< |
rootbar = sballoc(2<<(int)(log(maxsr)/log(2.)), 2, scanlen(&inpres)); |
535 |
> |
rootbar = sballoc((int)(log(maxsr)/log(2.))+1, 2, scanlen(&inpres)); |
536 |
|
} |