| 1 |
< |
/* Copyright (c) 1996 Regents of the University of California */ |
| 1 |
> |
/* Copyright (c) 1997 Regents of the University of California */ |
| 2 |
|
|
| 3 |
|
#ifndef lint |
| 4 |
|
static char SCCSid[] = "$SunId$ LBL"; |
| 14 |
|
|
| 15 |
|
#define VADAPT 0.08 /* fraction of adaptation from veil */ |
| 16 |
|
|
| 17 |
< |
extern COLOR *fovimg; /* foveal (1 degree) averaged image */ |
| 18 |
< |
extern short fvxr, fvyr; /* foveal image resolution */ |
| 17 |
> |
static COLOR *veilimg = NULL; /* veiling image */ |
| 18 |
|
|
| 20 |
– |
#define fovscan(y) (fovimg+(y)*fvxr) |
| 21 |
– |
|
| 22 |
– |
static COLOR *veilimg; /* veiling image */ |
| 23 |
– |
|
| 19 |
|
#define veilscan(y) (veilimg+(y)*fvxr) |
| 20 |
|
|
| 21 |
|
static float (*raydir)[3] = NULL; /* ray direction for each pixel */ |
| 78 |
|
COLOR ctmp, vsum; |
| 79 |
|
int px, py; |
| 80 |
|
register int x, y; |
| 81 |
+ |
|
| 82 |
+ |
if (veilimg != NULL) /* already done? */ |
| 83 |
+ |
return; |
| 84 |
|
/* compute ray directions */ |
| 85 |
|
compraydir(); |
| 86 |
|
/* compute veil image */ |
| 98 |
|
rdirscan(y)[x]); |
| 99 |
|
if (t2 <= FTINY) continue; |
| 100 |
|
/* use approximation instead |
| 101 |
< |
t2 = acos(t2); |
| 102 |
< |
t2 = 1./(t2*t2); |
| 101 |
> |
t3 = acos(t2); |
| 102 |
> |
t2 = t2/(t3*t3); |
| 103 |
|
*/ |
| 104 |
< |
t2 = .5 / (1. - t2); |
| 104 |
> |
t2 *= .5 / (1. - t2); |
| 105 |
|
copycolor(ctmp, fovscan(y)[x]); |
| 106 |
|
scalecolor(ctmp, t2); |
| 107 |
|
addcolor(vsum, ctmp); |
| 108 |
|
t2sum += t2; |
| 109 |
|
} |
| 110 |
|
/* VADAPT of original is subtracted in addveil() */ |
| 111 |
< |
scalecolor(vsum, VADAPT/t2sum); |
| 111 |
> |
if (t2sum > FTINY) |
| 112 |
> |
scalecolor(vsum, VADAPT/t2sum); |
| 113 |
|
copycolor(veilscan(py)[px], vsum); |
| 114 |
|
} |
| 115 |
+ |
/* modify FOV sample image */ |
| 116 |
+ |
for (y = 0; y < fvyr; y++) |
| 117 |
+ |
for (x = 0; x < fvxr; x++) { |
| 118 |
+ |
scalecolor(fovscan(y)[x], 1.-VADAPT); |
| 119 |
+ |
addcolor(fovscan(y)[x], veilscan(y)[x]); |
| 120 |
+ |
} |
| 121 |
+ |
comphist(); /* recompute histogram */ |
| 122 |
|
} |
| 123 |
|
|
| 124 |
|
|
| 172 |
|
double |
| 173 |
|
hacuity(La) /* return visual acuity in cycles/degree */ |
| 174 |
|
double La; |
| 175 |
< |
{ /* data due to S. Shaler (we should fit it!) */ |
| 176 |
< |
#define NPOINTS 20 |
| 177 |
< |
static float l10lum[NPOINTS] = { |
| 172 |
< |
-3.10503,-2.66403,-2.37703,-2.09303,-1.64403,-1.35803, |
| 173 |
< |
-1.07403,-0.67203,-0.38503,-0.10103,0.29397,0.58097,0.86497, |
| 174 |
< |
1.25697,1.54397,1.82797,2.27597,2.56297,2.84697,3.24897 |
| 175 |
< |
}; |
| 176 |
< |
static float resfreq[NPOINTS] = { |
| 177 |
< |
2.09,3.28,3.79,4.39,6.11,8.83,10.94,18.66,23.88,31.05,37.42, |
| 178 |
< |
37.68,41.60,43.16,45.30,47.00,48.43,48.32,51.06,51.09 |
| 179 |
< |
}; |
| 180 |
< |
double l10La; |
| 181 |
< |
register int i; |
| 182 |
< |
/* check limits */ |
| 183 |
< |
if (La <= 7.85e-4) |
| 184 |
< |
return(resfreq[0]); |
| 185 |
< |
if (La >= 1.78e3) |
| 186 |
< |
return(resfreq[NPOINTS-1]); |
| 187 |
< |
/* interpolate data */ |
| 188 |
< |
l10La = log10(La); |
| 189 |
< |
for (i = 0; i < NPOINTS-2 && l10lum[i+1] <= l10La; i++) |
| 190 |
< |
; |
| 191 |
< |
return( ( (l10lum[i+1] - l10La)*resfreq[i] + |
| 192 |
< |
(l10La - l10lum[i])*resfreq[i+1] ) / |
| 193 |
< |
(l10lum[i+1] - l10lum[i]) ); |
| 194 |
< |
#undef NPOINTS |
| 175 |
> |
{ |
| 176 |
> |
/* functional fit */ |
| 177 |
> |
return(17.25*atan(1.4*log10(La) + 0.35) + 25.72); |
| 178 |
|
} |
| 179 |
|
|
| 180 |
|
|
| 286 |
|
/* get scanlines */ |
| 287 |
|
sl0 = getascan(sb, iy); |
| 288 |
|
#ifdef DEBUG |
| 289 |
< |
if (sl0 == NULL) { |
| 290 |
< |
fprintf(stderr, "%s: internal - cannot backspace in ascanval\n", |
| 308 |
< |
progname); |
| 309 |
< |
abort(); |
| 310 |
< |
} |
| 289 |
> |
if (sl0 == NULL) |
| 290 |
> |
error(INTERNAL, "cannot backspace in ascanval"); |
| 291 |
|
#endif |
| 292 |
|
sl1 = getascan(sb, iy+1); |
| 293 |
|
/* 2D linear interpolation */ |