--- ray/src/px/pcond4.c 1996/10/04 17:51:41 3.4 +++ ray/src/px/pcond4.c 2004/03/28 20:33:14 3.17 @@ -1,9 +1,6 @@ -/* Copyright (c) 1996 Regents of the University of California */ - #ifndef lint -static char SCCSid[] = "$SunId$ LBL"; +static const char RCSid[] = "$Id: pcond4.c,v 3.17 2004/03/28 20:33:14 schorsch Exp $"; #endif - /* * Routines for veiling glare and loss of acuity. */ @@ -14,21 +11,22 @@ static char SCCSid[] = "$SunId$ LBL"; #define VADAPT 0.08 /* fraction of adaptation from veil */ -extern COLOR *fovimg; /* foveal (1 degree) averaged image */ -extern short fvxr, fvyr; /* foveal image resolution */ +static COLOR *veilimg = NULL; /* veiling image */ -#define fovscan(y) (fovimg+(y)*fvxr) - -static COLOR *veilimg; /* veiling image */ - #define veilscan(y) (veilimg+(y)*fvxr) static float (*raydir)[3] = NULL; /* ray direction for each pixel */ #define rdirscan(y) (raydir+(y)*fvxr) +static void compraydir(void); +#if ADJ_VEIL +static void smoothveil(void); +#endif -compraydir() /* compute ray directions */ + +static void +compraydir(void) /* compute ray directions */ { FVECT rorg, rdir; double h, v; @@ -41,7 +39,7 @@ compraydir() /* compute ray directions */ syserror("malloc"); for (y = 0; y < fvyr; y++) { - switch (inpres.or) { + switch (inpres.rt) { case YMAJOR: case YMAJOR|XDECR: v = (y+.5)/fvyr; break; case YMAJOR|YDECR: case YMAJOR|YDECR|XDECR: @@ -52,7 +50,7 @@ compraydir() /* compute ray directions */ h = 1. - (y+.5)/fvyr; break; } for (x = 0; x < fvxr; x++) { - switch (inpres.or) { + switch (inpres.rt) { case YMAJOR: case YMAJOR|YDECR: h = (x+.5)/fvxr; break; case YMAJOR|XDECR: case YMAJOR|XDECR|YDECR: @@ -77,12 +75,16 @@ compraydir() /* compute ray directions */ } -compveil() /* compute veiling image */ +extern void +compveil(void) /* compute veiling image */ { double t2, t2sum; COLOR ctmp, vsum; int px, py; register int x, y; + + if (veilimg != NULL) /* already done? */ + return; /* compute ray directions */ compraydir(); /* compute veil image */ @@ -100,37 +102,175 @@ compveil() /* compute veiling image */ rdirscan(y)[x]); if (t2 <= FTINY) continue; /* use approximation instead - t2 = acos(t2); - t2 = 1./(t2*t2); + t3 = acos(t2); + t2 = t2/(t3*t3); */ - t2 = .5 / (1. - t2); + t2 *= .5 / (1. - t2); copycolor(ctmp, fovscan(y)[x]); scalecolor(ctmp, t2); addcolor(vsum, ctmp); t2sum += t2; } /* VADAPT of original is subtracted in addveil() */ - scalecolor(vsum, VADAPT/t2sum); + if (t2sum > FTINY) + scalecolor(vsum, VADAPT/t2sum); copycolor(veilscan(py)[px], vsum); } + /* modify FOV sample image */ + for (y = 0; y < fvyr; y++) + for (x = 0; x < fvxr; x++) { + scalecolor(fovscan(y)[x], 1.-VADAPT); + addcolor(fovscan(y)[x], veilscan(y)[x]); + } + comphist(); /* recompute histogram */ } -addveil(sl, y) /* add veil to scanline */ -COLOR *sl; -int y; +#if ADJ_VEIL +/* + * The following veil adjustment was added to compensate for + * the fact that contrast reduction gets confused with veil + * in the human visual system. Therefore, we reduce the + * veil in portions of the image where our mapping has + * already reduced contrast below the target value. + * This gets called after the intial veil has been computed + * and added to the foveal image, and the mapping has been + * determined. + */ +extern void +adjveil(void) /* adjust veil image */ { + float *crfptr = crfimg; + COLOR *fovptr = fovimg; + COLOR *veilptr = veilimg; + double s2nits = 1./inpexp; + double vl, vl2, fovl, vlsum; + double deltavc[3]; + int i, j; + + if (lumf == rgblum) + s2nits *= WHTEFFICACY; + + for (i = fvxr*fvyr; i--; crfptr++, fovptr++, veilptr++) { + if (crfptr[0] >= 0.95) + continue; + vl = plum(veilptr[0]); + fovl = (plum(fovptr[0]) - vl) * (1./(1.-VADAPT)); + if (vl <= 0.05*fovl) + continue; + vlsum = vl; + for (j = 2; j < 11; j++) { + vlsum += crfptr[0]*vl - (1.0 - crfptr[0])*fovl; + vl2 = vlsum / (double)j; + if (vl2 < 0.0) + vl2 = 0.0; + crfptr[0] = crfactor(fovl + vl2); + } + /* desaturation code causes color fringes at this level */ + for (j = 3; j--; ) { + double vc = colval(veilptr[0],j); + double fovc = (colval(fovptr[0],j) - vc) * + (1./(1.-VADAPT)); + deltavc[j] = (1.-crfptr[0])*(fovl/s2nits - fovc); + if (vc + deltavc[j] < 0.0) + break; + } + if (j < 0) + addcolor(veilptr[0], deltavc); + else + scalecolor(veilptr[0], vl2/vl); + } + smoothveil(); /* smooth our result */ +} + + +static void +smoothveil(void) /* smooth veil image */ +{ + COLOR *nveilimg; + COLOR *ovptr, *nvptr; + int x, y, i; + + nveilimg = (COLOR *)malloc(fvxr*fvyr*sizeof(COLOR)); + if (nveilimg == NULL) + return; + for (y = 1; y < fvyr-1; y++) { + ovptr = veilimg + y*fvxr + 1; + nvptr = nveilimg + y*fvxr + 1; + for (x = 1; x < fvxr-1; x++, ovptr++, nvptr++) + for (i = 3; i--; ) + nvptr[0][i] = 0.5 * ovptr[0][i] + + (1./12.) * + (ovptr[-1][i] + ovptr[-fvxr][i] + + ovptr[1][i] + ovptr[fvxr][i]) + + (1./24.) * + (ovptr[-fvxr-1][i] + ovptr[-fvxr+1][i] + + ovptr[fvxr-1][i] + ovptr[fvxr+1][i]); + } + ovptr = veilimg + 1; + nvptr = nveilimg + 1; + for (x = 1; x < fvxr-1; x++, ovptr++, nvptr++) + for (i = 3; i--; ) + nvptr[0][i] = 0.5 * ovptr[0][i] + + (1./9.) * + (ovptr[-1][i] + ovptr[1][i] + ovptr[fvxr][i]) + + (1./12.) * + (ovptr[fvxr-1][i] + ovptr[fvxr+1][i]); + ovptr = veilimg + (fvyr-1)*fvxr + 1; + nvptr = nveilimg + (fvyr-1)*fvxr + 1; + for (x = 1; x < fvxr-1; x++, ovptr++, nvptr++) + for (i = 3; i--; ) + nvptr[0][i] = 0.5 * ovptr[0][i] + + (1./9.) * + (ovptr[-1][i] + ovptr[1][i] + ovptr[-fvxr][i]) + + (1./12.) * + (ovptr[-fvxr-1][i] + ovptr[-fvxr+1][i]); + ovptr = veilimg + fvxr; + nvptr = nveilimg + fvxr; + for (y = 1; y < fvyr-1; y++, ovptr += fvxr, nvptr += fvxr) + for (i = 3; i--; ) + nvptr[0][i] = 0.5 * ovptr[0][i] + + (1./9.) * + (ovptr[-fvxr][i] + ovptr[1][i] + ovptr[fvxr][i]) + + (1./12.) * + (ovptr[-fvxr+1][i] + ovptr[fvxr+1][i]); + ovptr = veilimg + fvxr - 1; + nvptr = nveilimg + fvxr - 1; + for (y = 1; y < fvyr-1; y++, ovptr += fvxr, nvptr += fvxr) + for (i = 3; i--; ) + nvptr[0][i] = 0.5 * ovptr[0][i] + + (1./9.) * + (ovptr[-fvxr][i] + ovptr[-1][i] + ovptr[fvxr][i]) + + (1./12.) * + (ovptr[-fvxr-1][i] + ovptr[fvxr-1][i]); + for (i = 3; i--; ) { + nveilimg[0][i] = veilimg[0][i]; + nveilimg[fvxr-1][i] = veilimg[fvxr-1][i]; + nveilimg[(fvyr-1)*fvxr][i] = veilimg[(fvyr-1)*fvxr][i]; + nveilimg[fvyr*fvxr-1][i] = veilimg[fvyr*fvxr-1][i]; + } + free((void *)veilimg); + veilimg = nveilimg; +} +#endif + +extern void +addveil( /* add veil to scanline */ + COLOR *sl, + int y +) +{ int vx, vy; double dx, dy; double lv, uv; register int x, i; vy = dy = (y+.5)/numscans(&inpres)*fvyr - .5; - if (vy >= fvyr-1) vy--; + while (vy >= fvyr-1) vy--; dy -= (double)vy; for (x = 0; x < scanlen(&inpres); x++) { vx = dx = (x+.5)/scanlen(&inpres)*fvxr - .5; - if (vx >= fvxr-1) vx--; + while (vx >= fvxr-1) vx--; dx -= (double)vx; for (i = 0; i < 3; i++) { lv = (1.-dy)*colval(veilscan(vy)[vx],i) + @@ -146,16 +286,15 @@ int y; /****************** ACUITY STUFF *******************/ -typedef struct scanbar { - short sampr; /* sample area size (power of 2) */ +typedef struct { + short sampe; /* sample area size (exponent of 2) */ short nscans; /* number of scanlines in this bar */ int len; /* individual scanline length */ - struct scanbar *next; /* next higher resolution scanbar */ int nread; /* number of scanlines loaded */ - /* followed by the scanline data */ + COLOR *sdata; /* scanbar data */ } SCANBAR; -#define bscan(sb,y) ((COLOR *)((sb)+1)+((y)%(sb)->nscans)*(sb)->len) +#define bscan(sb,y) ((COLOR *)(sb)->sdata+((y)%(sb)->nscans)*(sb)->len) SCANBAR *rootbar; /* root scan bar (lowest resolution) */ @@ -163,58 +302,45 @@ float *inpacuD; /* input acuity data (cycles/degree) #define tsampr(x,y) inpacuD[(y)*fvxr+(x)] +static COLOR * getascan(SCANBAR *sb, int y); +static void acusample(COLOR col, int x, int y, double sr); +static void ascanval(COLOR col, int x, int y, SCANBAR *sb); +static SCANBAR *sballoc(int se, int ns, int sl); -double -hacuity(La) /* return visual acuity in cycles/degree */ -double La; -{ /* data due to S. Shaler (we should fit it!) */ -#define NPOINTS 20 - static float l10lum[NPOINTS] = { - -3.10503,-2.66403,-2.37703,-2.09303,-1.64403,-1.35803, - -1.07403,-0.67203,-0.38503,-0.10103,0.29397,0.58097,0.86497, - 1.25697,1.54397,1.82797,2.27597,2.56297,2.84697,3.24897 - }; - static float resfreq[NPOINTS] = { - 2.09,3.28,3.79,4.39,6.11,8.83,10.94,18.66,23.88,31.05,37.42, - 37.68,41.60,43.16,45.30,47.00,48.43,48.32,51.06,51.09 - }; - double l10La; - register int i; - /* interpolate/extrapolate data */ - l10La = log10(La); - for (i = 0; i < NPOINTS-2 && l10lum[i+1] <= l10La; i++) - ; - return( ( (l10lum[i+1] - l10La)*resfreq[i] + - (l10La - l10lum[i])*resfreq[i+1] ) / - (l10lum[i+1] - l10lum[i]) ); -#undef NPOINTS +extern double +hacuity( /* return visual acuity in cycles/degree */ + double La +) +{ + /* functional fit */ + return(17.25*atan(1.4*log10(La) + 0.35) + 25.72); } -COLOR * -getascan(sb, y) /* find/read scanline y for scanbar sb */ -register SCANBAR *sb; -int y; +static COLOR * +getascan( /* find/read scanline y for scanbar sb */ + register SCANBAR *sb, + int y +) { register COLOR *sl0, *sl1, *mysl; register int i; - if (y < sb->nread - sb->nscans) { - fprintf(stderr, "%s: internal - cannot backspace in getascan\n", - progname); - exit(1); - } + if (y < sb->nread - sb->nscans) /* too far back? */ + return(NULL); for ( ; y >= sb->nread; sb->nread++) { /* read as necessary */ mysl = bscan(sb, sb->nread); - if (sb->sampr == 1) { + if (sb->sampe == 0) { if (freadscan(mysl, sb->len, infp) < 0) { fprintf(stderr, "%s: %s: scanline read error\n", progname, infn); exit(1); } } else { - sl0 = getascan(sb->next, 2*y); - sl1 = getascan(sb->next, 2*y+1); + sl0 = getascan(sb+1, 2*y); + if (sl0 == NULL) + return(NULL); + sl1 = getascan(sb+1, 2*y+1); for (i = 0; i < sb->len; i++) { copycolor(mysl[i], sl0[2*i]); addcolor(mysl[i], sl0[2*i+1]); @@ -228,9 +354,11 @@ int y; } -acuscan(scln, y) /* get acuity-sampled scanline */ -COLOR *scln; -int y; +extern void +acuscan( /* get acuity-sampled scanline */ + COLOR *scln, + int y +) { double sr; double dx, dy; @@ -238,12 +366,12 @@ int y; register int x; /* compute foveal y position */ iy = dy = (y+.5)/numscans(&inpres)*fvyr - .5; - if (iy >= fvyr-1) iy--; + while (iy >= fvyr-1) iy--; dy -= (double)iy; for (x = 0; x < scanlen(&inpres); x++) { /* compute foveal x position */ ix = dx = (x+.5)/scanlen(&inpres)*fvxr - .5; - if (ix >= fvxr-1) ix--; + while (ix >= fvxr-1) ix--; dx -= (double)ix; /* interpolate sample rate */ sr = (1.-dy)*((1.-dx)*tsampr(ix,iy) + dx*tsampr(ix+1,iy)) + @@ -254,46 +382,61 @@ int y; } -acusample(col, x, y, sr) /* interpolate sample at (x,y) using rate sr */ -COLOR col; -int x, y; -double sr; +static void +acusample( /* interpolate sample at (x,y) using rate sr */ + COLOR col, + int x, + int y, + double sr +) { COLOR c1; double d; register SCANBAR *sb0; - for (sb0 = rootbar; sb0->next != NULL && sb0->next->sampr > sr; - sb0 = sb0->next) + for (sb0 = rootbar; sb0->sampe != 0 && 1< sr; sb0++) ; ascanval(col, x, y, sb0); - if (sb0->next == NULL) /* don't extrapolate highest */ + if (sb0->sampe == 0) /* don't extrapolate highest */ return; - ascanval(c1, x, y, sb0->next); - d = (sb0->sampr - sr)/(sb0->sampr - sb0->next->sampr); + ascanval(c1, x, y, sb0+1); + d = ((1<sampe) - sr)/(1<sampr - .5; - if (ix >= sb->len-1) ix--; + if (sb->sampe == 0) { /* no need to interpolate */ + sl0 = getascan(sb, y); + copycolor(col, sl0[x]); + return; + } + /* compute coordinates for sb */ + ix = dx = (x+.5)/(1<sampe) - .5; + while (ix >= sb->len-1) ix--; dx -= (double)ix; - iy = dy = (y+.5)/sb->sampr - .5; - if (iy >= numscans(&inpres)/sb->sampr-1) iy--; + iy = dy = (y+.5)/(1<sampe) - .5; + while (iy >= (numscans(&inpres)>>sb->sampe)-1) iy--; dy -= (double)iy; /* get scanlines */ sl0 = getascan(sb, iy); +#ifdef DEBUG + if (sl0 == NULL) + error(INTERNAL, "cannot backspace in ascanval"); +#endif sl1 = getascan(sb, iy+1); /* 2D linear interpolation */ copycolor(col, sl0[ix]); @@ -309,32 +452,44 @@ SCANBAR *sb; scalecolor(col, 1.-dy); scalecolor(c1y, dy); addcolor(col, c1y); + for (ix = 0; ix < 3; ix++) /* make sure no negative */ + if (colval(col,ix) < 0.) + colval(col,ix) = 0.; } -SCANBAR * -sballoc(sr, ns, sl) /* allocate scanbar */ -int sr; /* sampling rate */ -int ns; /* number of scanlines */ -int sl; /* original scanline length */ +static SCANBAR * +sballoc( /* allocate scanbar */ + int se, /* sampling rate exponent */ + int ns, /* number of scanlines */ + int sl /* original scanline length */ +) { + SCANBAR *sbarr; register SCANBAR *sb; - sb = (SCANBAR *)malloc(sizeof(SCANBAR)+(sl/sr)*ns*sizeof(COLOR)); + sbarr = sb = (SCANBAR *)malloc((se+1)*sizeof(SCANBAR)); if (sb == NULL) syserror("malloc"); - sb->nscans = ns; - sb->len = sl/sr; - sb->nread = 0; - if ((sb->sampr = sr) > 1) - sb->next = sballoc(sr/2, ns*2, sl); - else - sb->next = NULL; - return(sb); + do { + sb->len = sl>>se; + if (sb->len <= 0) + continue; + sb->sampe = se; + sb->nscans = ns; + sb->sdata = (COLOR *)malloc(sb->len*ns*sizeof(COLOR)); + if (sb->sdata == NULL) + syserror("malloc"); + sb->nread = 0; + ns <<= 1; + sb++; + } while (--se >= 0); + return(sbarr); } -initacuity() /* initialize variable acuity sampling */ +extern void +initacuity(void) /* initialize variable acuity sampling */ { FVECT diffx, diffy, cp; double omega, maxsr; @@ -358,7 +513,7 @@ initacuity() /* initialize variable acuity sampling } fcross(cp, diffx, diffy); omega = 0.5 * sqrt(DOT(cp,cp)); - if (omega <= FTINY) + if (omega <= FTINY*FTINY) tsampr(x,y) = 1.; else if ((tsampr(x,y) = PI/180. / sqrt(omega) / hacuity(plum(fovscan(y)[x]))) > maxsr) @@ -370,9 +525,9 @@ initacuity() /* initialize variable acuity sampling tsampr(x,fvyr-1) = tsampr(x,fvyr-2); } for (y = 0; y < fvyr; y++) { - tsampr(y,0) = tsampr(y,1); - tsampr(y,fvxr-1) = tsampr(y,fvxr-2); + tsampr(0,y) = tsampr(1,y); + tsampr(fvxr-1,y) = tsampr(fvxr-2,y); } /* initialize with next power of two */ - rootbar = sballoc(2<<(int)(log(maxsr)/log(2.)), 2, scanlen(&inpres)); + rootbar = sballoc((int)(log(maxsr)/log(2.))+1, 2, scanlen(&inpres)); }