| 1 | /* Copyright (c) 1994 Regents of the University of California */ | 
| 2 |  | 
| 3 | #ifndef lint | 
| 4 | static char SCCSid[] = "$SunId$ LBL"; | 
| 5 | #endif | 
| 6 |  | 
| 7 | /* | 
| 8 | * Neural-Net quantization algorithm based on work of Anthony Dekker | 
| 9 | */ | 
| 10 |  | 
| 11 | #include "standard.h" | 
| 12 |  | 
| 13 | #include "color.h" | 
| 14 |  | 
| 15 | #include "random.h" | 
| 16 |  | 
| 17 | #ifdef COMPAT_MODE | 
| 18 | #define neu_init        new_histo | 
| 19 | #define neu_pixel       cnt_pixel | 
| 20 | #define neu_colrs       cnt_colrs | 
| 21 | #define neu_clrtab      new_clrtab | 
| 22 | #define neu_map_pixel   map_pixel | 
| 23 | #define neu_map_colrs   map_colrs | 
| 24 | #define neu_dith_colrs  dith_colrs | 
| 25 | #endif | 
| 26 | /* our color table (global) */ | 
| 27 | extern BYTE     clrtab[256][3]; | 
| 28 | static int      clrtabsiz; | 
| 29 |  | 
| 30 | #ifndef DEFSMPFAC | 
| 31 | #ifdef SPEED | 
| 32 | #define DEFSMPFAC       (240/SPEED+3) | 
| 33 | #else | 
| 34 | #define DEFSMPFAC       30 | 
| 35 | #endif | 
| 36 | #endif | 
| 37 |  | 
| 38 | int     samplefac = DEFSMPFAC;  /* sampling factor */ | 
| 39 |  | 
| 40 | /* Samples array starts off holding spacing between adjacent | 
| 41 | * samples, and ends up holding actual BGR sample values. | 
| 42 | */ | 
| 43 | static BYTE     *thesamples; | 
| 44 | static int      nsamples; | 
| 45 | static BYTE     *cursamp; | 
| 46 | static long     skipcount; | 
| 47 |  | 
| 48 | #define MAXSKIP         (1<<24-1) | 
| 49 |  | 
| 50 | #define nskip(sp)       ((long)(sp)[0]<<16|(long)(sp)[1]<<8|(long)(sp)[2]) | 
| 51 |  | 
| 52 | #define setskip(sp,n)   ((sp)[0]=(n)>>16,(sp)[1]=((n)>>8)&255,(sp)[2]=(n)&255) | 
| 53 |  | 
| 54 |  | 
| 55 | neu_init(npixels)               /* initialize our sample array */ | 
| 56 | long    npixels; | 
| 57 | { | 
| 58 | register int    nsleft; | 
| 59 | register long   sv; | 
| 60 | double  rval, cumprob; | 
| 61 | long    npleft; | 
| 62 |  | 
| 63 | nsamples = npixels/samplefac; | 
| 64 | if (nsamples < 600) | 
| 65 | return(-1); | 
| 66 | thesamples = (BYTE *)malloc(nsamples*3); | 
| 67 | if (thesamples == NULL) | 
| 68 | return(-1); | 
| 69 | cursamp = thesamples; | 
| 70 | npleft = npixels; | 
| 71 | nsleft = nsamples; | 
| 72 | while (nsleft) { | 
| 73 | rval = frandom();       /* random distance to next sample */ | 
| 74 | sv = 0; | 
| 75 | cumprob = 0.; | 
| 76 | while ((cumprob += (1.-cumprob)*nsleft/(npleft-sv)) < rval) | 
| 77 | sv++; | 
| 78 | if (nsleft == nsamples) | 
| 79 | skipcount = sv; | 
| 80 | else { | 
| 81 | setskip(cursamp, sv); | 
| 82 | cursamp += 3; | 
| 83 | } | 
| 84 | npleft -= sv+1; | 
| 85 | nsleft--; | 
| 86 | } | 
| 87 | setskip(cursamp, npleft);       /* tag on end to skip the rest */ | 
| 88 | cursamp = thesamples; | 
| 89 | return(0); | 
| 90 | } | 
| 91 |  | 
| 92 |  | 
| 93 | neu_pixel(col)                  /* add pixel to our samples */ | 
| 94 | register BYTE   col[]; | 
| 95 | { | 
| 96 | if (!skipcount--) { | 
| 97 | skipcount = nskip(cursamp); | 
| 98 | cursamp[0] = col[BLU]; | 
| 99 | cursamp[1] = col[GRN]; | 
| 100 | cursamp[2] = col[RED]; | 
| 101 | cursamp += 3; | 
| 102 | } | 
| 103 | } | 
| 104 |  | 
| 105 |  | 
| 106 | neu_colrs(cs, n)                /* add a scanline to our samples */ | 
| 107 | register COLR   *cs; | 
| 108 | register int    n; | 
| 109 | { | 
| 110 | while (n > skipcount) { | 
| 111 | cs += skipcount; | 
| 112 | n -= skipcount+1; | 
| 113 | skipcount = nskip(cursamp); | 
| 114 | cursamp[0] = cs[0][BLU]; | 
| 115 | cursamp[1] = cs[0][GRN]; | 
| 116 | cursamp[2] = cs[0][RED]; | 
| 117 | cs++; | 
| 118 | cursamp += 3; | 
| 119 | } | 
| 120 | skipcount -= n; | 
| 121 | } | 
| 122 |  | 
| 123 |  | 
| 124 | neu_clrtab(ncolors)             /* make new color table using ncolors */ | 
| 125 | int     ncolors; | 
| 126 | { | 
| 127 | clrtabsiz = ncolors; | 
| 128 | if (clrtabsiz > 256) clrtabsiz = 256; | 
| 129 | initnet(); | 
| 130 | learn(); | 
| 131 | unbiasnet(); | 
| 132 | cpyclrtab(); | 
| 133 | inxbuild(); | 
| 134 | /* we're done with our samples */ | 
| 135 | free((char *)thesamples); | 
| 136 | /* reset dithering function */ | 
| 137 | neu_dith_colrs((BYTE *)NULL, (COLR *)NULL, 0); | 
| 138 | /* return new color table size */ | 
| 139 | return(clrtabsiz); | 
| 140 | } | 
| 141 |  | 
| 142 |  | 
| 143 | int | 
| 144 | neu_map_pixel(col)              /* get pixel for color */ | 
| 145 | register BYTE   col[]; | 
| 146 | { | 
| 147 | return(inxsearch(col[BLU],col[GRN],col[RED])); | 
| 148 | } | 
| 149 |  | 
| 150 |  | 
| 151 | neu_map_colrs(bs, cs, n)        /* convert a scanline to color index values */ | 
| 152 | register BYTE   *bs; | 
| 153 | register COLR   *cs; | 
| 154 | register int    n; | 
| 155 | { | 
| 156 | while (n-- > 0) { | 
| 157 | *bs++ = inxsearch(cs[0][BLU],cs[0][GRN],cs[0][RED]); | 
| 158 | cs++; | 
| 159 | } | 
| 160 | } | 
| 161 |  | 
| 162 |  | 
| 163 | neu_dith_colrs(bs, cs, n)       /* convert scanline to dithered index values */ | 
| 164 | register BYTE   *bs; | 
| 165 | register COLR   *cs; | 
| 166 | int     n; | 
| 167 | { | 
| 168 | static short    (*cerr)[3] = NULL; | 
| 169 | static int      N = 0; | 
| 170 | int     err[3], errp[3]; | 
| 171 | register int    x, i; | 
| 172 |  | 
| 173 | if (n != N) {           /* get error propogation array */ | 
| 174 | if (N) { | 
| 175 | free((char *)cerr); | 
| 176 | cerr = NULL; | 
| 177 | } | 
| 178 | if (n) | 
| 179 | cerr = (short (*)[3])malloc(3*n*sizeof(short)); | 
| 180 | if (cerr == NULL) { | 
| 181 | N = 0; | 
| 182 | map_colrs(bs, cs, n); | 
| 183 | return; | 
| 184 | } | 
| 185 | N = n; | 
| 186 | bzero((char *)cerr, 3*N*sizeof(short)); | 
| 187 | } | 
| 188 | err[0] = err[1] = err[2] = 0; | 
| 189 | for (x = 0; x < n; x++) { | 
| 190 | for (i = 0; i < 3; i++) {       /* dither value */ | 
| 191 | errp[i] = err[i]; | 
| 192 | err[i] += cerr[x][i]; | 
| 193 | #ifdef MAXERR | 
| 194 | if (err[i] > MAXERR) err[i] = MAXERR; | 
| 195 | else if (err[i] < -MAXERR) err[i] = -MAXERR; | 
| 196 | #endif | 
| 197 | err[i] += cs[x][i]; | 
| 198 | if (err[i] < 0) err[i] = 0; | 
| 199 | else if (err[i] > 255) err[i] = 255; | 
| 200 | } | 
| 201 | bs[x] = inxsearch(err[BLU],err[GRN],err[RED]); | 
| 202 | for (i = 0; i < 3; i++) {       /* propagate error */ | 
| 203 | err[i] -= clrtab[bs[x]][i]; | 
| 204 | err[i] /= 3; | 
| 205 | cerr[x][i] = err[i] + errp[i]; | 
| 206 | } | 
| 207 | } | 
| 208 | } | 
| 209 |  | 
| 210 | /* The following was adapted and modified from the original (GW)        */ | 
| 211 | /*----------------------------------------------------------------------*/ | 
| 212 | /*                                                                      */ | 
| 213 | /*                              NeuQuant                                */ | 
| 214 | /*                              --------                                */ | 
| 215 | /*                                                                      */ | 
| 216 | /*              Copyright: Anthony Dekker, June 1994                    */ | 
| 217 | /*                                                                      */ | 
| 218 | /* This program performs colour quantization of graphics images (SUN    */ | 
| 219 | /* raster files).  It uses a Kohonen Neural Network.  It produces       */ | 
| 220 | /* better results than existing methods and runs faster, using minimal  */ | 
| 221 | /* space (8kB plus the image itself).  The algorithm is described in    */ | 
| 222 | /* the paper "Kohonen Neural Networks for Optimal Colour Quantization"  */ | 
| 223 | /* to appear in the journal "Network: Computation in Neural Systems".   */ | 
| 224 | /* It is a significant improvement of an earlier algorithm.             */ | 
| 225 | /*                                                                      */ | 
| 226 | /* This program is distributed free for academic use or for evaluation  */ | 
| 227 | /* by commercial organizations.                                         */ | 
| 228 | /*                                                                      */ | 
| 229 | /*      Usage:  NeuQuant -n inputfile > outputfile                      */ | 
| 230 | /*                                                                      */ | 
| 231 | /* where n is a sampling factor for neural learning.                    */ | 
| 232 | /*                                                                      */ | 
| 233 | /* Program performance compared with other methods is as follows:       */ | 
| 234 | /*                                                                      */ | 
| 235 | /*      Algorithm               |  Av. CPU Time |  Quantization Error   */ | 
| 236 | /*      -------------------------------------------------------------   */ | 
| 237 | /*      NeuQuant -3             |  314          |  5.55                 */ | 
| 238 | /*      NeuQuant -10            |  119          |  5.97                 */ | 
| 239 | /*      NeuQuant -30            |  65           |  6.53                 */ | 
| 240 | /*      Oct-Trees               |  141          |  8.96                 */ | 
| 241 | /*      Median Cut (XV -best)   |  420          |  9.28                 */ | 
| 242 | /*      Median Cut (XV -slow)   |  72           |  12.15                */ | 
| 243 | /*                                                                      */ | 
| 244 | /* Author's address:    Dept of ISCS, National University of Singapore  */ | 
| 245 | /*                      Kent Ridge, Singapore 0511                      */ | 
| 246 | /* Email:       [email protected]                                     */ | 
| 247 | /*----------------------------------------------------------------------*/ | 
| 248 |  | 
| 249 | #define bool    int | 
| 250 | #define false   0 | 
| 251 | #define true    1 | 
| 252 |  | 
| 253 | #define initrad                 32 | 
| 254 | #define radiusdec               30 | 
| 255 | #define alphadec;               30 | 
| 256 |  | 
| 257 | /* defs for freq and bias */ | 
| 258 | #define gammashift      10 | 
| 259 | #define betashift       gammashift | 
| 260 | #define intbiasshift    16 | 
| 261 | #define intbias         (1<<intbiasshift) | 
| 262 | #define gamma           (1<<gammashift) | 
| 263 | #define beta            (intbias>>betashift) | 
| 264 | #define betagamma       (intbias<<(gammashift-betashift)) | 
| 265 | #define gammaphi        (intbias<<(gammashift-8)) | 
| 266 |  | 
| 267 | /* defs for rad and alpha */ | 
| 268 | #define maxrad          (initrad+1) | 
| 269 | #define radiusbiasshift 6 | 
| 270 | #define radiusbias      (1<<radiusbiasshift) | 
| 271 | #define initradius      ((int) (initrad*radiusbias)) | 
| 272 | #define alphabiasshift  10 | 
| 273 | #define initalpha       (1<<alphabiasshift) | 
| 274 | #define radbiasshift    8 | 
| 275 | #define radbias         (1<<radbiasshift) | 
| 276 | #define alpharadbshift  (alphabiasshift+radbiasshift) | 
| 277 | #define alpharadbias    (1<<alpharadbshift) | 
| 278 |  | 
| 279 | /* other defs */ | 
| 280 | #define netbiasshift    4 | 
| 281 | #define funnyshift      (intbiasshift-netbiasshift) | 
| 282 | #define maxnetval       ((256<<netbiasshift)-1) | 
| 283 | #define ncycles         100 | 
| 284 | #define jump1           499     /* prime */ | 
| 285 | #define jump2           491     /* prime */ | 
| 286 | #define jump3           487     /* any pic whose size was divisible by all */ | 
| 287 | #define jump4           503     /* four primes would be simply enormous */ | 
| 288 |  | 
| 289 | /* cheater definitions (GW) */ | 
| 290 | #define thepicture      thesamples | 
| 291 | #define lengthcount     (nsamples*3) | 
| 292 | #define samplefac       1 | 
| 293 |  | 
| 294 | typedef int pixel[4];  /* BGRc */ | 
| 295 |  | 
| 296 | static pixel network[256]; | 
| 297 |  | 
| 298 | static int netindex[256]; | 
| 299 |  | 
| 300 | static int bias [256]; | 
| 301 | static int freq [256]; | 
| 302 | static int radpower[256];       /* actually need only go up to maxrad */ | 
| 303 |  | 
| 304 | /* fixed space overhead 256*4+256+256+256+256 words = 256*8 = 8kB */ | 
| 305 |  | 
| 306 |  | 
| 307 | static | 
| 308 | initnet() | 
| 309 | { | 
| 310 | register int i; | 
| 311 | register int *p; | 
| 312 |  | 
| 313 | for (i=0; i<clrtabsiz; i++) { | 
| 314 | p = network[i]; | 
| 315 | p[0] = | 
| 316 | p[1] = | 
| 317 | p[2] = (i<<8) / clrtabsiz; | 
| 318 | freq[i] = intbias/clrtabsiz;  /* 1/256 */ | 
| 319 | bias[i] = 0; | 
| 320 | } | 
| 321 | } | 
| 322 |  | 
| 323 |  | 
| 324 | static | 
| 325 | inxbuild() | 
| 326 | { | 
| 327 | register int i,j,smallpos,smallval; | 
| 328 | register int *p,*q; | 
| 329 | int start,previous; | 
| 330 |  | 
| 331 | previous = 0; | 
| 332 | start = 0; | 
| 333 | for (i=0; i<clrtabsiz; i++) { | 
| 334 | p = network[i]; | 
| 335 | smallpos = i; | 
| 336 | smallval = p[1];        /* index on g */ | 
| 337 | /* find smallest in i+1..clrtabsiz-1 */ | 
| 338 | for (j=i+1; j<clrtabsiz; j++) { | 
| 339 | q = network[j]; | 
| 340 | if (q[1] < smallval) {  /* index on g */ | 
| 341 | smallpos = j; | 
| 342 | smallval = q[1]; /* index on g */ | 
| 343 | } | 
| 344 | } | 
| 345 | q = network[smallpos]; | 
| 346 | if (i != smallpos) { | 
| 347 | j = q[0];   q[0] = p[0];   p[0] = j; | 
| 348 | j = q[1];   q[1] = p[1];   p[1] = j; | 
| 349 | j = q[2];   q[2] = p[2];   p[2] = j; | 
| 350 | j = q[3];   q[3] = p[3];   p[3] = j; | 
| 351 | } | 
| 352 | /* smallval entry is now in position i */ | 
| 353 | if (smallval != previous) { | 
| 354 | netindex[previous] = (start+i)>>1; | 
| 355 | for (j=previous+1; j<smallval; j++) netindex[j] = i; | 
| 356 | previous = smallval; | 
| 357 | start = i; | 
| 358 | } | 
| 359 | } | 
| 360 | netindex[previous] = (start+clrtabsiz-1)>>1; | 
| 361 | for (j=previous+1; j<clrtabsiz; j++) netindex[j] = clrtabsiz-1; | 
| 362 | } | 
| 363 |  | 
| 364 |  | 
| 365 | static int | 
| 366 | inxsearch(b,g,r)  /* accepts real BGR values after net is unbiased */ | 
| 367 | register int b,g,r; | 
| 368 | { | 
| 369 | register int i,j,best,x,y,bestd; | 
| 370 | register int *p; | 
| 371 |  | 
| 372 | bestd = 1000;   /* biggest possible dist is 256*3 */ | 
| 373 | best = -1; | 
| 374 | i = netindex[g]; /* index on g */ | 
| 375 | j = i-1; | 
| 376 |  | 
| 377 | while ((i<clrtabsiz) || (j>=0)) { | 
| 378 | if (i<clrtabsiz) { | 
| 379 | p = network[i]; | 
| 380 | x = p[1] - g;   /* inx key */ | 
| 381 | if (x >= bestd) i = clrtabsiz; /* stop iter */ | 
| 382 | else { | 
| 383 | i++; | 
| 384 | if (x<0) x = -x; | 
| 385 | y = p[0] - b; | 
| 386 | if (y<0) y = -y; | 
| 387 | x += y; | 
| 388 | if (x<bestd) { | 
| 389 | y = p[2] - r; | 
| 390 | if (y<0) y = -y; | 
| 391 | x += y; /* x holds distance */ | 
| 392 | if (x<bestd) {bestd=x; best=p[3];} | 
| 393 | } | 
| 394 | } | 
| 395 | } | 
| 396 | if (j>=0) { | 
| 397 | p = network[j]; | 
| 398 | x = g - p[1]; /* inx key - reverse dif */ | 
| 399 | if (x >= bestd) j = -1; /* stop iter */ | 
| 400 | else { | 
| 401 | j--; | 
| 402 | if (x<0) x = -x; | 
| 403 | y = p[0] - b; | 
| 404 | if (y<0) y = -y; | 
| 405 | x += y; | 
| 406 | if (x<bestd) { | 
| 407 | y = p[2] - r; | 
| 408 | if (y<0) y = -y; | 
| 409 | x += y; /* x holds distance */ | 
| 410 | if (x<bestd) {bestd=x; best=p[3];} | 
| 411 | } | 
| 412 | } | 
| 413 | } | 
| 414 | } | 
| 415 | return(best); | 
| 416 | } | 
| 417 |  | 
| 418 |  | 
| 419 | static int | 
| 420 | contest(b,g,r)  /* accepts biased BGR values */ | 
| 421 | register int b,g,r; | 
| 422 | { | 
| 423 | register int i,best,bestbias,x,y,bestd,bestbiasd; | 
| 424 | register int *p,*q, *pp; | 
| 425 |  | 
| 426 | bestd = ~(1<<31); | 
| 427 | bestbiasd = bestd; | 
| 428 | best = -1; | 
| 429 | bestbias = best; | 
| 430 | q = bias; | 
| 431 | p = freq; | 
| 432 | for (i=0; i<clrtabsiz; i++) { | 
| 433 | pp = network[i]; | 
| 434 | x = pp[0] - b; | 
| 435 | if (x<0) x = -x; | 
| 436 | y = pp[1] - g; | 
| 437 | if (y<0) y = -y; | 
| 438 | x += y; | 
| 439 | y = pp[2] - r; | 
| 440 | if (y<0) y = -y; | 
| 441 | x += y; /* x holds distance */ | 
| 442 | /* >> netbiasshift not needed if funnyshift used */ | 
| 443 | if (x<bestd) {bestd=x; best=i;} | 
| 444 | y = x - ((*q)>>funnyshift);  /* y holds biasd */ | 
| 445 | if (y<bestbiasd) {bestbiasd=y; bestbias=i;} | 
| 446 | y = (*p >> betashift);       /* y holds beta*freq */ | 
| 447 | *p -= y; | 
| 448 | *q += (y<<gammashift); | 
| 449 | p++; | 
| 450 | q++; | 
| 451 | } | 
| 452 | freq[best] += beta; | 
| 453 | bias[best] -= betagamma; | 
| 454 | return(bestbias); | 
| 455 | } | 
| 456 |  | 
| 457 |  | 
| 458 | static | 
| 459 | alterneigh(rad,i,b,g,r) /* accepts biased BGR values */ | 
| 460 | int rad,i; | 
| 461 | register int b,g,r; | 
| 462 | { | 
| 463 | register int j,k,lo,hi,a; | 
| 464 | register int *p, *q; | 
| 465 |  | 
| 466 | lo = i-rad; | 
| 467 | if (lo<-1) lo= -1; | 
| 468 | hi = i+rad; | 
| 469 | if (hi>clrtabsiz) hi=clrtabsiz; | 
| 470 |  | 
| 471 | j = i+1; | 
| 472 | k = i-1; | 
| 473 | q = radpower; | 
| 474 | while ((j<hi) || (k>lo)) { | 
| 475 | a = (*(++q)); | 
| 476 | if (j<hi) { | 
| 477 | p = network[j]; | 
| 478 | *p -= (a*(*p - b)) / alpharadbias; | 
| 479 | p++; | 
| 480 | *p -= (a*(*p - g)) / alpharadbias; | 
| 481 | p++; | 
| 482 | *p -= (a*(*p - r)) / alpharadbias; | 
| 483 | j++; | 
| 484 | } | 
| 485 | if (k>lo) { | 
| 486 | p = network[k]; | 
| 487 | *p -= (a*(*p - b)) / alpharadbias; | 
| 488 | p++; | 
| 489 | *p -= (a*(*p - g)) / alpharadbias; | 
| 490 | p++; | 
| 491 | *p -= (a*(*p - r)) / alpharadbias; | 
| 492 | k--; | 
| 493 | } | 
| 494 | } | 
| 495 | } | 
| 496 |  | 
| 497 |  | 
| 498 | static | 
| 499 | altersingle(alpha,j,b,g,r)      /* accepts biased BGR values */ | 
| 500 | register int alpha,j,b,g,r; | 
| 501 | { | 
| 502 | register int *q; | 
| 503 |  | 
| 504 | q = network[j];         /* alter hit neuron */ | 
| 505 | *q -= (alpha*(*q - b)) / initalpha; | 
| 506 | q++; | 
| 507 | *q -= (alpha*(*q - g)) / initalpha; | 
| 508 | q++; | 
| 509 | *q -= (alpha*(*q - r)) / initalpha; | 
| 510 | } | 
| 511 |  | 
| 512 |  | 
| 513 | static | 
| 514 | learn() | 
| 515 | { | 
| 516 | register int i,j,b,g,r; | 
| 517 | int radius,rad,alpha,step,delta,upto; | 
| 518 | register unsigned char *p; | 
| 519 | unsigned char *lim; | 
| 520 |  | 
| 521 | upto = lengthcount/(3*samplefac); | 
| 522 | delta = upto/ncycles; | 
| 523 | lim = thepicture + lengthcount; | 
| 524 | p = thepicture; | 
| 525 | alpha = initalpha; | 
| 526 | radius = initradius; | 
| 527 | rad = radius >> radiusbiasshift; | 
| 528 | if (rad <= 1) rad = 0; | 
| 529 | for (i=0; i<rad; i++) | 
| 530 | radpower[i] = alpha*(((rad*rad - i*i)*radbias)/(rad*rad)); | 
| 531 |  | 
| 532 | if ((lengthcount%jump1) != 0) step = 3*jump1; | 
| 533 | else { | 
| 534 | if ((lengthcount%jump2) !=0) step = 3*jump2; | 
| 535 | else { | 
| 536 | if ((lengthcount%jump3) !=0) step = 3*jump3; | 
| 537 | else step = 3*jump4; | 
| 538 | } | 
| 539 | } | 
| 540 | i = 0; | 
| 541 | while (i < upto) { | 
| 542 | b = p[0] << netbiasshift; | 
| 543 | g = p[1] << netbiasshift; | 
| 544 | r = p[2] << netbiasshift; | 
| 545 | j = contest(b,g,r); | 
| 546 |  | 
| 547 | altersingle(alpha,j,b,g,r); | 
| 548 | if (rad) alterneigh(rad,j,b,g,r); | 
| 549 | /* alter neighbours */ | 
| 550 |  | 
| 551 | p += step; | 
| 552 | if (p >= lim) p -= lengthcount; | 
| 553 |  | 
| 554 | i++; | 
| 555 | if (i%delta == 0) { | 
| 556 | alpha -= alpha / alphadec; | 
| 557 | radius -= radius / radiusdec; | 
| 558 | rad = radius >> radiusbiasshift; | 
| 559 | if (rad <= 1) rad = 0; | 
| 560 | for (j=0; j<rad; j++) | 
| 561 | radpower[j] = alpha*(((rad*rad - j*j)*radbias)/(rad*rad)); | 
| 562 | } | 
| 563 | } | 
| 564 | } | 
| 565 |  | 
| 566 | static | 
| 567 | unbiasnet() | 
| 568 | { | 
| 569 | int i,j; | 
| 570 |  | 
| 571 | for (i=0; i<clrtabsiz; i++) { | 
| 572 | for (j=0; j<3; j++) | 
| 573 | network[i][j] >>= netbiasshift; | 
| 574 | network[i][3] = i; /* record colour no */ | 
| 575 | } | 
| 576 | } | 
| 577 |  | 
| 578 | /* Don't do this until the network has been unbiased */ | 
| 579 |  | 
| 580 | static | 
| 581 | cpyclrtab() | 
| 582 | { | 
| 583 | register int i,j,k; | 
| 584 |  | 
| 585 | for (j=0; j<clrtabsiz; j++) { | 
| 586 | k = network[j][3]; | 
| 587 | for (i = 0; i < 3; i++) | 
| 588 | clrtab[k][i] = network[j][2-i]; | 
| 589 | } | 
| 590 | } |