| 1 |
– |
/* Copyright (c) 1994 Regents of the University of California */ |
| 2 |
– |
|
| 1 |
|
#ifndef lint |
| 2 |
< |
static char SCCSid[] = "$SunId$ LBL"; |
| 2 |
> |
static const char RCSid[] = "$Id$"; |
| 3 |
|
#endif |
| 6 |
– |
|
| 4 |
|
/* |
| 5 |
|
* Neural-Net quantization algorithm based on work of Anthony Dekker |
| 6 |
|
*/ |
| 7 |
|
|
| 8 |
< |
#include "standard.h" |
| 8 |
> |
#include "copyright.h" |
| 9 |
|
|
| 10 |
< |
#include "color.h" |
| 10 |
> |
#include <string.h> |
| 11 |
|
|
| 12 |
+ |
#include "standard.h" |
| 13 |
+ |
#include "color.h" |
| 14 |
|
#include "random.h" |
| 15 |
+ |
#include "clrtab.h" |
| 16 |
|
|
| 17 |
|
#ifdef COMPAT_MODE |
| 18 |
|
#define neu_init new_histo |
| 51 |
|
|
| 52 |
|
#define setskip(sp,n) ((sp)[0]=(n)>>16,(sp)[1]=((n)>>8)&255,(sp)[2]=(n)&255) |
| 53 |
|
|
| 54 |
+ |
static void initnet(void); |
| 55 |
+ |
static void inxbuild(void); |
| 56 |
+ |
static int inxsearch(int b, int g, int r); |
| 57 |
+ |
static int contest(int b, int g, int r); |
| 58 |
+ |
static void altersingle(int alpha, int i, int b, int g, int r); |
| 59 |
+ |
static void alterneigh(int rad, int i, int b, int g, int r); |
| 60 |
+ |
static void learn(void); |
| 61 |
+ |
static void unbiasnet(void); |
| 62 |
+ |
static void cpyclrtab(void); |
| 63 |
|
|
| 64 |
< |
neu_init(npixels) /* initialize our sample array */ |
| 65 |
< |
long npixels; |
| 64 |
> |
|
| 65 |
> |
extern int |
| 66 |
> |
neu_init( /* initialize our sample array */ |
| 67 |
> |
long npixels |
| 68 |
> |
) |
| 69 |
|
{ |
| 70 |
|
register int nsleft; |
| 71 |
|
register long sv; |
| 102 |
|
} |
| 103 |
|
|
| 104 |
|
|
| 105 |
< |
neu_pixel(col) /* add pixel to our samples */ |
| 106 |
< |
register BYTE col[]; |
| 105 |
> |
extern void |
| 106 |
> |
neu_pixel( /* add pixel to our samples */ |
| 107 |
> |
register BYTE col[] |
| 108 |
> |
) |
| 109 |
|
{ |
| 110 |
|
if (!skipcount--) { |
| 111 |
|
skipcount = nskip(cursamp); |
| 117 |
|
} |
| 118 |
|
|
| 119 |
|
|
| 120 |
< |
neu_colrs(cs, n) /* add a scanline to our samples */ |
| 121 |
< |
register COLR *cs; |
| 122 |
< |
register int n; |
| 120 |
> |
extern void |
| 121 |
> |
neu_colrs( /* add a scanline to our samples */ |
| 122 |
> |
register COLR *cs, |
| 123 |
> |
register int n |
| 124 |
> |
) |
| 125 |
|
{ |
| 126 |
|
while (n > skipcount) { |
| 127 |
|
cs += skipcount; |
| 137 |
|
} |
| 138 |
|
|
| 139 |
|
|
| 140 |
< |
neu_clrtab(ncolors) /* make new color table using ncolors */ |
| 141 |
< |
int ncolors; |
| 140 |
> |
extern int |
| 141 |
> |
neu_clrtab( /* make new color table using ncolors */ |
| 142 |
> |
int ncolors |
| 143 |
> |
) |
| 144 |
|
{ |
| 145 |
|
clrtabsiz = ncolors; |
| 146 |
|
if (clrtabsiz > 256) clrtabsiz = 256; |
| 150 |
|
cpyclrtab(); |
| 151 |
|
inxbuild(); |
| 152 |
|
/* we're done with our samples */ |
| 153 |
< |
free((char *)thesamples); |
| 153 |
> |
free((void *)thesamples); |
| 154 |
|
/* reset dithering function */ |
| 155 |
|
neu_dith_colrs((BYTE *)NULL, (COLR *)NULL, 0); |
| 156 |
|
/* return new color table size */ |
| 158 |
|
} |
| 159 |
|
|
| 160 |
|
|
| 161 |
< |
int |
| 162 |
< |
neu_map_pixel(col) /* get pixel for color */ |
| 163 |
< |
register BYTE col[]; |
| 161 |
> |
extern int |
| 162 |
> |
neu_map_pixel( /* get pixel for color */ |
| 163 |
> |
register BYTE col[] |
| 164 |
> |
) |
| 165 |
|
{ |
| 166 |
|
return(inxsearch(col[BLU],col[GRN],col[RED])); |
| 167 |
|
} |
| 168 |
|
|
| 169 |
|
|
| 170 |
< |
neu_map_colrs(bs, cs, n) /* convert a scanline to color index values */ |
| 171 |
< |
register BYTE *bs; |
| 172 |
< |
register COLR *cs; |
| 173 |
< |
register int n; |
| 170 |
> |
extern void |
| 171 |
> |
neu_map_colrs( /* convert a scanline to color index values */ |
| 172 |
> |
register BYTE *bs, |
| 173 |
> |
register COLR *cs, |
| 174 |
> |
register int n |
| 175 |
> |
) |
| 176 |
|
{ |
| 177 |
|
while (n-- > 0) { |
| 178 |
|
*bs++ = inxsearch(cs[0][BLU],cs[0][GRN],cs[0][RED]); |
| 181 |
|
} |
| 182 |
|
|
| 183 |
|
|
| 184 |
< |
neu_dith_colrs(bs, cs, n) /* convert scanline to dithered index values */ |
| 185 |
< |
register BYTE *bs; |
| 186 |
< |
register COLR *cs; |
| 187 |
< |
int n; |
| 184 |
> |
extern void |
| 185 |
> |
neu_dith_colrs( /* convert scanline to dithered index values */ |
| 186 |
> |
register BYTE *bs, |
| 187 |
> |
register COLR *cs, |
| 188 |
> |
int n |
| 189 |
> |
) |
| 190 |
|
{ |
| 191 |
|
static short (*cerr)[3] = NULL; |
| 192 |
|
static int N = 0; |
| 195 |
|
|
| 196 |
|
if (n != N) { /* get error propogation array */ |
| 197 |
|
if (N) { |
| 198 |
< |
free((char *)cerr); |
| 198 |
> |
free((void *)cerr); |
| 199 |
|
cerr = NULL; |
| 200 |
|
} |
| 201 |
|
if (n) |
| 206 |
|
return; |
| 207 |
|
} |
| 208 |
|
N = n; |
| 209 |
< |
bzero((char *)cerr, 3*N*sizeof(short)); |
| 209 |
> |
memset((char *)cerr, '\0', 3*N*sizeof(short)); |
| 210 |
|
} |
| 211 |
|
err[0] = err[1] = err[2] = 0; |
| 212 |
|
for (x = 0; x < n; x++) { |
| 280 |
|
#define true 1 |
| 281 |
|
|
| 282 |
|
/* network defs */ |
| 283 |
< |
#define netsize 256 /* number of colours - can change this */ |
| 283 |
> |
#define netsize clrtabsiz /* number of colours - can change this */ |
| 284 |
|
#define maxnetpos (netsize-1) |
| 285 |
|
#define netbiasshift 4 /* bias for colour values */ |
| 286 |
|
#define ncycles 100 /* no. of learning cycles */ |
| 295 |
|
#define betagamma (intbias<<(gammashift-betashift)) |
| 296 |
|
|
| 297 |
|
/* defs for decreasing radius factor */ |
| 298 |
< |
#define initrad (netsize>>3) /* for 256 cols, radius starts */ |
| 298 |
> |
#define initrad (256>>3) /* for 256 cols, radius starts */ |
| 299 |
|
#define radiusbiasshift 6 /* at 32.0 biased by 6 bits */ |
| 300 |
|
#define radiusbias (((int) 1)<<radiusbiasshift) |
| 301 |
|
#define initradius (initrad*radiusbias) /* and decreases by a */ |
| 320 |
|
#define prime4 503 |
| 321 |
|
|
| 322 |
|
typedef int pixel[4]; /* BGRc */ |
| 323 |
< |
pixel network[netsize]; |
| 323 |
> |
pixel network[256]; |
| 324 |
|
|
| 325 |
|
int netindex[256]; /* for network lookup - really 256 */ |
| 326 |
|
|
| 327 |
< |
int bias [netsize]; /* bias and freq arrays for learning */ |
| 328 |
< |
int freq [netsize]; |
| 327 |
> |
int bias [256]; /* bias and freq arrays for learning */ |
| 328 |
> |
int freq [256]; |
| 329 |
|
int radpower[initrad]; /* radpower for precomputation */ |
| 330 |
|
|
| 331 |
|
|
| 332 |
|
/* initialise network in range (0,0,0) to (255,255,255) */ |
| 333 |
|
|
| 334 |
< |
initnet() |
| 334 |
> |
static void |
| 335 |
> |
initnet(void) |
| 336 |
|
{ |
| 337 |
|
register int i; |
| 338 |
|
register int *p; |
| 339 |
|
|
| 340 |
< |
for (i=0; i<clrtabsiz; i++) { |
| 340 |
> |
for (i=0; i<netsize; i++) { |
| 341 |
|
p = network[i]; |
| 342 |
< |
p[0] = p[1] = p[2] = (i << (netbiasshift+8))/clrtabsiz; |
| 343 |
< |
freq[i] = intbias/clrtabsiz; /* 1/clrtabsiz */ |
| 342 |
> |
p[0] = p[1] = p[2] = (i << (netbiasshift+8))/netsize; |
| 343 |
> |
freq[i] = intbias/netsize; /* 1/netsize */ |
| 344 |
|
bias[i] = 0; |
| 345 |
|
} |
| 346 |
|
} |
| 348 |
|
|
| 349 |
|
/* do after unbias - insertion sort of network and build netindex[0..255] */ |
| 350 |
|
|
| 351 |
< |
inxbuild() |
| 351 |
> |
static void |
| 352 |
> |
inxbuild(void) |
| 353 |
|
{ |
| 354 |
|
register int i,j,smallpos,smallval; |
| 355 |
|
register int *p,*q; |
| 357 |
|
|
| 358 |
|
previouscol = 0; |
| 359 |
|
startpos = 0; |
| 360 |
< |
for (i=0; i<clrtabsiz; i++) { |
| 360 |
> |
for (i=0; i<netsize; i++) { |
| 361 |
|
p = network[i]; |
| 362 |
|
smallpos = i; |
| 363 |
|
smallval = p[1]; /* index on g */ |
| 364 |
< |
/* find smallest in i..clrtabsiz-1 */ |
| 365 |
< |
for (j=i+1; j<clrtabsiz; j++) { |
| 364 |
> |
/* find smallest in i..netsize-1 */ |
| 365 |
> |
for (j=i+1; j<netsize; j++) { |
| 366 |
|
q = network[j]; |
| 367 |
|
if (q[1] < smallval) { /* index on g */ |
| 368 |
|
smallpos = j; |
| 390 |
|
} |
| 391 |
|
|
| 392 |
|
|
| 393 |
< |
int inxsearch(b,g,r) /* accepts real BGR values after net is unbiased */ |
| 394 |
< |
register int b,g,r; |
| 393 |
> |
static int |
| 394 |
> |
inxsearch( /* accepts real BGR values after net is unbiased */ |
| 395 |
> |
register int b, |
| 396 |
> |
register int g, |
| 397 |
> |
register int r |
| 398 |
> |
) |
| 399 |
|
{ |
| 400 |
|
register int i,j,dist,a,bestd; |
| 401 |
|
register int *p; |
| 406 |
|
i = netindex[g]; /* index on g */ |
| 407 |
|
j = i-1; /* start at netindex[g] and work outwards */ |
| 408 |
|
|
| 409 |
< |
while ((i<clrtabsiz) || (j>=0)) { |
| 410 |
< |
if (i<clrtabsiz) { |
| 409 |
> |
while ((i<netsize) || (j>=0)) { |
| 410 |
> |
if (i<netsize) { |
| 411 |
|
p = network[i]; |
| 412 |
|
dist = p[1] - g; /* inx key */ |
| 413 |
< |
if (dist >= bestd) i = clrtabsiz; /* stop iter */ |
| 413 |
> |
if (dist >= bestd) i = netsize; /* stop iter */ |
| 414 |
|
else { |
| 415 |
|
i++; |
| 416 |
|
if (dist<0) dist = -dist; |
| 447 |
|
/* finds closest neuron (min dist) and updates freq */ |
| 448 |
|
/* finds best neuron (min dist-bias) and returns position */ |
| 449 |
|
/* for frequently chosen neurons, freq[i] is high and bias[i] is negative */ |
| 450 |
< |
/* bias[i] = gamma*((1/clrtabsiz)-freq[i]) */ |
| 450 |
> |
/* bias[i] = gamma*((1/netsize)-freq[i]) */ |
| 451 |
|
|
| 452 |
< |
int contest(b,g,r) /* accepts biased BGR values */ |
| 453 |
< |
register int b,g,r; |
| 452 |
> |
static int |
| 453 |
> |
contest( /* accepts biased BGR values */ |
| 454 |
> |
register int b, |
| 455 |
> |
register int g, |
| 456 |
> |
register int r |
| 457 |
> |
) |
| 458 |
|
{ |
| 459 |
|
register int i,dist,a,biasdist,betafreq; |
| 460 |
|
int bestpos,bestbiaspos,bestd,bestbiasd; |
| 467 |
|
p = bias; |
| 468 |
|
f = freq; |
| 469 |
|
|
| 470 |
< |
for (i=0; i<clrtabsiz; i++) { |
| 470 |
> |
for (i=0; i<netsize; i++) { |
| 471 |
|
n = network[i]; |
| 472 |
|
dist = n[0] - b; if (dist<0) dist = -dist; |
| 473 |
|
a = n[1] - g; if (a<0) a = -a; |
| 489 |
|
|
| 490 |
|
/* move neuron i towards (b,g,r) by factor alpha */ |
| 491 |
|
|
| 492 |
< |
altersingle(alpha,i,b,g,r) /* accepts biased BGR values */ |
| 493 |
< |
register int alpha,i,b,g,r; |
| 492 |
> |
static void |
| 493 |
> |
altersingle( /* accepts biased BGR values */ |
| 494 |
> |
register int alpha, |
| 495 |
> |
register int i, |
| 496 |
> |
register int b, |
| 497 |
> |
register int g, |
| 498 |
> |
register int r |
| 499 |
> |
) |
| 500 |
|
{ |
| 501 |
|
register int *n; |
| 502 |
|
|
| 512 |
|
/* move neurons adjacent to i towards (b,g,r) by factor */ |
| 513 |
|
/* alpha*(1-((i-j)^2/[r]^2)) precomputed as radpower[|i-j|]*/ |
| 514 |
|
|
| 515 |
< |
alterneigh(rad,i,b,g,r) /* accents biased BGR values */ |
| 516 |
< |
int rad,i; |
| 517 |
< |
register int b,g,r; |
| 515 |
> |
static void |
| 516 |
> |
alterneigh( /* accents biased BGR values */ |
| 517 |
> |
int rad, |
| 518 |
> |
int i, |
| 519 |
> |
register int b, |
| 520 |
> |
register int g, |
| 521 |
> |
register int r |
| 522 |
> |
) |
| 523 |
|
{ |
| 524 |
|
register int j,k,lo,hi,a; |
| 525 |
|
register int *p, *q; |
| 526 |
|
|
| 527 |
|
lo = i-rad; if (lo<-1) lo= -1; |
| 528 |
< |
hi = i+rad; if (hi>clrtabsiz) hi=clrtabsiz; |
| 528 |
> |
hi = i+rad; if (hi>netsize) hi=netsize; |
| 529 |
|
|
| 530 |
|
j = i+1; |
| 531 |
|
k = i-1; |
| 554 |
|
} |
| 555 |
|
|
| 556 |
|
|
| 557 |
< |
learn() |
| 557 |
> |
static void |
| 558 |
> |
learn(void) |
| 559 |
|
{ |
| 560 |
|
register int i,j,b,g,r; |
| 561 |
|
int radius,rad,alpha,step,delta,samplepixels; |
| 613 |
|
/* which can then be used for colour map */ |
| 614 |
|
/* and record position i to prepare for sort */ |
| 615 |
|
|
| 616 |
< |
unbiasnet() |
| 616 |
> |
static void |
| 617 |
> |
unbiasnet(void) |
| 618 |
|
{ |
| 619 |
|
int i,j; |
| 620 |
|
|
| 621 |
< |
for (i=0; i<clrtabsiz; i++) { |
| 621 |
> |
for (i=0; i<netsize; i++) { |
| 622 |
|
for (j=0; j<3; j++) |
| 623 |
|
network[i][j] >>= netbiasshift; |
| 624 |
|
network[i][3] = i; /* record colour no */ |
| 628 |
|
|
| 629 |
|
/* Don't do this until the network has been unbiased (GW) */ |
| 630 |
|
|
| 631 |
< |
static |
| 632 |
< |
cpyclrtab() |
| 631 |
> |
static void |
| 632 |
> |
cpyclrtab(void) |
| 633 |
|
{ |
| 634 |
|
register int i,j,k; |
| 635 |
|
|
| 636 |
< |
for (j=0; j<clrtabsiz; j++) { |
| 636 |
> |
for (j=0; j<netsize; j++) { |
| 637 |
|
k = network[j][3]; |
| 638 |
|
for (i = 0; i < 3; i++) |
| 639 |
|
clrtab[k][i] = network[j][2-i]; |