| 5 |
|
* Neural-Net quantization algorithm based on work of Anthony Dekker |
| 6 |
|
*/ |
| 7 |
|
|
| 8 |
< |
#include "standard.h" |
| 8 |
> |
#include "copyright.h" |
| 9 |
|
|
| 10 |
< |
#include "color.h" |
| 10 |
> |
#include <string.h> |
| 11 |
|
|
| 12 |
+ |
#include "standard.h" |
| 13 |
+ |
#include "color.h" |
| 14 |
|
#include "random.h" |
| 15 |
+ |
#include "clrtab.h" |
| 16 |
|
|
| 17 |
|
#ifdef COMPAT_MODE |
| 18 |
|
#define neu_init new_histo |
| 28 |
|
static int clrtabsiz; |
| 29 |
|
|
| 30 |
|
#ifndef DEFSMPFAC |
| 31 |
< |
#ifdef SPEED |
| 29 |
< |
#define DEFSMPFAC (240/SPEED+3) |
| 30 |
< |
#else |
| 31 |
< |
#define DEFSMPFAC 30 |
| 31 |
> |
#define DEFSMPFAC 3 |
| 32 |
|
#endif |
| 33 |
– |
#endif |
| 33 |
|
|
| 34 |
|
int samplefac = DEFSMPFAC; /* sampling factor */ |
| 35 |
|
|
| 47 |
|
|
| 48 |
|
#define setskip(sp,n) ((sp)[0]=(n)>>16,(sp)[1]=((n)>>8)&255,(sp)[2]=(n)&255) |
| 49 |
|
|
| 50 |
< |
static cpyclrtab(); |
| 50 |
> |
static void initnet(void); |
| 51 |
> |
static void inxbuild(void); |
| 52 |
> |
static int inxsearch(int b, int g, int r); |
| 53 |
> |
static int contest(int b, int g, int r); |
| 54 |
> |
static void altersingle(int alpha, int i, int b, int g, int r); |
| 55 |
> |
static void alterneigh(int rad, int i, int b, int g, int r); |
| 56 |
> |
static void learn(void); |
| 57 |
> |
static void unbiasnet(void); |
| 58 |
> |
static void cpyclrtab(void); |
| 59 |
|
|
| 60 |
|
|
| 61 |
< |
neu_init(npixels) /* initialize our sample array */ |
| 62 |
< |
long npixels; |
| 61 |
> |
extern int |
| 62 |
> |
neu_init( /* initialize our sample array */ |
| 63 |
> |
long npixels |
| 64 |
> |
) |
| 65 |
|
{ |
| 66 |
|
register int nsleft; |
| 67 |
|
register long sv; |
| 98 |
|
} |
| 99 |
|
|
| 100 |
|
|
| 101 |
< |
neu_pixel(col) /* add pixel to our samples */ |
| 102 |
< |
register BYTE col[]; |
| 101 |
> |
extern void |
| 102 |
> |
neu_pixel( /* add pixel to our samples */ |
| 103 |
> |
register BYTE col[] |
| 104 |
> |
) |
| 105 |
|
{ |
| 106 |
|
if (!skipcount--) { |
| 107 |
|
skipcount = nskip(cursamp); |
| 113 |
|
} |
| 114 |
|
|
| 115 |
|
|
| 116 |
< |
neu_colrs(cs, n) /* add a scanline to our samples */ |
| 117 |
< |
register COLR *cs; |
| 118 |
< |
register int n; |
| 116 |
> |
extern void |
| 117 |
> |
neu_colrs( /* add a scanline to our samples */ |
| 118 |
> |
register COLR *cs, |
| 119 |
> |
register int n |
| 120 |
> |
) |
| 121 |
|
{ |
| 122 |
|
while (n > skipcount) { |
| 123 |
|
cs += skipcount; |
| 133 |
|
} |
| 134 |
|
|
| 135 |
|
|
| 136 |
< |
neu_clrtab(ncolors) /* make new color table using ncolors */ |
| 137 |
< |
int ncolors; |
| 136 |
> |
extern int |
| 137 |
> |
neu_clrtab( /* make new color table using ncolors */ |
| 138 |
> |
int ncolors |
| 139 |
> |
) |
| 140 |
|
{ |
| 141 |
|
clrtabsiz = ncolors; |
| 142 |
|
if (clrtabsiz > 256) clrtabsiz = 256; |
| 154 |
|
} |
| 155 |
|
|
| 156 |
|
|
| 157 |
< |
int |
| 158 |
< |
neu_map_pixel(col) /* get pixel for color */ |
| 159 |
< |
register BYTE col[]; |
| 157 |
> |
extern int |
| 158 |
> |
neu_map_pixel( /* get pixel for color */ |
| 159 |
> |
register BYTE col[] |
| 160 |
> |
) |
| 161 |
|
{ |
| 162 |
|
return(inxsearch(col[BLU],col[GRN],col[RED])); |
| 163 |
|
} |
| 164 |
|
|
| 165 |
|
|
| 166 |
< |
neu_map_colrs(bs, cs, n) /* convert a scanline to color index values */ |
| 167 |
< |
register BYTE *bs; |
| 168 |
< |
register COLR *cs; |
| 169 |
< |
register int n; |
| 166 |
> |
extern void |
| 167 |
> |
neu_map_colrs( /* convert a scanline to color index values */ |
| 168 |
> |
register BYTE *bs, |
| 169 |
> |
register COLR *cs, |
| 170 |
> |
register int n |
| 171 |
> |
) |
| 172 |
|
{ |
| 173 |
|
while (n-- > 0) { |
| 174 |
|
*bs++ = inxsearch(cs[0][BLU],cs[0][GRN],cs[0][RED]); |
| 177 |
|
} |
| 178 |
|
|
| 179 |
|
|
| 180 |
< |
neu_dith_colrs(bs, cs, n) /* convert scanline to dithered index values */ |
| 181 |
< |
register BYTE *bs; |
| 182 |
< |
register COLR *cs; |
| 183 |
< |
int n; |
| 180 |
> |
extern void |
| 181 |
> |
neu_dith_colrs( /* convert scanline to dithered index values */ |
| 182 |
> |
register BYTE *bs, |
| 183 |
> |
register COLR *cs, |
| 184 |
> |
int n |
| 185 |
> |
) |
| 186 |
|
{ |
| 187 |
|
static short (*cerr)[3] = NULL; |
| 188 |
|
static int N = 0; |
| 202 |
|
return; |
| 203 |
|
} |
| 204 |
|
N = n; |
| 205 |
< |
bzero((char *)cerr, 3*N*sizeof(short)); |
| 205 |
> |
memset((char *)cerr, '\0', 3*N*sizeof(short)); |
| 206 |
|
} |
| 207 |
|
err[0] = err[1] = err[2] = 0; |
| 208 |
|
for (x = 0; x < n; x++) { |
| 233 |
|
#define lengthcount (nsamples*3) |
| 234 |
|
#define samplefac 1 |
| 235 |
|
|
| 236 |
< |
/*----------------------------------------------------------------------*/ |
| 237 |
< |
/* */ |
| 238 |
< |
/* NeuQuant */ |
| 239 |
< |
/* -------- */ |
| 240 |
< |
/* */ |
| 241 |
< |
/* Copyright: Anthony Dekker, November 1994 */ |
| 242 |
< |
/* */ |
| 243 |
< |
/* This program performs colour quantization of graphics images (SUN */ |
| 244 |
< |
/* raster files). It uses a Kohonen Neural Network. It produces */ |
| 245 |
< |
/* better results than existing methods and runs faster, using minimal */ |
| 246 |
< |
/* space (8kB plus the image itself). The algorithm is described in */ |
| 247 |
< |
/* the paper "Kohonen Neural Networks for Optimal Colour Quantization" */ |
| 248 |
< |
/* to appear in the journal "Network: Computation in Neural Systems". */ |
| 249 |
< |
/* It is a significant improvement of an earlier algorithm. */ |
| 250 |
< |
/* */ |
| 251 |
< |
/* This program is distributed free for academic use or for evaluation */ |
| 252 |
< |
/* by commercial organizations. */ |
| 253 |
< |
/* */ |
| 254 |
< |
/* Usage: NeuQuant -n inputfile > outputfile */ |
| 255 |
< |
/* */ |
| 236 |
< |
/* where n is a sampling factor for neural learning. */ |
| 237 |
< |
/* */ |
| 238 |
< |
/* Program performance compared with other methods is as follows: */ |
| 239 |
< |
/* */ |
| 240 |
< |
/* Algorithm | Av. CPU Time | Quantization Error */ |
| 241 |
< |
/* ------------------------------------------------------------- */ |
| 242 |
< |
/* NeuQuant -3 | 314 | 5.55 */ |
| 243 |
< |
/* NeuQuant -10 | 119 | 5.97 */ |
| 244 |
< |
/* NeuQuant -30 | 65 | 6.53 */ |
| 245 |
< |
/* Oct-Trees | 141 | 8.96 */ |
| 246 |
< |
/* Median Cut (XV -best) | 420 | 9.28 */ |
| 247 |
< |
/* Median Cut (XV -slow) | 72 | 12.15 */ |
| 248 |
< |
/* */ |
| 249 |
< |
/* Author's address: Dept of ISCS, National University of Singapore */ |
| 250 |
< |
/* Kent Ridge, Singapore 0511 */ |
| 251 |
< |
/* Email: [email protected] */ |
| 252 |
< |
/*----------------------------------------------------------------------*/ |
| 236 |
> |
/* NeuQuant Neural-Net Quantization Algorithm Interface |
| 237 |
> |
* ---------------------------------------------------- |
| 238 |
> |
* |
| 239 |
> |
* Copyright (c) 1994 Anthony Dekker |
| 240 |
> |
* |
| 241 |
> |
* NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994. |
| 242 |
> |
* See "Kohonen neural networks for optimal colour quantization" |
| 243 |
> |
* in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367. |
| 244 |
> |
* for a discussion of the algorithm. |
| 245 |
> |
* See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML |
| 246 |
> |
* |
| 247 |
> |
* Any party obtaining a copy of these files from the author, directly or |
| 248 |
> |
* indirectly, is granted, free of charge, a full and unrestricted irrevocable, |
| 249 |
> |
* world-wide, paid up, royalty-free, nonexclusive right and license to deal |
| 250 |
> |
* in this software and documentation files (the "Software"), including without |
| 251 |
> |
* limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 252 |
> |
* and/or sell copies of the Software, and to permit persons who receive |
| 253 |
> |
* copies from any such party to do so, with the only requirement being |
| 254 |
> |
* that this copyright notice remain intact. |
| 255 |
> |
*/ |
| 256 |
|
|
| 257 |
|
#define bool int |
| 258 |
|
#define false 0 |
| 310 |
|
|
| 311 |
|
/* initialise network in range (0,0,0) to (255,255,255) */ |
| 312 |
|
|
| 313 |
< |
initnet() |
| 313 |
> |
static void |
| 314 |
> |
initnet(void) |
| 315 |
|
{ |
| 316 |
|
register int i; |
| 317 |
|
register int *p; |
| 327 |
|
|
| 328 |
|
/* do after unbias - insertion sort of network and build netindex[0..255] */ |
| 329 |
|
|
| 330 |
< |
inxbuild() |
| 330 |
> |
static void |
| 331 |
> |
inxbuild(void) |
| 332 |
|
{ |
| 333 |
|
register int i,j,smallpos,smallval; |
| 334 |
|
register int *p,*q; |
| 369 |
|
} |
| 370 |
|
|
| 371 |
|
|
| 372 |
< |
int inxsearch(b,g,r) /* accepts real BGR values after net is unbiased */ |
| 373 |
< |
register int b,g,r; |
| 372 |
> |
static int |
| 373 |
> |
inxsearch( /* accepts real BGR values after net is unbiased */ |
| 374 |
> |
register int b, |
| 375 |
> |
register int g, |
| 376 |
> |
register int r |
| 377 |
> |
) |
| 378 |
|
{ |
| 379 |
|
register int i,j,dist,a,bestd; |
| 380 |
|
register int *p; |
| 428 |
|
/* for frequently chosen neurons, freq[i] is high and bias[i] is negative */ |
| 429 |
|
/* bias[i] = gamma*((1/netsize)-freq[i]) */ |
| 430 |
|
|
| 431 |
< |
int contest(b,g,r) /* accepts biased BGR values */ |
| 432 |
< |
register int b,g,r; |
| 431 |
> |
static int |
| 432 |
> |
contest( /* accepts biased BGR values */ |
| 433 |
> |
register int b, |
| 434 |
> |
register int g, |
| 435 |
> |
register int r |
| 436 |
> |
) |
| 437 |
|
{ |
| 438 |
|
register int i,dist,a,biasdist,betafreq; |
| 439 |
|
int bestpos,bestbiaspos,bestd,bestbiasd; |
| 468 |
|
|
| 469 |
|
/* move neuron i towards (b,g,r) by factor alpha */ |
| 470 |
|
|
| 471 |
< |
altersingle(alpha,i,b,g,r) /* accepts biased BGR values */ |
| 472 |
< |
register int alpha,i,b,g,r; |
| 471 |
> |
static void |
| 472 |
> |
altersingle( /* accepts biased BGR values */ |
| 473 |
> |
register int alpha, |
| 474 |
> |
register int i, |
| 475 |
> |
register int b, |
| 476 |
> |
register int g, |
| 477 |
> |
register int r |
| 478 |
> |
) |
| 479 |
|
{ |
| 480 |
|
register int *n; |
| 481 |
|
|
| 491 |
|
/* move neurons adjacent to i towards (b,g,r) by factor */ |
| 492 |
|
/* alpha*(1-((i-j)^2/[r]^2)) precomputed as radpower[|i-j|]*/ |
| 493 |
|
|
| 494 |
< |
alterneigh(rad,i,b,g,r) /* accents biased BGR values */ |
| 495 |
< |
int rad,i; |
| 496 |
< |
register int b,g,r; |
| 494 |
> |
static void |
| 495 |
> |
alterneigh( /* accents biased BGR values */ |
| 496 |
> |
int rad, |
| 497 |
> |
int i, |
| 498 |
> |
register int b, |
| 499 |
> |
register int g, |
| 500 |
> |
register int r |
| 501 |
> |
) |
| 502 |
|
{ |
| 503 |
|
register int j,k,lo,hi,a; |
| 504 |
|
register int *p, *q; |
| 533 |
|
} |
| 534 |
|
|
| 535 |
|
|
| 536 |
< |
learn() |
| 536 |
> |
static void |
| 537 |
> |
learn(void) |
| 538 |
|
{ |
| 539 |
|
register int i,j,b,g,r; |
| 540 |
|
int radius,rad,alpha,step,delta,samplepixels; |
| 592 |
|
/* which can then be used for colour map */ |
| 593 |
|
/* and record position i to prepare for sort */ |
| 594 |
|
|
| 595 |
< |
unbiasnet() |
| 595 |
> |
static void |
| 596 |
> |
unbiasnet(void) |
| 597 |
|
{ |
| 598 |
|
int i,j; |
| 599 |
|
|
| 607 |
|
|
| 608 |
|
/* Don't do this until the network has been unbiased (GW) */ |
| 609 |
|
|
| 610 |
< |
static |
| 611 |
< |
cpyclrtab() |
| 610 |
> |
static void |
| 611 |
> |
cpyclrtab(void) |
| 612 |
|
{ |
| 613 |
|
register int i,j,k; |
| 614 |
|
|