| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: neuclrtab.c,v 2.10 2003/06/30 14:59:12 schorsch Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* Neural-Net quantization algorithm based on work of Anthony Dekker
|
| 6 |
*/
|
| 7 |
|
| 8 |
#include "copyright.h"
|
| 9 |
|
| 10 |
#include <string.h>
|
| 11 |
|
| 12 |
#include "standard.h"
|
| 13 |
#include "color.h"
|
| 14 |
#include "random.h"
|
| 15 |
#include "clrtab.h"
|
| 16 |
|
| 17 |
#ifdef COMPAT_MODE
|
| 18 |
#define neu_init new_histo
|
| 19 |
#define neu_pixel cnt_pixel
|
| 20 |
#define neu_colrs cnt_colrs
|
| 21 |
#define neu_clrtab new_clrtab
|
| 22 |
#define neu_map_pixel map_pixel
|
| 23 |
#define neu_map_colrs map_colrs
|
| 24 |
#define neu_dith_colrs dith_colrs
|
| 25 |
#endif
|
| 26 |
/* our color table (global) */
|
| 27 |
extern BYTE clrtab[256][3];
|
| 28 |
static int clrtabsiz;
|
| 29 |
|
| 30 |
#ifndef DEFSMPFAC
|
| 31 |
#ifdef SPEED
|
| 32 |
#define DEFSMPFAC (240/SPEED+3)
|
| 33 |
#else
|
| 34 |
#define DEFSMPFAC 30
|
| 35 |
#endif
|
| 36 |
#endif
|
| 37 |
|
| 38 |
int samplefac = DEFSMPFAC; /* sampling factor */
|
| 39 |
|
| 40 |
/* Samples array starts off holding spacing between adjacent
|
| 41 |
* samples, and ends up holding actual BGR sample values.
|
| 42 |
*/
|
| 43 |
static BYTE *thesamples;
|
| 44 |
static int nsamples;
|
| 45 |
static BYTE *cursamp;
|
| 46 |
static long skipcount;
|
| 47 |
|
| 48 |
#define MAXSKIP (1<<24-1)
|
| 49 |
|
| 50 |
#define nskip(sp) ((long)(sp)[0]<<16|(long)(sp)[1]<<8|(long)(sp)[2])
|
| 51 |
|
| 52 |
#define setskip(sp,n) ((sp)[0]=(n)>>16,(sp)[1]=((n)>>8)&255,(sp)[2]=(n)&255)
|
| 53 |
|
| 54 |
static void initnet(void);
|
| 55 |
static void inxbuild(void);
|
| 56 |
static int inxsearch(int b, int g, int r);
|
| 57 |
static int contest(int b, int g, int r);
|
| 58 |
static void altersingle(int alpha, int i, int b, int g, int r);
|
| 59 |
static void alterneigh(int rad, int i, int b, int g, int r);
|
| 60 |
static void learn(void);
|
| 61 |
static void unbiasnet(void);
|
| 62 |
static void cpyclrtab(void);
|
| 63 |
|
| 64 |
|
| 65 |
extern int
|
| 66 |
neu_init( /* initialize our sample array */
|
| 67 |
long npixels
|
| 68 |
)
|
| 69 |
{
|
| 70 |
register int nsleft;
|
| 71 |
register long sv;
|
| 72 |
double rval, cumprob;
|
| 73 |
long npleft;
|
| 74 |
|
| 75 |
nsamples = npixels/samplefac;
|
| 76 |
if (nsamples < 600)
|
| 77 |
return(-1);
|
| 78 |
thesamples = (BYTE *)malloc(nsamples*3);
|
| 79 |
if (thesamples == NULL)
|
| 80 |
return(-1);
|
| 81 |
cursamp = thesamples;
|
| 82 |
npleft = npixels;
|
| 83 |
nsleft = nsamples;
|
| 84 |
while (nsleft) {
|
| 85 |
rval = frandom(); /* random distance to next sample */
|
| 86 |
sv = 0;
|
| 87 |
cumprob = 0.;
|
| 88 |
while ((cumprob += (1.-cumprob)*nsleft/(npleft-sv)) < rval)
|
| 89 |
sv++;
|
| 90 |
if (nsleft == nsamples)
|
| 91 |
skipcount = sv;
|
| 92 |
else {
|
| 93 |
setskip(cursamp, sv);
|
| 94 |
cursamp += 3;
|
| 95 |
}
|
| 96 |
npleft -= sv+1;
|
| 97 |
nsleft--;
|
| 98 |
}
|
| 99 |
setskip(cursamp, npleft); /* tag on end to skip the rest */
|
| 100 |
cursamp = thesamples;
|
| 101 |
return(0);
|
| 102 |
}
|
| 103 |
|
| 104 |
|
| 105 |
extern void
|
| 106 |
neu_pixel( /* add pixel to our samples */
|
| 107 |
register BYTE col[]
|
| 108 |
)
|
| 109 |
{
|
| 110 |
if (!skipcount--) {
|
| 111 |
skipcount = nskip(cursamp);
|
| 112 |
cursamp[0] = col[BLU];
|
| 113 |
cursamp[1] = col[GRN];
|
| 114 |
cursamp[2] = col[RED];
|
| 115 |
cursamp += 3;
|
| 116 |
}
|
| 117 |
}
|
| 118 |
|
| 119 |
|
| 120 |
extern void
|
| 121 |
neu_colrs( /* add a scanline to our samples */
|
| 122 |
register COLR *cs,
|
| 123 |
register int n
|
| 124 |
)
|
| 125 |
{
|
| 126 |
while (n > skipcount) {
|
| 127 |
cs += skipcount;
|
| 128 |
n -= skipcount+1;
|
| 129 |
skipcount = nskip(cursamp);
|
| 130 |
cursamp[0] = cs[0][BLU];
|
| 131 |
cursamp[1] = cs[0][GRN];
|
| 132 |
cursamp[2] = cs[0][RED];
|
| 133 |
cs++;
|
| 134 |
cursamp += 3;
|
| 135 |
}
|
| 136 |
skipcount -= n;
|
| 137 |
}
|
| 138 |
|
| 139 |
|
| 140 |
extern int
|
| 141 |
neu_clrtab( /* make new color table using ncolors */
|
| 142 |
int ncolors
|
| 143 |
)
|
| 144 |
{
|
| 145 |
clrtabsiz = ncolors;
|
| 146 |
if (clrtabsiz > 256) clrtabsiz = 256;
|
| 147 |
initnet();
|
| 148 |
learn();
|
| 149 |
unbiasnet();
|
| 150 |
cpyclrtab();
|
| 151 |
inxbuild();
|
| 152 |
/* we're done with our samples */
|
| 153 |
free((void *)thesamples);
|
| 154 |
/* reset dithering function */
|
| 155 |
neu_dith_colrs((BYTE *)NULL, (COLR *)NULL, 0);
|
| 156 |
/* return new color table size */
|
| 157 |
return(clrtabsiz);
|
| 158 |
}
|
| 159 |
|
| 160 |
|
| 161 |
extern int
|
| 162 |
neu_map_pixel( /* get pixel for color */
|
| 163 |
register BYTE col[]
|
| 164 |
)
|
| 165 |
{
|
| 166 |
return(inxsearch(col[BLU],col[GRN],col[RED]));
|
| 167 |
}
|
| 168 |
|
| 169 |
|
| 170 |
extern void
|
| 171 |
neu_map_colrs( /* convert a scanline to color index values */
|
| 172 |
register BYTE *bs,
|
| 173 |
register COLR *cs,
|
| 174 |
register int n
|
| 175 |
)
|
| 176 |
{
|
| 177 |
while (n-- > 0) {
|
| 178 |
*bs++ = inxsearch(cs[0][BLU],cs[0][GRN],cs[0][RED]);
|
| 179 |
cs++;
|
| 180 |
}
|
| 181 |
}
|
| 182 |
|
| 183 |
|
| 184 |
extern void
|
| 185 |
neu_dith_colrs( /* convert scanline to dithered index values */
|
| 186 |
register BYTE *bs,
|
| 187 |
register COLR *cs,
|
| 188 |
int n
|
| 189 |
)
|
| 190 |
{
|
| 191 |
static short (*cerr)[3] = NULL;
|
| 192 |
static int N = 0;
|
| 193 |
int err[3], errp[3];
|
| 194 |
register int x, i;
|
| 195 |
|
| 196 |
if (n != N) { /* get error propogation array */
|
| 197 |
if (N) {
|
| 198 |
free((void *)cerr);
|
| 199 |
cerr = NULL;
|
| 200 |
}
|
| 201 |
if (n)
|
| 202 |
cerr = (short (*)[3])malloc(3*n*sizeof(short));
|
| 203 |
if (cerr == NULL) {
|
| 204 |
N = 0;
|
| 205 |
map_colrs(bs, cs, n);
|
| 206 |
return;
|
| 207 |
}
|
| 208 |
N = n;
|
| 209 |
memset((char *)cerr, '\0', 3*N*sizeof(short));
|
| 210 |
}
|
| 211 |
err[0] = err[1] = err[2] = 0;
|
| 212 |
for (x = 0; x < n; x++) {
|
| 213 |
for (i = 0; i < 3; i++) { /* dither value */
|
| 214 |
errp[i] = err[i];
|
| 215 |
err[i] += cerr[x][i];
|
| 216 |
#ifdef MAXERR
|
| 217 |
if (err[i] > MAXERR) err[i] = MAXERR;
|
| 218 |
else if (err[i] < -MAXERR) err[i] = -MAXERR;
|
| 219 |
#endif
|
| 220 |
err[i] += cs[x][i];
|
| 221 |
if (err[i] < 0) err[i] = 0;
|
| 222 |
else if (err[i] > 255) err[i] = 255;
|
| 223 |
}
|
| 224 |
bs[x] = inxsearch(err[BLU],err[GRN],err[RED]);
|
| 225 |
for (i = 0; i < 3; i++) { /* propagate error */
|
| 226 |
err[i] -= clrtab[bs[x]][i];
|
| 227 |
err[i] /= 3;
|
| 228 |
cerr[x][i] = err[i] + errp[i];
|
| 229 |
}
|
| 230 |
}
|
| 231 |
}
|
| 232 |
|
| 233 |
/* The following was adapted and modified from the original (GW) */
|
| 234 |
|
| 235 |
/* cheater definitions (GW) */
|
| 236 |
#define thepicture thesamples
|
| 237 |
#define lengthcount (nsamples*3)
|
| 238 |
#define samplefac 1
|
| 239 |
|
| 240 |
/*----------------------------------------------------------------------*/
|
| 241 |
/* */
|
| 242 |
/* NeuQuant */
|
| 243 |
/* -------- */
|
| 244 |
/* */
|
| 245 |
/* Copyright: Anthony Dekker, November 1994 */
|
| 246 |
/* */
|
| 247 |
/* This program performs colour quantization of graphics images (SUN */
|
| 248 |
/* raster files). It uses a Kohonen Neural Network. It produces */
|
| 249 |
/* better results than existing methods and runs faster, using minimal */
|
| 250 |
/* space (8kB plus the image itself). The algorithm is described in */
|
| 251 |
/* the paper "Kohonen Neural Networks for Optimal Colour Quantization" */
|
| 252 |
/* to appear in the journal "Network: Computation in Neural Systems". */
|
| 253 |
/* It is a significant improvement of an earlier algorithm. */
|
| 254 |
/* */
|
| 255 |
/* This program is distributed free for academic use or for evaluation */
|
| 256 |
/* by commercial organizations. */
|
| 257 |
/* */
|
| 258 |
/* Usage: NeuQuant -n inputfile > outputfile */
|
| 259 |
/* */
|
| 260 |
/* where n is a sampling factor for neural learning. */
|
| 261 |
/* */
|
| 262 |
/* Program performance compared with other methods is as follows: */
|
| 263 |
/* */
|
| 264 |
/* Algorithm | Av. CPU Time | Quantization Error */
|
| 265 |
/* ------------------------------------------------------------- */
|
| 266 |
/* NeuQuant -3 | 314 | 5.55 */
|
| 267 |
/* NeuQuant -10 | 119 | 5.97 */
|
| 268 |
/* NeuQuant -30 | 65 | 6.53 */
|
| 269 |
/* Oct-Trees | 141 | 8.96 */
|
| 270 |
/* Median Cut (XV -best) | 420 | 9.28 */
|
| 271 |
/* Median Cut (XV -slow) | 72 | 12.15 */
|
| 272 |
/* */
|
| 273 |
/* Author's address: Dept of ISCS, National University of Singapore */
|
| 274 |
/* Kent Ridge, Singapore 0511 */
|
| 275 |
/* Email: [email protected] */
|
| 276 |
/*----------------------------------------------------------------------*/
|
| 277 |
|
| 278 |
#define bool int
|
| 279 |
#define false 0
|
| 280 |
#define true 1
|
| 281 |
|
| 282 |
/* network defs */
|
| 283 |
#define netsize clrtabsiz /* number of colours - can change this */
|
| 284 |
#define maxnetpos (netsize-1)
|
| 285 |
#define netbiasshift 4 /* bias for colour values */
|
| 286 |
#define ncycles 100 /* no. of learning cycles */
|
| 287 |
|
| 288 |
/* defs for freq and bias */
|
| 289 |
#define intbiasshift 16 /* bias for fractions */
|
| 290 |
#define intbias (((int) 1)<<intbiasshift)
|
| 291 |
#define gammashift 10 /* gamma = 1024 */
|
| 292 |
#define gamma (((int) 1)<<gammashift)
|
| 293 |
#define betashift 10
|
| 294 |
#define beta (intbias>>betashift) /* beta = 1/1024 */
|
| 295 |
#define betagamma (intbias<<(gammashift-betashift))
|
| 296 |
|
| 297 |
/* defs for decreasing radius factor */
|
| 298 |
#define initrad (256>>3) /* for 256 cols, radius starts */
|
| 299 |
#define radiusbiasshift 6 /* at 32.0 biased by 6 bits */
|
| 300 |
#define radiusbias (((int) 1)<<radiusbiasshift)
|
| 301 |
#define initradius (initrad*radiusbias) /* and decreases by a */
|
| 302 |
#define radiusdec 30 /* factor of 1/30 each cycle */
|
| 303 |
|
| 304 |
/* defs for decreasing alpha factor */
|
| 305 |
#define alphabiasshift 10 /* alpha starts at 1.0 */
|
| 306 |
#define initalpha (((int) 1)<<alphabiasshift)
|
| 307 |
int alphadec; /* biased by 10 bits */
|
| 308 |
|
| 309 |
/* radbias and alpharadbias used for radpower calculation */
|
| 310 |
#define radbiasshift 8
|
| 311 |
#define radbias (((int) 1)<<radbiasshift)
|
| 312 |
#define alpharadbshift (alphabiasshift+radbiasshift)
|
| 313 |
#define alpharadbias (((int) 1)<<alpharadbshift)
|
| 314 |
|
| 315 |
/* four primes near 500 - assume no image has a length so large */
|
| 316 |
/* that it is divisible by all four primes */
|
| 317 |
#define prime1 499
|
| 318 |
#define prime2 491
|
| 319 |
#define prime3 487
|
| 320 |
#define prime4 503
|
| 321 |
|
| 322 |
typedef int pixel[4]; /* BGRc */
|
| 323 |
pixel network[256];
|
| 324 |
|
| 325 |
int netindex[256]; /* for network lookup - really 256 */
|
| 326 |
|
| 327 |
int bias [256]; /* bias and freq arrays for learning */
|
| 328 |
int freq [256];
|
| 329 |
int radpower[initrad]; /* radpower for precomputation */
|
| 330 |
|
| 331 |
|
| 332 |
/* initialise network in range (0,0,0) to (255,255,255) */
|
| 333 |
|
| 334 |
static void
|
| 335 |
initnet(void)
|
| 336 |
{
|
| 337 |
register int i;
|
| 338 |
register int *p;
|
| 339 |
|
| 340 |
for (i=0; i<netsize; i++) {
|
| 341 |
p = network[i];
|
| 342 |
p[0] = p[1] = p[2] = (i << (netbiasshift+8))/netsize;
|
| 343 |
freq[i] = intbias/netsize; /* 1/netsize */
|
| 344 |
bias[i] = 0;
|
| 345 |
}
|
| 346 |
}
|
| 347 |
|
| 348 |
|
| 349 |
/* do after unbias - insertion sort of network and build netindex[0..255] */
|
| 350 |
|
| 351 |
static void
|
| 352 |
inxbuild(void)
|
| 353 |
{
|
| 354 |
register int i,j,smallpos,smallval;
|
| 355 |
register int *p,*q;
|
| 356 |
int previouscol,startpos;
|
| 357 |
|
| 358 |
previouscol = 0;
|
| 359 |
startpos = 0;
|
| 360 |
for (i=0; i<netsize; i++) {
|
| 361 |
p = network[i];
|
| 362 |
smallpos = i;
|
| 363 |
smallval = p[1]; /* index on g */
|
| 364 |
/* find smallest in i..netsize-1 */
|
| 365 |
for (j=i+1; j<netsize; j++) {
|
| 366 |
q = network[j];
|
| 367 |
if (q[1] < smallval) { /* index on g */
|
| 368 |
smallpos = j;
|
| 369 |
smallval = q[1]; /* index on g */
|
| 370 |
}
|
| 371 |
}
|
| 372 |
q = network[smallpos];
|
| 373 |
/* swap p (i) and q (smallpos) entries */
|
| 374 |
if (i != smallpos) {
|
| 375 |
j = q[0]; q[0] = p[0]; p[0] = j;
|
| 376 |
j = q[1]; q[1] = p[1]; p[1] = j;
|
| 377 |
j = q[2]; q[2] = p[2]; p[2] = j;
|
| 378 |
j = q[3]; q[3] = p[3]; p[3] = j;
|
| 379 |
}
|
| 380 |
/* smallval entry is now in position i */
|
| 381 |
if (smallval != previouscol) {
|
| 382 |
netindex[previouscol] = (startpos+i)>>1;
|
| 383 |
for (j=previouscol+1; j<smallval; j++) netindex[j] = i;
|
| 384 |
previouscol = smallval;
|
| 385 |
startpos = i;
|
| 386 |
}
|
| 387 |
}
|
| 388 |
netindex[previouscol] = (startpos+maxnetpos)>>1;
|
| 389 |
for (j=previouscol+1; j<256; j++) netindex[j] = maxnetpos; /* really 256 */
|
| 390 |
}
|
| 391 |
|
| 392 |
|
| 393 |
static int
|
| 394 |
inxsearch( /* accepts real BGR values after net is unbiased */
|
| 395 |
register int b,
|
| 396 |
register int g,
|
| 397 |
register int r
|
| 398 |
)
|
| 399 |
{
|
| 400 |
register int i,j,dist,a,bestd;
|
| 401 |
register int *p;
|
| 402 |
int best;
|
| 403 |
|
| 404 |
bestd = 1000; /* biggest possible dist is 256*3 */
|
| 405 |
best = -1;
|
| 406 |
i = netindex[g]; /* index on g */
|
| 407 |
j = i-1; /* start at netindex[g] and work outwards */
|
| 408 |
|
| 409 |
while ((i<netsize) || (j>=0)) {
|
| 410 |
if (i<netsize) {
|
| 411 |
p = network[i];
|
| 412 |
dist = p[1] - g; /* inx key */
|
| 413 |
if (dist >= bestd) i = netsize; /* stop iter */
|
| 414 |
else {
|
| 415 |
i++;
|
| 416 |
if (dist<0) dist = -dist;
|
| 417 |
a = p[0] - b; if (a<0) a = -a;
|
| 418 |
dist += a;
|
| 419 |
if (dist<bestd) {
|
| 420 |
a = p[2] - r; if (a<0) a = -a;
|
| 421 |
dist += a;
|
| 422 |
if (dist<bestd) {bestd=dist; best=p[3];}
|
| 423 |
}
|
| 424 |
}
|
| 425 |
}
|
| 426 |
if (j>=0) {
|
| 427 |
p = network[j];
|
| 428 |
dist = g - p[1]; /* inx key - reverse dif */
|
| 429 |
if (dist >= bestd) j = -1; /* stop iter */
|
| 430 |
else {
|
| 431 |
j--;
|
| 432 |
if (dist<0) dist = -dist;
|
| 433 |
a = p[0] - b; if (a<0) a = -a;
|
| 434 |
dist += a;
|
| 435 |
if (dist<bestd) {
|
| 436 |
a = p[2] - r; if (a<0) a = -a;
|
| 437 |
dist += a;
|
| 438 |
if (dist<bestd) {bestd=dist; best=p[3];}
|
| 439 |
}
|
| 440 |
}
|
| 441 |
}
|
| 442 |
}
|
| 443 |
return(best);
|
| 444 |
}
|
| 445 |
|
| 446 |
|
| 447 |
/* finds closest neuron (min dist) and updates freq */
|
| 448 |
/* finds best neuron (min dist-bias) and returns position */
|
| 449 |
/* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
|
| 450 |
/* bias[i] = gamma*((1/netsize)-freq[i]) */
|
| 451 |
|
| 452 |
static int
|
| 453 |
contest( /* accepts biased BGR values */
|
| 454 |
register int b,
|
| 455 |
register int g,
|
| 456 |
register int r
|
| 457 |
)
|
| 458 |
{
|
| 459 |
register int i,dist,a,biasdist,betafreq;
|
| 460 |
int bestpos,bestbiaspos,bestd,bestbiasd;
|
| 461 |
register int *p,*f, *n;
|
| 462 |
|
| 463 |
bestd = ~(((int) 1)<<31);
|
| 464 |
bestbiasd = bestd;
|
| 465 |
bestpos = -1;
|
| 466 |
bestbiaspos = bestpos;
|
| 467 |
p = bias;
|
| 468 |
f = freq;
|
| 469 |
|
| 470 |
for (i=0; i<netsize; i++) {
|
| 471 |
n = network[i];
|
| 472 |
dist = n[0] - b; if (dist<0) dist = -dist;
|
| 473 |
a = n[1] - g; if (a<0) a = -a;
|
| 474 |
dist += a;
|
| 475 |
a = n[2] - r; if (a<0) a = -a;
|
| 476 |
dist += a;
|
| 477 |
if (dist<bestd) {bestd=dist; bestpos=i;}
|
| 478 |
biasdist = dist - ((*p)>>(intbiasshift-netbiasshift));
|
| 479 |
if (biasdist<bestbiasd) {bestbiasd=biasdist; bestbiaspos=i;}
|
| 480 |
betafreq = (*f >> betashift);
|
| 481 |
*f++ -= betafreq;
|
| 482 |
*p++ += (betafreq<<gammashift);
|
| 483 |
}
|
| 484 |
freq[bestpos] += beta;
|
| 485 |
bias[bestpos] -= betagamma;
|
| 486 |
return(bestbiaspos);
|
| 487 |
}
|
| 488 |
|
| 489 |
|
| 490 |
/* move neuron i towards (b,g,r) by factor alpha */
|
| 491 |
|
| 492 |
static void
|
| 493 |
altersingle( /* accepts biased BGR values */
|
| 494 |
register int alpha,
|
| 495 |
register int i,
|
| 496 |
register int b,
|
| 497 |
register int g,
|
| 498 |
register int r
|
| 499 |
)
|
| 500 |
{
|
| 501 |
register int *n;
|
| 502 |
|
| 503 |
n = network[i]; /* alter hit neuron */
|
| 504 |
*n -= (alpha*(*n - b)) / initalpha;
|
| 505 |
n++;
|
| 506 |
*n -= (alpha*(*n - g)) / initalpha;
|
| 507 |
n++;
|
| 508 |
*n -= (alpha*(*n - r)) / initalpha;
|
| 509 |
}
|
| 510 |
|
| 511 |
|
| 512 |
/* move neurons adjacent to i towards (b,g,r) by factor */
|
| 513 |
/* alpha*(1-((i-j)^2/[r]^2)) precomputed as radpower[|i-j|]*/
|
| 514 |
|
| 515 |
static void
|
| 516 |
alterneigh( /* accents biased BGR values */
|
| 517 |
int rad,
|
| 518 |
int i,
|
| 519 |
register int b,
|
| 520 |
register int g,
|
| 521 |
register int r
|
| 522 |
)
|
| 523 |
{
|
| 524 |
register int j,k,lo,hi,a;
|
| 525 |
register int *p, *q;
|
| 526 |
|
| 527 |
lo = i-rad; if (lo<-1) lo= -1;
|
| 528 |
hi = i+rad; if (hi>netsize) hi=netsize;
|
| 529 |
|
| 530 |
j = i+1;
|
| 531 |
k = i-1;
|
| 532 |
q = radpower;
|
| 533 |
while ((j<hi) || (k>lo)) {
|
| 534 |
a = (*(++q));
|
| 535 |
if (j<hi) {
|
| 536 |
p = network[j];
|
| 537 |
*p -= (a*(*p - b)) / alpharadbias;
|
| 538 |
p++;
|
| 539 |
*p -= (a*(*p - g)) / alpharadbias;
|
| 540 |
p++;
|
| 541 |
*p -= (a*(*p - r)) / alpharadbias;
|
| 542 |
j++;
|
| 543 |
}
|
| 544 |
if (k>lo) {
|
| 545 |
p = network[k];
|
| 546 |
*p -= (a*(*p - b)) / alpharadbias;
|
| 547 |
p++;
|
| 548 |
*p -= (a*(*p - g)) / alpharadbias;
|
| 549 |
p++;
|
| 550 |
*p -= (a*(*p - r)) / alpharadbias;
|
| 551 |
k--;
|
| 552 |
}
|
| 553 |
}
|
| 554 |
}
|
| 555 |
|
| 556 |
|
| 557 |
static void
|
| 558 |
learn(void)
|
| 559 |
{
|
| 560 |
register int i,j,b,g,r;
|
| 561 |
int radius,rad,alpha,step,delta,samplepixels;
|
| 562 |
register unsigned char *p;
|
| 563 |
unsigned char *lim;
|
| 564 |
|
| 565 |
alphadec = 30 + ((samplefac-1)/3);
|
| 566 |
p = thepicture;
|
| 567 |
lim = thepicture + lengthcount;
|
| 568 |
samplepixels = lengthcount/(3*samplefac);
|
| 569 |
delta = samplepixels/ncycles;
|
| 570 |
alpha = initalpha;
|
| 571 |
radius = initradius;
|
| 572 |
|
| 573 |
rad = radius >> radiusbiasshift;
|
| 574 |
if (rad <= 1) rad = 0;
|
| 575 |
for (i=0; i<rad; i++)
|
| 576 |
radpower[i] = alpha*(((rad*rad - i*i)*radbias)/(rad*rad));
|
| 577 |
|
| 578 |
if ((lengthcount%prime1) != 0) step = 3*prime1;
|
| 579 |
else {
|
| 580 |
if ((lengthcount%prime2) !=0) step = 3*prime2;
|
| 581 |
else {
|
| 582 |
if ((lengthcount%prime3) !=0) step = 3*prime3;
|
| 583 |
else step = 3*prime4;
|
| 584 |
}
|
| 585 |
}
|
| 586 |
|
| 587 |
i = 0;
|
| 588 |
while (i < samplepixels) {
|
| 589 |
b = p[0] << netbiasshift;
|
| 590 |
g = p[1] << netbiasshift;
|
| 591 |
r = p[2] << netbiasshift;
|
| 592 |
j = contest(b,g,r);
|
| 593 |
|
| 594 |
altersingle(alpha,j,b,g,r);
|
| 595 |
if (rad) alterneigh(rad,j,b,g,r); /* alter neighbours */
|
| 596 |
|
| 597 |
p += step;
|
| 598 |
if (p >= lim) p -= lengthcount;
|
| 599 |
|
| 600 |
i++;
|
| 601 |
if (i%delta == 0) {
|
| 602 |
alpha -= alpha / alphadec;
|
| 603 |
radius -= radius / radiusdec;
|
| 604 |
rad = radius >> radiusbiasshift;
|
| 605 |
if (rad <= 1) rad = 0;
|
| 606 |
for (j=0; j<rad; j++)
|
| 607 |
radpower[j] = alpha*(((rad*rad - j*j)*radbias)/(rad*rad));
|
| 608 |
}
|
| 609 |
}
|
| 610 |
}
|
| 611 |
|
| 612 |
/* unbias network to give 0..255 entries */
|
| 613 |
/* which can then be used for colour map */
|
| 614 |
/* and record position i to prepare for sort */
|
| 615 |
|
| 616 |
static void
|
| 617 |
unbiasnet(void)
|
| 618 |
{
|
| 619 |
int i,j;
|
| 620 |
|
| 621 |
for (i=0; i<netsize; i++) {
|
| 622 |
for (j=0; j<3; j++)
|
| 623 |
network[i][j] >>= netbiasshift;
|
| 624 |
network[i][3] = i; /* record colour no */
|
| 625 |
}
|
| 626 |
}
|
| 627 |
|
| 628 |
|
| 629 |
/* Don't do this until the network has been unbiased (GW) */
|
| 630 |
|
| 631 |
static void
|
| 632 |
cpyclrtab(void)
|
| 633 |
{
|
| 634 |
register int i,j,k;
|
| 635 |
|
| 636 |
for (j=0; j<netsize; j++) {
|
| 637 |
k = network[j][3];
|
| 638 |
for (i = 0; i < 3; i++)
|
| 639 |
clrtab[k][i] = network[j][2-i];
|
| 640 |
}
|
| 641 |
}
|