| 1 | greg | 2.1 | /* Copyright (c) 1994 Regents of the University of California */ | 
| 2 |  |  |  | 
| 3 |  |  | #ifndef lint | 
| 4 |  |  | static char SCCSid[] = "$SunId$ LBL"; | 
| 5 |  |  | #endif | 
| 6 |  |  |  | 
| 7 |  |  | /* | 
| 8 |  |  | * Neural-Net quantization algorithm based on work of Anthony Dekker | 
| 9 |  |  | */ | 
| 10 |  |  |  | 
| 11 |  |  | #include "standard.h" | 
| 12 |  |  |  | 
| 13 |  |  | #include "color.h" | 
| 14 |  |  |  | 
| 15 |  |  | #include "random.h" | 
| 16 |  |  |  | 
| 17 |  |  | #ifdef COMPAT_MODE | 
| 18 |  |  | #define neu_init        new_histo | 
| 19 |  |  | #define neu_pixel       cnt_pixel | 
| 20 |  |  | #define neu_colrs       cnt_colrs | 
| 21 |  |  | #define neu_clrtab      new_clrtab | 
| 22 |  |  | #define neu_map_pixel   map_pixel | 
| 23 |  |  | #define neu_map_colrs   map_colrs | 
| 24 |  |  | #define neu_dith_colrs  dith_colrs | 
| 25 |  |  | #endif | 
| 26 |  |  | /* our color table (global) */ | 
| 27 |  |  | extern BYTE     clrtab[256][3]; | 
| 28 |  |  | static int      clrtabsiz; | 
| 29 |  |  |  | 
| 30 |  |  | #ifndef DEFSMPFAC | 
| 31 |  |  | #ifdef SPEED | 
| 32 |  |  | #define DEFSMPFAC       (240/SPEED+3) | 
| 33 |  |  | #else | 
| 34 |  |  | #define DEFSMPFAC       30 | 
| 35 |  |  | #endif | 
| 36 |  |  | #endif | 
| 37 |  |  |  | 
| 38 |  |  | int     samplefac = DEFSMPFAC;  /* sampling factor */ | 
| 39 |  |  |  | 
| 40 |  |  | /* Samples array starts off holding spacing between adjacent | 
| 41 |  |  | * samples, and ends up holding actual BGR sample values. | 
| 42 |  |  | */ | 
| 43 |  |  | static BYTE     *thesamples; | 
| 44 |  |  | static int      nsamples; | 
| 45 |  |  | static BYTE     *cursamp; | 
| 46 |  |  | static long     skipcount; | 
| 47 |  |  |  | 
| 48 |  |  | #define MAXSKIP         (1<<24-1) | 
| 49 |  |  |  | 
| 50 |  |  | #define nskip(sp)       ((long)(sp)[0]<<16|(long)(sp)[1]<<8|(long)(sp)[2]) | 
| 51 |  |  |  | 
| 52 |  |  | #define setskip(sp,n)   ((sp)[0]=(n)>>16,(sp)[1]=((n)>>8)&255,(sp)[2]=(n)&255) | 
| 53 |  |  |  | 
| 54 |  |  |  | 
| 55 |  |  | neu_init(npixels)               /* initialize our sample array */ | 
| 56 |  |  | long    npixels; | 
| 57 |  |  | { | 
| 58 |  |  | register int    nsleft; | 
| 59 |  |  | register long   sv; | 
| 60 |  |  | double  rval, cumprob; | 
| 61 |  |  | long    npleft; | 
| 62 |  |  |  | 
| 63 |  |  | nsamples = npixels/samplefac; | 
| 64 |  |  | if (nsamples < 600) | 
| 65 |  |  | return(-1); | 
| 66 | greg | 2.2 | thesamples = (BYTE *)malloc(nsamples*3); | 
| 67 | greg | 2.1 | if (thesamples == NULL) | 
| 68 |  |  | return(-1); | 
| 69 |  |  | cursamp = thesamples; | 
| 70 |  |  | npleft = npixels; | 
| 71 |  |  | nsleft = nsamples; | 
| 72 |  |  | while (nsleft) { | 
| 73 |  |  | rval = frandom();       /* random distance to next sample */ | 
| 74 |  |  | sv = 0; | 
| 75 |  |  | cumprob = 0.; | 
| 76 |  |  | while ((cumprob += (1.-cumprob)*nsleft/(npleft-sv)) < rval) | 
| 77 |  |  | sv++; | 
| 78 | greg | 2.2 | if (nsleft == nsamples) | 
| 79 |  |  | skipcount = sv; | 
| 80 |  |  | else { | 
| 81 |  |  | setskip(cursamp, sv); | 
| 82 |  |  | cursamp += 3; | 
| 83 |  |  | } | 
| 84 |  |  | npleft -= sv+1; | 
| 85 | greg | 2.1 | nsleft--; | 
| 86 |  |  | } | 
| 87 | greg | 2.2 | setskip(cursamp, npleft);       /* tag on end to skip the rest */ | 
| 88 | greg | 2.1 | cursamp = thesamples; | 
| 89 |  |  | return(0); | 
| 90 |  |  | } | 
| 91 |  |  |  | 
| 92 |  |  |  | 
| 93 |  |  | neu_pixel(col)                  /* add pixel to our samples */ | 
| 94 |  |  | register BYTE   col[]; | 
| 95 |  |  | { | 
| 96 |  |  | if (!skipcount--) { | 
| 97 | greg | 2.2 | skipcount = nskip(cursamp); | 
| 98 | greg | 2.1 | cursamp[0] = col[BLU]; | 
| 99 |  |  | cursamp[1] = col[GRN]; | 
| 100 |  |  | cursamp[2] = col[RED]; | 
| 101 |  |  | cursamp += 3; | 
| 102 |  |  | } | 
| 103 |  |  | } | 
| 104 |  |  |  | 
| 105 |  |  |  | 
| 106 |  |  | neu_colrs(cs, n)                /* add a scanline to our samples */ | 
| 107 |  |  | register COLR   *cs; | 
| 108 |  |  | register int    n; | 
| 109 |  |  | { | 
| 110 |  |  | while (n > skipcount) { | 
| 111 |  |  | cs += skipcount; | 
| 112 | greg | 2.2 | n -= skipcount+1; | 
| 113 |  |  | skipcount = nskip(cursamp); | 
| 114 | greg | 2.1 | cursamp[0] = cs[0][BLU]; | 
| 115 |  |  | cursamp[1] = cs[0][GRN]; | 
| 116 |  |  | cursamp[2] = cs[0][RED]; | 
| 117 |  |  | cs++; | 
| 118 |  |  | cursamp += 3; | 
| 119 |  |  | } | 
| 120 |  |  | skipcount -= n; | 
| 121 |  |  | } | 
| 122 |  |  |  | 
| 123 |  |  |  | 
| 124 |  |  | neu_clrtab(ncolors)             /* make new color table using ncolors */ | 
| 125 |  |  | int     ncolors; | 
| 126 |  |  | { | 
| 127 |  |  | clrtabsiz = ncolors; | 
| 128 |  |  | if (clrtabsiz > 256) clrtabsiz = 256; | 
| 129 |  |  | initnet(); | 
| 130 |  |  | learn(); | 
| 131 |  |  | unbiasnet(); | 
| 132 |  |  | cpyclrtab(); | 
| 133 |  |  | inxbuild(); | 
| 134 |  |  | /* we're done with our samples */ | 
| 135 |  |  | free((char *)thesamples); | 
| 136 |  |  | /* reset dithering function */ | 
| 137 |  |  | neu_dith_colrs((BYTE *)NULL, (COLR *)NULL, 0); | 
| 138 |  |  | /* return new color table size */ | 
| 139 |  |  | return(clrtabsiz); | 
| 140 |  |  | } | 
| 141 |  |  |  | 
| 142 |  |  |  | 
| 143 |  |  | int | 
| 144 |  |  | neu_map_pixel(col)              /* get pixel for color */ | 
| 145 |  |  | register BYTE   col[]; | 
| 146 |  |  | { | 
| 147 |  |  | return(inxsearch(col[BLU],col[GRN],col[RED])); | 
| 148 |  |  | } | 
| 149 |  |  |  | 
| 150 |  |  |  | 
| 151 |  |  | neu_map_colrs(bs, cs, n)        /* convert a scanline to color index values */ | 
| 152 |  |  | register BYTE   *bs; | 
| 153 |  |  | register COLR   *cs; | 
| 154 |  |  | register int    n; | 
| 155 |  |  | { | 
| 156 |  |  | while (n-- > 0) { | 
| 157 |  |  | *bs++ = inxsearch(cs[0][BLU],cs[0][GRN],cs[0][RED]); | 
| 158 |  |  | cs++; | 
| 159 |  |  | } | 
| 160 |  |  | } | 
| 161 |  |  |  | 
| 162 |  |  |  | 
| 163 |  |  | neu_dith_colrs(bs, cs, n)       /* convert scanline to dithered index values */ | 
| 164 |  |  | register BYTE   *bs; | 
| 165 |  |  | register COLR   *cs; | 
| 166 |  |  | int     n; | 
| 167 |  |  | { | 
| 168 |  |  | static short    (*cerr)[3] = NULL; | 
| 169 |  |  | static int      N = 0; | 
| 170 |  |  | int     err[3], errp[3]; | 
| 171 |  |  | register int    x, i; | 
| 172 |  |  |  | 
| 173 |  |  | if (n != N) {           /* get error propogation array */ | 
| 174 |  |  | if (N) { | 
| 175 |  |  | free((char *)cerr); | 
| 176 |  |  | cerr = NULL; | 
| 177 |  |  | } | 
| 178 |  |  | if (n) | 
| 179 |  |  | cerr = (short (*)[3])malloc(3*n*sizeof(short)); | 
| 180 |  |  | if (cerr == NULL) { | 
| 181 |  |  | N = 0; | 
| 182 |  |  | map_colrs(bs, cs, n); | 
| 183 |  |  | return; | 
| 184 |  |  | } | 
| 185 |  |  | N = n; | 
| 186 |  |  | bzero((char *)cerr, 3*N*sizeof(short)); | 
| 187 |  |  | } | 
| 188 |  |  | err[0] = err[1] = err[2] = 0; | 
| 189 |  |  | for (x = 0; x < n; x++) { | 
| 190 |  |  | for (i = 0; i < 3; i++) {       /* dither value */ | 
| 191 |  |  | errp[i] = err[i]; | 
| 192 |  |  | err[i] += cerr[x][i]; | 
| 193 |  |  | #ifdef MAXERR | 
| 194 |  |  | if (err[i] > MAXERR) err[i] = MAXERR; | 
| 195 |  |  | else if (err[i] < -MAXERR) err[i] = -MAXERR; | 
| 196 |  |  | #endif | 
| 197 |  |  | err[i] += cs[x][i]; | 
| 198 |  |  | if (err[i] < 0) err[i] = 0; | 
| 199 |  |  | else if (err[i] > 255) err[i] = 255; | 
| 200 |  |  | } | 
| 201 |  |  | bs[x] = inxsearch(err[BLU],err[GRN],err[RED]); | 
| 202 |  |  | for (i = 0; i < 3; i++) {       /* propagate error */ | 
| 203 |  |  | err[i] -= clrtab[bs[x]][i]; | 
| 204 |  |  | err[i] /= 3; | 
| 205 |  |  | cerr[x][i] = err[i] + errp[i]; | 
| 206 |  |  | } | 
| 207 |  |  | } | 
| 208 |  |  | } | 
| 209 |  |  |  | 
| 210 |  |  | /* The following was adapted and modified from the original (GW)        */ | 
| 211 | greg | 2.6 |  | 
| 212 |  |  | /* cheater definitions (GW) */ | 
| 213 |  |  | #define thepicture      thesamples | 
| 214 |  |  | #define lengthcount     (nsamples*3) | 
| 215 |  |  | #define samplefac       1 | 
| 216 |  |  |  | 
| 217 | greg | 2.1 | /*----------------------------------------------------------------------*/ | 
| 218 |  |  | /*                                                                      */ | 
| 219 |  |  | /*                              NeuQuant                                */ | 
| 220 |  |  | /*                              --------                                */ | 
| 221 |  |  | /*                                                                      */ | 
| 222 | greg | 2.6 | /*              Copyright: Anthony Dekker, November 1994                */ | 
| 223 | greg | 2.1 | /*                                                                      */ | 
| 224 |  |  | /* This program performs colour quantization of graphics images (SUN    */ | 
| 225 |  |  | /* raster files).  It uses a Kohonen Neural Network.  It produces       */ | 
| 226 |  |  | /* better results than existing methods and runs faster, using minimal  */ | 
| 227 |  |  | /* space (8kB plus the image itself).  The algorithm is described in    */ | 
| 228 |  |  | /* the paper "Kohonen Neural Networks for Optimal Colour Quantization"  */ | 
| 229 |  |  | /* to appear in the journal "Network: Computation in Neural Systems".   */ | 
| 230 |  |  | /* It is a significant improvement of an earlier algorithm.             */ | 
| 231 |  |  | /*                                                                      */ | 
| 232 |  |  | /* This program is distributed free for academic use or for evaluation  */ | 
| 233 |  |  | /* by commercial organizations.                                         */ | 
| 234 |  |  | /*                                                                      */ | 
| 235 |  |  | /*      Usage:  NeuQuant -n inputfile > outputfile                      */ | 
| 236 |  |  | /*                                                                      */ | 
| 237 |  |  | /* where n is a sampling factor for neural learning.                    */ | 
| 238 |  |  | /*                                                                      */ | 
| 239 |  |  | /* Program performance compared with other methods is as follows:       */ | 
| 240 |  |  | /*                                                                      */ | 
| 241 |  |  | /*      Algorithm               |  Av. CPU Time |  Quantization Error   */ | 
| 242 |  |  | /*      -------------------------------------------------------------   */ | 
| 243 |  |  | /*      NeuQuant -3             |  314          |  5.55                 */ | 
| 244 |  |  | /*      NeuQuant -10            |  119          |  5.97                 */ | 
| 245 |  |  | /*      NeuQuant -30            |  65           |  6.53                 */ | 
| 246 |  |  | /*      Oct-Trees               |  141          |  8.96                 */ | 
| 247 |  |  | /*      Median Cut (XV -best)   |  420          |  9.28                 */ | 
| 248 |  |  | /*      Median Cut (XV -slow)   |  72           |  12.15                */ | 
| 249 |  |  | /*                                                                      */ | 
| 250 |  |  | /* Author's address:    Dept of ISCS, National University of Singapore  */ | 
| 251 |  |  | /*                      Kent Ridge, Singapore 0511                      */ | 
| 252 |  |  | /* Email:       [email protected]                                     */ | 
| 253 |  |  | /*----------------------------------------------------------------------*/ | 
| 254 |  |  |  | 
| 255 | greg | 2.6 | #define bool            int | 
| 256 |  |  | #define false           0 | 
| 257 |  |  | #define true            1 | 
| 258 | greg | 2.1 |  | 
| 259 | greg | 2.6 | /* network defs */ | 
| 260 | greg | 2.7 | #define netsize         clrtabsiz               /* number of colours - can change this */ | 
| 261 | greg | 2.6 | #define maxnetpos       (netsize-1) | 
| 262 |  |  | #define netbiasshift    4                       /* bias for colour values */ | 
| 263 |  |  | #define ncycles         100                     /* no. of learning cycles */ | 
| 264 | greg | 2.1 |  | 
| 265 |  |  | /* defs for freq and bias */ | 
| 266 | greg | 2.6 | #define intbiasshift    16                      /* bias for fractions */ | 
| 267 |  |  | #define intbias         (((int) 1)<<intbiasshift) | 
| 268 |  |  | #define gammashift      10                      /* gamma = 1024 */ | 
| 269 |  |  | #define gamma           (((int) 1)<<gammashift) | 
| 270 |  |  | #define betashift       10 | 
| 271 |  |  | #define beta            (intbias>>betashift)    /* beta = 1/1024 */ | 
| 272 | greg | 2.1 | #define betagamma       (intbias<<(gammashift-betashift)) | 
| 273 |  |  |  | 
| 274 | greg | 2.6 | /* defs for decreasing radius factor */ | 
| 275 | greg | 2.7 | #define initrad         (256>>3)                /* for 256 cols, radius starts */ | 
| 276 | greg | 2.6 | #define radiusbiasshift 6                       /* at 32.0 biased by 6 bits */ | 
| 277 |  |  | #define radiusbias      (((int) 1)<<radiusbiasshift) | 
| 278 |  |  | #define initradius      (initrad*radiusbias)    /* and decreases by a */ | 
| 279 |  |  | #define radiusdec       30                      /* factor of 1/30 each cycle */ | 
| 280 |  |  |  | 
| 281 |  |  | /* defs for decreasing alpha factor */ | 
| 282 |  |  | #define alphabiasshift  10                      /* alpha starts at 1.0 */ | 
| 283 |  |  | #define initalpha       (((int) 1)<<alphabiasshift) | 
| 284 |  |  | int alphadec;                                   /* biased by 10 bits */ | 
| 285 |  |  |  | 
| 286 |  |  | /* radbias and alpharadbias used for radpower calculation */ | 
| 287 | greg | 2.1 | #define radbiasshift    8 | 
| 288 | greg | 2.6 | #define radbias         (((int) 1)<<radbiasshift) | 
| 289 | greg | 2.1 | #define alpharadbshift  (alphabiasshift+radbiasshift) | 
| 290 | greg | 2.6 | #define alpharadbias    (((int) 1)<<alpharadbshift) | 
| 291 | greg | 2.1 |  | 
| 292 | greg | 2.6 | /* four primes near 500 - assume no image has a length so large */ | 
| 293 |  |  | /* that it is divisible by all four primes */ | 
| 294 |  |  | #define prime1          499 | 
| 295 |  |  | #define prime2          491 | 
| 296 |  |  | #define prime3          487 | 
| 297 |  |  | #define prime4          503 | 
| 298 | greg | 2.1 |  | 
| 299 |  |  | typedef int pixel[4];  /* BGRc */ | 
| 300 | greg | 2.7 | pixel network[256]; | 
| 301 | greg | 2.1 |  | 
| 302 | greg | 2.6 | int netindex[256];      /* for network lookup - really 256 */ | 
| 303 | greg | 2.1 |  | 
| 304 | greg | 2.7 | int bias [256];         /* bias and freq arrays for learning */ | 
| 305 |  |  | int freq [256]; | 
| 306 | greg | 2.6 | int radpower[initrad];  /* radpower for precomputation */ | 
| 307 | greg | 2.1 |  | 
| 308 |  |  |  | 
| 309 | greg | 2.6 | /* initialise network in range (0,0,0) to (255,255,255) */ | 
| 310 | greg | 2.1 |  | 
| 311 | greg | 2.6 | initnet() | 
| 312 | greg | 2.1 | { | 
| 313 |  |  | register int i; | 
| 314 |  |  | register int *p; | 
| 315 |  |  |  | 
| 316 | greg | 2.7 | for (i=0; i<netsize; i++) { | 
| 317 | greg | 2.1 | p = network[i]; | 
| 318 | greg | 2.7 | p[0] = p[1] = p[2] = (i << (netbiasshift+8))/netsize; | 
| 319 |  |  | freq[i] = intbias/netsize;  /* 1/netsize */ | 
| 320 | greg | 2.1 | bias[i] = 0; | 
| 321 |  |  | } | 
| 322 |  |  | } | 
| 323 |  |  |  | 
| 324 |  |  |  | 
| 325 | greg | 2.6 | /* do after unbias - insertion sort of network and build netindex[0..255] */ | 
| 326 |  |  |  | 
| 327 | greg | 2.1 | inxbuild() | 
| 328 |  |  | { | 
| 329 |  |  | register int i,j,smallpos,smallval; | 
| 330 |  |  | register int *p,*q; | 
| 331 | greg | 2.6 | int previouscol,startpos; | 
| 332 | greg | 2.1 |  | 
| 333 | greg | 2.6 | previouscol = 0; | 
| 334 |  |  | startpos = 0; | 
| 335 | greg | 2.7 | for (i=0; i<netsize; i++) { | 
| 336 | greg | 2.1 | p = network[i]; | 
| 337 |  |  | smallpos = i; | 
| 338 |  |  | smallval = p[1];        /* index on g */ | 
| 339 | greg | 2.7 | /* find smallest in i..netsize-1 */ | 
| 340 |  |  | for (j=i+1; j<netsize; j++) { | 
| 341 | greg | 2.1 | q = network[j]; | 
| 342 |  |  | if (q[1] < smallval) {  /* index on g */ | 
| 343 |  |  | smallpos = j; | 
| 344 |  |  | smallval = q[1]; /* index on g */ | 
| 345 |  |  | } | 
| 346 |  |  | } | 
| 347 |  |  | q = network[smallpos]; | 
| 348 | greg | 2.6 | /* swap p (i) and q (smallpos) entries */ | 
| 349 | greg | 2.1 | if (i != smallpos) { | 
| 350 |  |  | j = q[0];   q[0] = p[0];   p[0] = j; | 
| 351 |  |  | j = q[1];   q[1] = p[1];   p[1] = j; | 
| 352 |  |  | j = q[2];   q[2] = p[2];   p[2] = j; | 
| 353 |  |  | j = q[3];   q[3] = p[3];   p[3] = j; | 
| 354 |  |  | } | 
| 355 |  |  | /* smallval entry is now in position i */ | 
| 356 | greg | 2.6 | if (smallval != previouscol) { | 
| 357 |  |  | netindex[previouscol] = (startpos+i)>>1; | 
| 358 |  |  | for (j=previouscol+1; j<smallval; j++) netindex[j] = i; | 
| 359 |  |  | previouscol = smallval; | 
| 360 |  |  | startpos = i; | 
| 361 | greg | 2.1 | } | 
| 362 |  |  | } | 
| 363 | greg | 2.6 | netindex[previouscol] = (startpos+maxnetpos)>>1; | 
| 364 |  |  | for (j=previouscol+1; j<256; j++) netindex[j] = maxnetpos; /* really 256 */ | 
| 365 | greg | 2.1 | } | 
| 366 |  |  |  | 
| 367 |  |  |  | 
| 368 | greg | 2.6 | int inxsearch(b,g,r)  /* accepts real BGR values after net is unbiased */ | 
| 369 | greg | 2.1 | register int b,g,r; | 
| 370 |  |  | { | 
| 371 | greg | 2.6 | register int i,j,dist,a,bestd; | 
| 372 | greg | 2.1 | register int *p; | 
| 373 | greg | 2.6 | int best; | 
| 374 | greg | 2.1 |  | 
| 375 |  |  | bestd = 1000;   /* biggest possible dist is 256*3 */ | 
| 376 |  |  | best = -1; | 
| 377 |  |  | i = netindex[g]; /* index on g */ | 
| 378 | greg | 2.6 | j = i-1;         /* start at netindex[g] and work outwards */ | 
| 379 | greg | 2.1 |  | 
| 380 | greg | 2.7 | while ((i<netsize) || (j>=0)) { | 
| 381 |  |  | if (i<netsize) { | 
| 382 | greg | 2.1 | p = network[i]; | 
| 383 | greg | 2.6 | dist = p[1] - g;        /* inx key */ | 
| 384 | greg | 2.7 | if (dist >= bestd) i = netsize; /* stop iter */ | 
| 385 | greg | 2.1 | else { | 
| 386 |  |  | i++; | 
| 387 | greg | 2.6 | if (dist<0) dist = -dist; | 
| 388 |  |  | a = p[0] - b;   if (a<0) a = -a; | 
| 389 |  |  | dist += a; | 
| 390 |  |  | if (dist<bestd) { | 
| 391 |  |  | a = p[2] - r;   if (a<0) a = -a; | 
| 392 |  |  | dist += a; | 
| 393 |  |  | if (dist<bestd) {bestd=dist; best=p[3];} | 
| 394 | greg | 2.1 | } | 
| 395 |  |  | } | 
| 396 |  |  | } | 
| 397 |  |  | if (j>=0) { | 
| 398 |  |  | p = network[j]; | 
| 399 | greg | 2.6 | dist = g - p[1]; /* inx key - reverse dif */ | 
| 400 |  |  | if (dist >= bestd) j = -1; /* stop iter */ | 
| 401 | greg | 2.1 | else { | 
| 402 |  |  | j--; | 
| 403 | greg | 2.6 | if (dist<0) dist = -dist; | 
| 404 |  |  | a = p[0] - b;   if (a<0) a = -a; | 
| 405 |  |  | dist += a; | 
| 406 |  |  | if (dist<bestd) { | 
| 407 |  |  | a = p[2] - r;   if (a<0) a = -a; | 
| 408 |  |  | dist += a; | 
| 409 |  |  | if (dist<bestd) {bestd=dist; best=p[3];} | 
| 410 | greg | 2.1 | } | 
| 411 |  |  | } | 
| 412 |  |  | } | 
| 413 |  |  | } | 
| 414 |  |  | return(best); | 
| 415 |  |  | } | 
| 416 |  |  |  | 
| 417 |  |  |  | 
| 418 | greg | 2.6 | /* finds closest neuron (min dist) and updates freq */ | 
| 419 |  |  | /* finds best neuron (min dist-bias) and returns position */ | 
| 420 |  |  | /* for frequently chosen neurons, freq[i] is high and bias[i] is negative */ | 
| 421 | greg | 2.7 | /* bias[i] = gamma*((1/netsize)-freq[i]) */ | 
| 422 | greg | 2.6 |  | 
| 423 |  |  | int contest(b,g,r)      /* accepts biased BGR values */ | 
| 424 | greg | 2.1 | register int b,g,r; | 
| 425 |  |  | { | 
| 426 | greg | 2.6 | register int i,dist,a,biasdist,betafreq; | 
| 427 |  |  | int bestpos,bestbiaspos,bestd,bestbiasd; | 
| 428 |  |  | register int *p,*f, *n; | 
| 429 | greg | 2.1 |  | 
| 430 | greg | 2.6 | bestd = ~(((int) 1)<<31); | 
| 431 | greg | 2.1 | bestbiasd = bestd; | 
| 432 | greg | 2.6 | bestpos = -1; | 
| 433 |  |  | bestbiaspos = bestpos; | 
| 434 |  |  | p = bias; | 
| 435 |  |  | f = freq; | 
| 436 |  |  |  | 
| 437 | greg | 2.7 | for (i=0; i<netsize; i++) { | 
| 438 | greg | 2.6 | n = network[i]; | 
| 439 |  |  | dist = n[0] - b;   if (dist<0) dist = -dist; | 
| 440 |  |  | a = n[1] - g;   if (a<0) a = -a; | 
| 441 |  |  | dist += a; | 
| 442 |  |  | a = n[2] - r;   if (a<0) a = -a; | 
| 443 |  |  | dist += a; | 
| 444 |  |  | if (dist<bestd) {bestd=dist; bestpos=i;} | 
| 445 |  |  | biasdist = dist - ((*p)>>(intbiasshift-netbiasshift)); | 
| 446 |  |  | if (biasdist<bestbiasd) {bestbiasd=biasdist; bestbiaspos=i;} | 
| 447 |  |  | betafreq = (*f >> betashift); | 
| 448 |  |  | *f++ -= betafreq; | 
| 449 |  |  | *p++ += (betafreq<<gammashift); | 
| 450 | greg | 2.1 | } | 
| 451 | greg | 2.6 | freq[bestpos] += beta; | 
| 452 |  |  | bias[bestpos] -= betagamma; | 
| 453 |  |  | return(bestbiaspos); | 
| 454 | greg | 2.1 | } | 
| 455 |  |  |  | 
| 456 |  |  |  | 
| 457 | greg | 2.6 | /* move neuron i towards (b,g,r) by factor alpha */ | 
| 458 |  |  |  | 
| 459 |  |  | altersingle(alpha,i,b,g,r)      /* accepts biased BGR values */ | 
| 460 |  |  | register int alpha,i,b,g,r; | 
| 461 |  |  | { | 
| 462 |  |  | register int *n; | 
| 463 |  |  |  | 
| 464 |  |  | n = network[i];         /* alter hit neuron */ | 
| 465 |  |  | *n -= (alpha*(*n - b)) / initalpha; | 
| 466 |  |  | n++; | 
| 467 |  |  | *n -= (alpha*(*n - g)) / initalpha; | 
| 468 |  |  | n++; | 
| 469 |  |  | *n -= (alpha*(*n - r)) / initalpha; | 
| 470 |  |  | } | 
| 471 |  |  |  | 
| 472 |  |  |  | 
| 473 |  |  | /* move neurons adjacent to i towards (b,g,r) by factor */ | 
| 474 |  |  | /* alpha*(1-((i-j)^2/[r]^2)) precomputed as radpower[|i-j|]*/ | 
| 475 |  |  |  | 
| 476 |  |  | alterneigh(rad,i,b,g,r) /* accents biased BGR values */ | 
| 477 | greg | 2.1 | int rad,i; | 
| 478 |  |  | register int b,g,r; | 
| 479 |  |  | { | 
| 480 |  |  | register int j,k,lo,hi,a; | 
| 481 |  |  | register int *p, *q; | 
| 482 |  |  |  | 
| 483 | greg | 2.6 | lo = i-rad;   if (lo<-1) lo= -1; | 
| 484 | greg | 2.7 | hi = i+rad;   if (hi>netsize) hi=netsize; | 
| 485 | greg | 2.1 |  | 
| 486 |  |  | j = i+1; | 
| 487 |  |  | k = i-1; | 
| 488 |  |  | q = radpower; | 
| 489 |  |  | while ((j<hi) || (k>lo)) { | 
| 490 |  |  | a = (*(++q)); | 
| 491 |  |  | if (j<hi) { | 
| 492 |  |  | p = network[j]; | 
| 493 |  |  | *p -= (a*(*p - b)) / alpharadbias; | 
| 494 |  |  | p++; | 
| 495 |  |  | *p -= (a*(*p - g)) / alpharadbias; | 
| 496 |  |  | p++; | 
| 497 |  |  | *p -= (a*(*p - r)) / alpharadbias; | 
| 498 |  |  | j++; | 
| 499 |  |  | } | 
| 500 |  |  | if (k>lo) { | 
| 501 |  |  | p = network[k]; | 
| 502 |  |  | *p -= (a*(*p - b)) / alpharadbias; | 
| 503 |  |  | p++; | 
| 504 |  |  | *p -= (a*(*p - g)) / alpharadbias; | 
| 505 |  |  | p++; | 
| 506 |  |  | *p -= (a*(*p - r)) / alpharadbias; | 
| 507 |  |  | k--; | 
| 508 |  |  | } | 
| 509 |  |  | } | 
| 510 |  |  | } | 
| 511 |  |  |  | 
| 512 |  |  |  | 
| 513 |  |  | learn() | 
| 514 |  |  | { | 
| 515 |  |  | register int i,j,b,g,r; | 
| 516 | greg | 2.6 | int radius,rad,alpha,step,delta,samplepixels; | 
| 517 | greg | 2.1 | register unsigned char *p; | 
| 518 |  |  | unsigned char *lim; | 
| 519 |  |  |  | 
| 520 | greg | 2.6 | alphadec = 30 + ((samplefac-1)/3); | 
| 521 |  |  | p = thepicture; | 
| 522 | greg | 2.1 | lim = thepicture + lengthcount; | 
| 523 | greg | 2.6 | samplepixels = lengthcount/(3*samplefac); | 
| 524 |  |  | delta = samplepixels/ncycles; | 
| 525 | greg | 2.1 | alpha = initalpha; | 
| 526 |  |  | radius = initradius; | 
| 527 | greg | 2.6 |  | 
| 528 | greg | 2.1 | rad = radius >> radiusbiasshift; | 
| 529 |  |  | if (rad <= 1) rad = 0; | 
| 530 |  |  | for (i=0; i<rad; i++) | 
| 531 |  |  | radpower[i] = alpha*(((rad*rad - i*i)*radbias)/(rad*rad)); | 
| 532 | greg | 2.6 |  | 
| 533 |  |  | if ((lengthcount%prime1) != 0) step = 3*prime1; | 
| 534 | greg | 2.1 | else { | 
| 535 | greg | 2.6 | if ((lengthcount%prime2) !=0) step = 3*prime2; | 
| 536 | greg | 2.1 | else { | 
| 537 | greg | 2.6 | if ((lengthcount%prime3) !=0) step = 3*prime3; | 
| 538 |  |  | else step = 3*prime4; | 
| 539 | greg | 2.1 | } | 
| 540 |  |  | } | 
| 541 | greg | 2.6 |  | 
| 542 | greg | 2.1 | i = 0; | 
| 543 | greg | 2.6 | while (i < samplepixels) { | 
| 544 | greg | 2.1 | b = p[0] << netbiasshift; | 
| 545 |  |  | g = p[1] << netbiasshift; | 
| 546 |  |  | r = p[2] << netbiasshift; | 
| 547 |  |  | j = contest(b,g,r); | 
| 548 |  |  |  | 
| 549 |  |  | altersingle(alpha,j,b,g,r); | 
| 550 | greg | 2.6 | if (rad) alterneigh(rad,j,b,g,r);   /* alter neighbours */ | 
| 551 | greg | 2.1 |  | 
| 552 |  |  | p += step; | 
| 553 |  |  | if (p >= lim) p -= lengthcount; | 
| 554 |  |  |  | 
| 555 |  |  | i++; | 
| 556 |  |  | if (i%delta == 0) { | 
| 557 |  |  | alpha -= alpha / alphadec; | 
| 558 |  |  | radius -= radius / radiusdec; | 
| 559 |  |  | rad = radius >> radiusbiasshift; | 
| 560 |  |  | if (rad <= 1) rad = 0; | 
| 561 |  |  | for (j=0; j<rad; j++) | 
| 562 |  |  | radpower[j] = alpha*(((rad*rad - j*j)*radbias)/(rad*rad)); | 
| 563 |  |  | } | 
| 564 |  |  | } | 
| 565 |  |  | } | 
| 566 |  |  |  | 
| 567 | greg | 2.6 | /* unbias network to give 0..255 entries */ | 
| 568 |  |  | /* which can then be used for colour map */ | 
| 569 |  |  | /* and record position i to prepare for sort */ | 
| 570 |  |  |  | 
| 571 | greg | 2.1 | unbiasnet() | 
| 572 |  |  | { | 
| 573 |  |  | int i,j; | 
| 574 |  |  |  | 
| 575 | greg | 2.7 | for (i=0; i<netsize; i++) { | 
| 576 | greg | 2.1 | for (j=0; j<3; j++) | 
| 577 |  |  | network[i][j] >>= netbiasshift; | 
| 578 |  |  | network[i][3] = i; /* record colour no */ | 
| 579 |  |  | } | 
| 580 |  |  | } | 
| 581 |  |  |  | 
| 582 | greg | 2.6 |  | 
| 583 |  |  | /* Don't do this until the network has been unbiased (GW) */ | 
| 584 | greg | 2.1 |  | 
| 585 |  |  | static | 
| 586 |  |  | cpyclrtab() | 
| 587 |  |  | { | 
| 588 |  |  | register int i,j,k; | 
| 589 |  |  |  | 
| 590 | greg | 2.7 | for (j=0; j<netsize; j++) { | 
| 591 | greg | 2.1 | k = network[j][3]; | 
| 592 |  |  | for (i = 0; i < 3; i++) | 
| 593 |  |  | clrtab[k][i] = network[j][2-i]; | 
| 594 |  |  | } | 
| 595 |  |  | } |