ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/px/neuclrtab.c
Revision: 2.14
Committed: Fri May 20 02:06:39 2011 UTC (12 years, 11 months ago) by greg
Content type: text/plain
Branch: MAIN
CVS Tags: rad5R4, rad5R2, rad4R2P2, rad5R0, rad5R1, rad4R2, rad4R1, rad4R2P1, rad5R3, HEAD
Changes since 2.13: +10 -10 lines
Log Message:
Changed every instance of BYTE to uby8 to avoid conflicts

File Contents

# User Rev Content
1 greg 2.1 #ifndef lint
2 greg 2.14 static const char RCSid[] = "$Id: neuclrtab.c,v 2.13 2007/09/08 19:17:52 greg Exp $";
3 greg 2.1 #endif
4     /*
5     * Neural-Net quantization algorithm based on work of Anthony Dekker
6     */
7    
8 schorsch 2.10 #include "copyright.h"
9    
10     #include <string.h>
11    
12 greg 2.1 #include "standard.h"
13     #include "color.h"
14     #include "random.h"
15 schorsch 2.11 #include "clrtab.h"
16 greg 2.1
17     #ifdef COMPAT_MODE
18     #define neu_init new_histo
19     #define neu_pixel cnt_pixel
20     #define neu_colrs cnt_colrs
21     #define neu_clrtab new_clrtab
22     #define neu_map_pixel map_pixel
23     #define neu_map_colrs map_colrs
24     #define neu_dith_colrs dith_colrs
25     #endif
26     /* our color table (global) */
27 greg 2.14 extern uby8 clrtab[256][3];
28 greg 2.1 static int clrtabsiz;
29    
30     #ifndef DEFSMPFAC
31 greg 2.12 #define DEFSMPFAC 3
32 greg 2.1 #endif
33    
34     int samplefac = DEFSMPFAC; /* sampling factor */
35    
36     /* Samples array starts off holding spacing between adjacent
37     * samples, and ends up holding actual BGR sample values.
38     */
39 greg 2.14 static uby8 *thesamples;
40 greg 2.1 static int nsamples;
41 greg 2.14 static uby8 *cursamp;
42 greg 2.1 static long skipcount;
43    
44     #define MAXSKIP (1<<24-1)
45    
46     #define nskip(sp) ((long)(sp)[0]<<16|(long)(sp)[1]<<8|(long)(sp)[2])
47    
48     #define setskip(sp,n) ((sp)[0]=(n)>>16,(sp)[1]=((n)>>8)&255,(sp)[2]=(n)&255)
49    
50 schorsch 2.11 static void initnet(void);
51     static void inxbuild(void);
52     static int inxsearch(int b, int g, int r);
53     static int contest(int b, int g, int r);
54     static void altersingle(int alpha, int i, int b, int g, int r);
55     static void alterneigh(int rad, int i, int b, int g, int r);
56     static void learn(void);
57     static void unbiasnet(void);
58     static void cpyclrtab(void);
59 greg 2.8
60 greg 2.1
61 schorsch 2.11 extern int
62     neu_init( /* initialize our sample array */
63     long npixels
64     )
65 greg 2.1 {
66     register int nsleft;
67     register long sv;
68     double rval, cumprob;
69     long npleft;
70    
71     nsamples = npixels/samplefac;
72     if (nsamples < 600)
73     return(-1);
74 greg 2.14 thesamples = (uby8 *)malloc(nsamples*3);
75 greg 2.1 if (thesamples == NULL)
76     return(-1);
77     cursamp = thesamples;
78     npleft = npixels;
79     nsleft = nsamples;
80     while (nsleft) {
81     rval = frandom(); /* random distance to next sample */
82     sv = 0;
83     cumprob = 0.;
84     while ((cumprob += (1.-cumprob)*nsleft/(npleft-sv)) < rval)
85     sv++;
86 greg 2.2 if (nsleft == nsamples)
87     skipcount = sv;
88     else {
89     setskip(cursamp, sv);
90     cursamp += 3;
91     }
92     npleft -= sv+1;
93 greg 2.1 nsleft--;
94     }
95 greg 2.2 setskip(cursamp, npleft); /* tag on end to skip the rest */
96 greg 2.1 cursamp = thesamples;
97     return(0);
98     }
99    
100    
101 schorsch 2.11 extern void
102     neu_pixel( /* add pixel to our samples */
103 greg 2.14 register uby8 col[]
104 schorsch 2.11 )
105 greg 2.1 {
106     if (!skipcount--) {
107 greg 2.2 skipcount = nskip(cursamp);
108 greg 2.1 cursamp[0] = col[BLU];
109     cursamp[1] = col[GRN];
110     cursamp[2] = col[RED];
111     cursamp += 3;
112     }
113     }
114    
115    
116 schorsch 2.11 extern void
117     neu_colrs( /* add a scanline to our samples */
118     register COLR *cs,
119     register int n
120     )
121 greg 2.1 {
122     while (n > skipcount) {
123     cs += skipcount;
124 greg 2.2 n -= skipcount+1;
125     skipcount = nskip(cursamp);
126 greg 2.1 cursamp[0] = cs[0][BLU];
127     cursamp[1] = cs[0][GRN];
128     cursamp[2] = cs[0][RED];
129     cs++;
130     cursamp += 3;
131     }
132     skipcount -= n;
133     }
134    
135    
136 schorsch 2.11 extern int
137     neu_clrtab( /* make new color table using ncolors */
138     int ncolors
139     )
140 greg 2.1 {
141     clrtabsiz = ncolors;
142     if (clrtabsiz > 256) clrtabsiz = 256;
143     initnet();
144     learn();
145     unbiasnet();
146     cpyclrtab();
147     inxbuild();
148     /* we're done with our samples */
149 greg 2.9 free((void *)thesamples);
150 greg 2.1 /* reset dithering function */
151 greg 2.14 neu_dith_colrs((uby8 *)NULL, (COLR *)NULL, 0);
152 greg 2.1 /* return new color table size */
153     return(clrtabsiz);
154     }
155    
156    
157 schorsch 2.11 extern int
158     neu_map_pixel( /* get pixel for color */
159 greg 2.14 register uby8 col[]
160 schorsch 2.11 )
161 greg 2.1 {
162     return(inxsearch(col[BLU],col[GRN],col[RED]));
163     }
164    
165    
166 schorsch 2.11 extern void
167     neu_map_colrs( /* convert a scanline to color index values */
168 greg 2.14 register uby8 *bs,
169 schorsch 2.11 register COLR *cs,
170     register int n
171     )
172 greg 2.1 {
173     while (n-- > 0) {
174     *bs++ = inxsearch(cs[0][BLU],cs[0][GRN],cs[0][RED]);
175     cs++;
176     }
177     }
178    
179    
180 schorsch 2.11 extern void
181     neu_dith_colrs( /* convert scanline to dithered index values */
182 greg 2.14 register uby8 *bs,
183 schorsch 2.11 register COLR *cs,
184     int n
185     )
186 greg 2.1 {
187     static short (*cerr)[3] = NULL;
188     static int N = 0;
189     int err[3], errp[3];
190     register int x, i;
191    
192     if (n != N) { /* get error propogation array */
193     if (N) {
194 greg 2.9 free((void *)cerr);
195 greg 2.1 cerr = NULL;
196     }
197     if (n)
198     cerr = (short (*)[3])malloc(3*n*sizeof(short));
199     if (cerr == NULL) {
200     N = 0;
201     map_colrs(bs, cs, n);
202     return;
203     }
204     N = n;
205 schorsch 2.10 memset((char *)cerr, '\0', 3*N*sizeof(short));
206 greg 2.1 }
207     err[0] = err[1] = err[2] = 0;
208     for (x = 0; x < n; x++) {
209     for (i = 0; i < 3; i++) { /* dither value */
210     errp[i] = err[i];
211     err[i] += cerr[x][i];
212     #ifdef MAXERR
213     if (err[i] > MAXERR) err[i] = MAXERR;
214     else if (err[i] < -MAXERR) err[i] = -MAXERR;
215     #endif
216     err[i] += cs[x][i];
217     if (err[i] < 0) err[i] = 0;
218     else if (err[i] > 255) err[i] = 255;
219     }
220     bs[x] = inxsearch(err[BLU],err[GRN],err[RED]);
221     for (i = 0; i < 3; i++) { /* propagate error */
222     err[i] -= clrtab[bs[x]][i];
223     err[i] /= 3;
224     cerr[x][i] = err[i] + errp[i];
225     }
226     }
227     }
228    
229     /* The following was adapted and modified from the original (GW) */
230 greg 2.6
231     /* cheater definitions (GW) */
232     #define thepicture thesamples
233     #define lengthcount (nsamples*3)
234     #define samplefac 1
235    
236 greg 2.13 /* NeuQuant Neural-Net Quantization Algorithm Interface
237     * ----------------------------------------------------
238     *
239     * Copyright (c) 1994 Anthony Dekker
240     *
241     * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
242     * See "Kohonen neural networks for optimal colour quantization"
243     * in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
244     * for a discussion of the algorithm.
245     * See also http://members.ozemail.com.au/~dekker/NEUQUANT.HTML
246     *
247     * Any party obtaining a copy of these files from the author, directly or
248     * indirectly, is granted, free of charge, a full and unrestricted irrevocable,
249     * world-wide, paid up, royalty-free, nonexclusive right and license to deal
250     * in this software and documentation files (the "Software"), including without
251     * limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
252     * and/or sell copies of the Software, and to permit persons who receive
253     * copies from any such party to do so, with the only requirement being
254     * that this copyright notice remain intact.
255     */
256 greg 2.1
257 greg 2.6 #define bool int
258     #define false 0
259     #define true 1
260 greg 2.1
261 greg 2.6 /* network defs */
262 greg 2.7 #define netsize clrtabsiz /* number of colours - can change this */
263 greg 2.6 #define maxnetpos (netsize-1)
264     #define netbiasshift 4 /* bias for colour values */
265     #define ncycles 100 /* no. of learning cycles */
266 greg 2.1
267     /* defs for freq and bias */
268 greg 2.6 #define intbiasshift 16 /* bias for fractions */
269     #define intbias (((int) 1)<<intbiasshift)
270     #define gammashift 10 /* gamma = 1024 */
271     #define gamma (((int) 1)<<gammashift)
272     #define betashift 10
273     #define beta (intbias>>betashift) /* beta = 1/1024 */
274 greg 2.1 #define betagamma (intbias<<(gammashift-betashift))
275    
276 greg 2.6 /* defs for decreasing radius factor */
277 greg 2.7 #define initrad (256>>3) /* for 256 cols, radius starts */
278 greg 2.6 #define radiusbiasshift 6 /* at 32.0 biased by 6 bits */
279     #define radiusbias (((int) 1)<<radiusbiasshift)
280     #define initradius (initrad*radiusbias) /* and decreases by a */
281     #define radiusdec 30 /* factor of 1/30 each cycle */
282    
283     /* defs for decreasing alpha factor */
284     #define alphabiasshift 10 /* alpha starts at 1.0 */
285     #define initalpha (((int) 1)<<alphabiasshift)
286     int alphadec; /* biased by 10 bits */
287    
288     /* radbias and alpharadbias used for radpower calculation */
289 greg 2.1 #define radbiasshift 8
290 greg 2.6 #define radbias (((int) 1)<<radbiasshift)
291 greg 2.1 #define alpharadbshift (alphabiasshift+radbiasshift)
292 greg 2.6 #define alpharadbias (((int) 1)<<alpharadbshift)
293 greg 2.1
294 greg 2.6 /* four primes near 500 - assume no image has a length so large */
295     /* that it is divisible by all four primes */
296     #define prime1 499
297     #define prime2 491
298     #define prime3 487
299     #define prime4 503
300 greg 2.1
301     typedef int pixel[4]; /* BGRc */
302 greg 2.7 pixel network[256];
303 greg 2.1
304 greg 2.6 int netindex[256]; /* for network lookup - really 256 */
305 greg 2.1
306 greg 2.7 int bias [256]; /* bias and freq arrays for learning */
307     int freq [256];
308 greg 2.6 int radpower[initrad]; /* radpower for precomputation */
309 greg 2.1
310    
311 greg 2.6 /* initialise network in range (0,0,0) to (255,255,255) */
312 greg 2.1
313 schorsch 2.11 static void
314     initnet(void)
315 greg 2.1 {
316     register int i;
317     register int *p;
318    
319 greg 2.7 for (i=0; i<netsize; i++) {
320 greg 2.1 p = network[i];
321 greg 2.7 p[0] = p[1] = p[2] = (i << (netbiasshift+8))/netsize;
322     freq[i] = intbias/netsize; /* 1/netsize */
323 greg 2.1 bias[i] = 0;
324     }
325     }
326    
327    
328 greg 2.6 /* do after unbias - insertion sort of network and build netindex[0..255] */
329    
330 schorsch 2.11 static void
331     inxbuild(void)
332 greg 2.1 {
333     register int i,j,smallpos,smallval;
334     register int *p,*q;
335 greg 2.6 int previouscol,startpos;
336 greg 2.1
337 greg 2.6 previouscol = 0;
338     startpos = 0;
339 greg 2.7 for (i=0; i<netsize; i++) {
340 greg 2.1 p = network[i];
341     smallpos = i;
342     smallval = p[1]; /* index on g */
343 greg 2.7 /* find smallest in i..netsize-1 */
344     for (j=i+1; j<netsize; j++) {
345 greg 2.1 q = network[j];
346     if (q[1] < smallval) { /* index on g */
347     smallpos = j;
348     smallval = q[1]; /* index on g */
349     }
350     }
351     q = network[smallpos];
352 greg 2.6 /* swap p (i) and q (smallpos) entries */
353 greg 2.1 if (i != smallpos) {
354     j = q[0]; q[0] = p[0]; p[0] = j;
355     j = q[1]; q[1] = p[1]; p[1] = j;
356     j = q[2]; q[2] = p[2]; p[2] = j;
357     j = q[3]; q[3] = p[3]; p[3] = j;
358     }
359     /* smallval entry is now in position i */
360 greg 2.6 if (smallval != previouscol) {
361     netindex[previouscol] = (startpos+i)>>1;
362     for (j=previouscol+1; j<smallval; j++) netindex[j] = i;
363     previouscol = smallval;
364     startpos = i;
365 greg 2.1 }
366     }
367 greg 2.6 netindex[previouscol] = (startpos+maxnetpos)>>1;
368     for (j=previouscol+1; j<256; j++) netindex[j] = maxnetpos; /* really 256 */
369 greg 2.1 }
370    
371    
372 schorsch 2.11 static int
373     inxsearch( /* accepts real BGR values after net is unbiased */
374     register int b,
375     register int g,
376     register int r
377     )
378 greg 2.1 {
379 greg 2.6 register int i,j,dist,a,bestd;
380 greg 2.1 register int *p;
381 greg 2.6 int best;
382 greg 2.1
383     bestd = 1000; /* biggest possible dist is 256*3 */
384     best = -1;
385     i = netindex[g]; /* index on g */
386 greg 2.6 j = i-1; /* start at netindex[g] and work outwards */
387 greg 2.1
388 greg 2.7 while ((i<netsize) || (j>=0)) {
389     if (i<netsize) {
390 greg 2.1 p = network[i];
391 greg 2.6 dist = p[1] - g; /* inx key */
392 greg 2.7 if (dist >= bestd) i = netsize; /* stop iter */
393 greg 2.1 else {
394     i++;
395 greg 2.6 if (dist<0) dist = -dist;
396     a = p[0] - b; if (a<0) a = -a;
397     dist += a;
398     if (dist<bestd) {
399     a = p[2] - r; if (a<0) a = -a;
400     dist += a;
401     if (dist<bestd) {bestd=dist; best=p[3];}
402 greg 2.1 }
403     }
404     }
405     if (j>=0) {
406     p = network[j];
407 greg 2.6 dist = g - p[1]; /* inx key - reverse dif */
408     if (dist >= bestd) j = -1; /* stop iter */
409 greg 2.1 else {
410     j--;
411 greg 2.6 if (dist<0) dist = -dist;
412     a = p[0] - b; if (a<0) a = -a;
413     dist += a;
414     if (dist<bestd) {
415     a = p[2] - r; if (a<0) a = -a;
416     dist += a;
417     if (dist<bestd) {bestd=dist; best=p[3];}
418 greg 2.1 }
419     }
420     }
421     }
422     return(best);
423     }
424    
425    
426 greg 2.6 /* finds closest neuron (min dist) and updates freq */
427     /* finds best neuron (min dist-bias) and returns position */
428     /* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
429 greg 2.7 /* bias[i] = gamma*((1/netsize)-freq[i]) */
430 greg 2.6
431 schorsch 2.11 static int
432     contest( /* accepts biased BGR values */
433     register int b,
434     register int g,
435     register int r
436     )
437 greg 2.1 {
438 greg 2.6 register int i,dist,a,biasdist,betafreq;
439     int bestpos,bestbiaspos,bestd,bestbiasd;
440     register int *p,*f, *n;
441 greg 2.1
442 greg 2.6 bestd = ~(((int) 1)<<31);
443 greg 2.1 bestbiasd = bestd;
444 greg 2.6 bestpos = -1;
445     bestbiaspos = bestpos;
446     p = bias;
447     f = freq;
448    
449 greg 2.7 for (i=0; i<netsize; i++) {
450 greg 2.6 n = network[i];
451     dist = n[0] - b; if (dist<0) dist = -dist;
452     a = n[1] - g; if (a<0) a = -a;
453     dist += a;
454     a = n[2] - r; if (a<0) a = -a;
455     dist += a;
456     if (dist<bestd) {bestd=dist; bestpos=i;}
457     biasdist = dist - ((*p)>>(intbiasshift-netbiasshift));
458     if (biasdist<bestbiasd) {bestbiasd=biasdist; bestbiaspos=i;}
459     betafreq = (*f >> betashift);
460     *f++ -= betafreq;
461     *p++ += (betafreq<<gammashift);
462 greg 2.1 }
463 greg 2.6 freq[bestpos] += beta;
464     bias[bestpos] -= betagamma;
465     return(bestbiaspos);
466 greg 2.1 }
467    
468    
469 greg 2.6 /* move neuron i towards (b,g,r) by factor alpha */
470    
471 schorsch 2.11 static void
472     altersingle( /* accepts biased BGR values */
473     register int alpha,
474     register int i,
475     register int b,
476     register int g,
477     register int r
478     )
479 greg 2.6 {
480     register int *n;
481    
482     n = network[i]; /* alter hit neuron */
483     *n -= (alpha*(*n - b)) / initalpha;
484     n++;
485     *n -= (alpha*(*n - g)) / initalpha;
486     n++;
487     *n -= (alpha*(*n - r)) / initalpha;
488     }
489    
490    
491     /* move neurons adjacent to i towards (b,g,r) by factor */
492     /* alpha*(1-((i-j)^2/[r]^2)) precomputed as radpower[|i-j|]*/
493    
494 schorsch 2.11 static void
495     alterneigh( /* accents biased BGR values */
496     int rad,
497     int i,
498     register int b,
499     register int g,
500     register int r
501     )
502 greg 2.1 {
503     register int j,k,lo,hi,a;
504     register int *p, *q;
505    
506 greg 2.6 lo = i-rad; if (lo<-1) lo= -1;
507 greg 2.7 hi = i+rad; if (hi>netsize) hi=netsize;
508 greg 2.1
509     j = i+1;
510     k = i-1;
511     q = radpower;
512     while ((j<hi) || (k>lo)) {
513     a = (*(++q));
514     if (j<hi) {
515     p = network[j];
516     *p -= (a*(*p - b)) / alpharadbias;
517     p++;
518     *p -= (a*(*p - g)) / alpharadbias;
519     p++;
520     *p -= (a*(*p - r)) / alpharadbias;
521     j++;
522     }
523     if (k>lo) {
524     p = network[k];
525     *p -= (a*(*p - b)) / alpharadbias;
526     p++;
527     *p -= (a*(*p - g)) / alpharadbias;
528     p++;
529     *p -= (a*(*p - r)) / alpharadbias;
530     k--;
531     }
532     }
533     }
534    
535    
536 schorsch 2.11 static void
537     learn(void)
538 greg 2.1 {
539     register int i,j,b,g,r;
540 greg 2.6 int radius,rad,alpha,step,delta,samplepixels;
541 greg 2.1 register unsigned char *p;
542     unsigned char *lim;
543    
544 greg 2.6 alphadec = 30 + ((samplefac-1)/3);
545     p = thepicture;
546 greg 2.1 lim = thepicture + lengthcount;
547 greg 2.6 samplepixels = lengthcount/(3*samplefac);
548     delta = samplepixels/ncycles;
549 greg 2.1 alpha = initalpha;
550     radius = initradius;
551 greg 2.6
552 greg 2.1 rad = radius >> radiusbiasshift;
553     if (rad <= 1) rad = 0;
554     for (i=0; i<rad; i++)
555     radpower[i] = alpha*(((rad*rad - i*i)*radbias)/(rad*rad));
556 greg 2.6
557     if ((lengthcount%prime1) != 0) step = 3*prime1;
558 greg 2.1 else {
559 greg 2.6 if ((lengthcount%prime2) !=0) step = 3*prime2;
560 greg 2.1 else {
561 greg 2.6 if ((lengthcount%prime3) !=0) step = 3*prime3;
562     else step = 3*prime4;
563 greg 2.1 }
564     }
565 greg 2.6
566 greg 2.1 i = 0;
567 greg 2.6 while (i < samplepixels) {
568 greg 2.1 b = p[0] << netbiasshift;
569     g = p[1] << netbiasshift;
570     r = p[2] << netbiasshift;
571     j = contest(b,g,r);
572    
573     altersingle(alpha,j,b,g,r);
574 greg 2.6 if (rad) alterneigh(rad,j,b,g,r); /* alter neighbours */
575 greg 2.1
576     p += step;
577     if (p >= lim) p -= lengthcount;
578    
579     i++;
580     if (i%delta == 0) {
581     alpha -= alpha / alphadec;
582     radius -= radius / radiusdec;
583     rad = radius >> radiusbiasshift;
584     if (rad <= 1) rad = 0;
585     for (j=0; j<rad; j++)
586     radpower[j] = alpha*(((rad*rad - j*j)*radbias)/(rad*rad));
587     }
588     }
589     }
590    
591 greg 2.6 /* unbias network to give 0..255 entries */
592     /* which can then be used for colour map */
593     /* and record position i to prepare for sort */
594    
595 schorsch 2.11 static void
596     unbiasnet(void)
597 greg 2.1 {
598     int i,j;
599    
600 greg 2.7 for (i=0; i<netsize; i++) {
601 greg 2.1 for (j=0; j<3; j++)
602     network[i][j] >>= netbiasshift;
603     network[i][3] = i; /* record colour no */
604     }
605     }
606    
607 greg 2.6
608     /* Don't do this until the network has been unbiased (GW) */
609 greg 2.1
610 schorsch 2.11 static void
611     cpyclrtab(void)
612 greg 2.1 {
613     register int i,j,k;
614    
615 greg 2.7 for (j=0; j<netsize; j++) {
616 greg 2.1 k = network[j][3];
617     for (i = 0; i < 3; i++)
618     clrtab[k][i] = network[j][2-i];
619     }
620     }