| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id: sphere.c,v 2.5 2004/03/30 16:13:00 schorsch Exp $";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* sphere.c - routines for creating octrees for spheres.
|
| 6 |
*
|
| 7 |
* 7/28/85
|
| 8 |
*/
|
| 9 |
|
| 10 |
#include "standard.h"
|
| 11 |
|
| 12 |
#include "octree.h"
|
| 13 |
|
| 14 |
#include "object.h"
|
| 15 |
|
| 16 |
#include "otypes.h"
|
| 17 |
|
| 18 |
#define ROOT3 1.732050808
|
| 19 |
|
| 20 |
/*
|
| 21 |
* Regrettably, the algorithm for determining a cube's location
|
| 22 |
* with respect to a sphere is not simple. First, a quick test is
|
| 23 |
* made to determine if the sphere and the bounding sphere of the cube
|
| 24 |
* are disjoint. This of course means no intersection. Failing this,
|
| 25 |
* we determine if the cube lies inside the sphere. The cube is
|
| 26 |
* entirely inside if the bounding sphere on the cube is
|
| 27 |
* contained within our sphere. This means no intersection. Otherwise,
|
| 28 |
* if the cube radius is smaller than the sphere's and the cube center is
|
| 29 |
* inside the sphere, we assume intersection. If these tests fail,
|
| 30 |
* we proceed as follows.
|
| 31 |
* The sphere center is located in relation to the 6 cube faces,
|
| 32 |
* and one of four things is done depending on the number of
|
| 33 |
* planes the center lies between:
|
| 34 |
*
|
| 35 |
* 0: The sphere is closest to a cube corner, find the
|
| 36 |
* distance to that corner.
|
| 37 |
*
|
| 38 |
* 1: The sphere is closest to a cube edge, find this
|
| 39 |
* distance.
|
| 40 |
*
|
| 41 |
* 2: The sphere is closest to a cube face, find the distance.
|
| 42 |
*
|
| 43 |
* 3: The sphere has its center inside the cube.
|
| 44 |
*
|
| 45 |
* In cases 0-2, if the closest part of the cube is within
|
| 46 |
* the radius distance from the sphere center, we have intersection.
|
| 47 |
* If it is not, the cube must be outside the sphere.
|
| 48 |
* In case 3, there must be intersection, and no further
|
| 49 |
* tests are necessary.
|
| 50 |
*/
|
| 51 |
|
| 52 |
|
| 53 |
int
|
| 54 |
o_sphere( /* determine if sphere intersects cube */
|
| 55 |
OBJREC *o,
|
| 56 |
CUBE *cu
|
| 57 |
)
|
| 58 |
{
|
| 59 |
FVECT v1;
|
| 60 |
double d1, d2;
|
| 61 |
RREAL *fa;
|
| 62 |
int i;
|
| 63 |
#define cent fa
|
| 64 |
#define rad fa[3]
|
| 65 |
/* get arguments */
|
| 66 |
if (o->oargs.nfargs != 4)
|
| 67 |
objerror(o, USER, "bad # arguments");
|
| 68 |
fa = o->oargs.farg;
|
| 69 |
if (rad < -FTINY) {
|
| 70 |
objerror(o, WARNING, "negative radius");
|
| 71 |
o->otype = o->otype == OBJ_SPHERE ?
|
| 72 |
OBJ_BUBBLE : OBJ_SPHERE;
|
| 73 |
rad = -rad;
|
| 74 |
} else if (rad <= FTINY) {
|
| 75 |
objerror(o, WARNING, "zero radius");
|
| 76 |
return(O_MISS);
|
| 77 |
}
|
| 78 |
|
| 79 |
d1 = ROOT3/2.0 * cu->cusize; /* bounding radius for cube */
|
| 80 |
|
| 81 |
d2 = cu->cusize * 0.5; /* get distance between centers */
|
| 82 |
for (i = 0; i < 3; i++)
|
| 83 |
v1[i] = cu->cuorg[i] + d2 - cent[i];
|
| 84 |
d2 = DOT(v1,v1);
|
| 85 |
|
| 86 |
if (d2 > (rad+d1+FTINY)*(rad+d1+FTINY)) /* quick test */
|
| 87 |
return(O_MISS); /* cube outside */
|
| 88 |
|
| 89 |
/* check sphere interior */
|
| 90 |
if (d1 < rad) {
|
| 91 |
if (d2 < (rad-d1-FTINY)*(rad-d1-FTINY))
|
| 92 |
return(O_MISS); /* cube inside sphere */
|
| 93 |
if (d2 < (rad+FTINY)*(rad+FTINY))
|
| 94 |
return(O_HIT); /* cube center inside */
|
| 95 |
}
|
| 96 |
/* find closest distance */
|
| 97 |
for (i = 0; i < 3; i++)
|
| 98 |
if (cent[i] < cu->cuorg[i])
|
| 99 |
v1[i] = cu->cuorg[i] - cent[i];
|
| 100 |
else if (cent[i] > cu->cuorg[i] + cu->cusize)
|
| 101 |
v1[i] = cent[i] - (cu->cuorg[i] + cu->cusize);
|
| 102 |
else
|
| 103 |
v1[i] = 0;
|
| 104 |
/* final intersection check */
|
| 105 |
if (DOT(v1,v1) <= (rad+FTINY)*(rad+FTINY))
|
| 106 |
return(O_HIT);
|
| 107 |
else
|
| 108 |
return(O_MISS);
|
| 109 |
}
|