| 1 |
greg |
1.1 |
/* Copyright (c) 1986 Regents of the University of California */ |
| 2 |
|
|
|
| 3 |
|
|
#ifndef lint |
| 4 |
|
|
static char SCCSid[] = "$SunId$ LBL"; |
| 5 |
|
|
#endif |
| 6 |
|
|
|
| 7 |
|
|
/* |
| 8 |
|
|
* sphere.c - routines for creating octrees for spheres. |
| 9 |
|
|
* |
| 10 |
|
|
* 7/28/85 |
| 11 |
|
|
*/ |
| 12 |
|
|
|
| 13 |
|
|
#include "standard.h" |
| 14 |
|
|
|
| 15 |
|
|
#include "octree.h" |
| 16 |
|
|
|
| 17 |
|
|
#include "object.h" |
| 18 |
|
|
|
| 19 |
|
|
#include "otypes.h" |
| 20 |
|
|
|
| 21 |
|
|
#define ROOT3 1.732050808 |
| 22 |
|
|
|
| 23 |
|
|
/* |
| 24 |
|
|
* Regrettably, the algorithm for determining a cube's location |
| 25 |
|
|
* with respect to a sphere is not simple. First, a quick test is |
| 26 |
|
|
* made to determine if the sphere and the bounding sphere of the cube |
| 27 |
|
|
* are disjoint. This of course means no intersection. Failing this, |
| 28 |
|
|
* we determine if the cube lies inside the sphere. The cube is |
| 29 |
|
|
* entirely inside if the bounding sphere on the cube is |
| 30 |
|
|
* contained within our sphere. This means no intersection. Otherwise, |
| 31 |
|
|
* if the cube radius is smaller than the sphere's and the cube center is |
| 32 |
|
|
* inside the sphere, we assume intersection. If these tests fail, |
| 33 |
|
|
* we proceed as follows. |
| 34 |
|
|
* The sphere center is located in relation to the 6 cube faces, |
| 35 |
|
|
* and one of four things is done depending on the number of |
| 36 |
|
|
* planes the center lies between: |
| 37 |
|
|
* |
| 38 |
|
|
* 0: The sphere is closest to a cube corner, find the |
| 39 |
|
|
* distance to that corner. |
| 40 |
|
|
* |
| 41 |
|
|
* 1: The sphere is closest to a cube edge, find this |
| 42 |
|
|
* distance. |
| 43 |
|
|
* |
| 44 |
|
|
* 2: The sphere is closest to a cube face, find the distance. |
| 45 |
|
|
* |
| 46 |
|
|
* 3: The sphere has its center inside the cube. |
| 47 |
|
|
* |
| 48 |
|
|
* In cases 0-2, if the closest part of the cube is within |
| 49 |
|
|
* the radius distance from the sphere center, we have intersection. |
| 50 |
|
|
* If it is not, the cube must be outside the sphere. |
| 51 |
|
|
* In case 3, there must be intersection, and no further |
| 52 |
|
|
* tests are necessary. |
| 53 |
|
|
*/ |
| 54 |
|
|
|
| 55 |
|
|
|
| 56 |
|
|
o_sphere(o, cu) /* determine if sphere intersects cube */ |
| 57 |
|
|
OBJREC *o; |
| 58 |
|
|
register CUBE *cu; |
| 59 |
|
|
{ |
| 60 |
|
|
FVECT v1; |
| 61 |
|
|
double d1, d2; |
| 62 |
greg |
1.4 |
register FLOAT *fa; |
| 63 |
greg |
1.1 |
register int i; |
| 64 |
|
|
#define cent fa |
| 65 |
|
|
#define rad fa[3] |
| 66 |
|
|
/* get arguments */ |
| 67 |
greg |
1.3 |
if (o->oargs.nfargs != 4) |
| 68 |
|
|
objerror(o, USER, "bad # arguments"); |
| 69 |
greg |
1.1 |
fa = o->oargs.farg; |
| 70 |
greg |
1.3 |
if (rad < -FTINY) { |
| 71 |
|
|
objerror(o, WARNING, "negative radius"); |
| 72 |
|
|
o->otype = o->otype == OBJ_SPHERE ? |
| 73 |
|
|
OBJ_BUBBLE : OBJ_SPHERE; |
| 74 |
|
|
rad = -rad; |
| 75 |
|
|
} else if (rad <= FTINY) |
| 76 |
|
|
objerror(o, USER, "zero radius"); |
| 77 |
greg |
1.1 |
|
| 78 |
|
|
d1 = ROOT3/2.0 * cu->cusize; /* bounding radius for cube */ |
| 79 |
|
|
|
| 80 |
|
|
d2 = cu->cusize * 0.5; /* get distance between centers */ |
| 81 |
|
|
for (i = 0; i < 3; i++) |
| 82 |
|
|
v1[i] = cu->cuorg[i] + d2 - cent[i]; |
| 83 |
|
|
d2 = DOT(v1,v1); |
| 84 |
|
|
|
| 85 |
|
|
if (d2 > (rad+d1+FTINY)*(rad+d1+FTINY)) /* quick test */ |
| 86 |
greg |
1.2 |
return(O_MISS); /* cube outside */ |
| 87 |
greg |
1.1 |
|
| 88 |
|
|
/* check sphere interior */ |
| 89 |
|
|
if (d1 < rad) { |
| 90 |
|
|
if (d2 < (rad-d1-FTINY)*(rad-d1-FTINY)) |
| 91 |
greg |
1.2 |
return(O_MISS); /* cube inside sphere */ |
| 92 |
greg |
1.1 |
if (d2 < (rad+FTINY)*(rad+FTINY)) |
| 93 |
greg |
1.2 |
return(O_HIT); /* cube center inside */ |
| 94 |
greg |
1.1 |
} |
| 95 |
|
|
/* find closest distance */ |
| 96 |
|
|
for (i = 0; i < 3; i++) |
| 97 |
|
|
if (cent[i] < cu->cuorg[i]) |
| 98 |
|
|
v1[i] = cu->cuorg[i] - cent[i]; |
| 99 |
|
|
else if (cent[i] > cu->cuorg[i] + cu->cusize) |
| 100 |
|
|
v1[i] = cent[i] - (cu->cuorg[i] + cu->cusize); |
| 101 |
|
|
else |
| 102 |
|
|
v1[i] = 0; |
| 103 |
|
|
/* final intersection check */ |
| 104 |
|
|
if (DOT(v1,v1) <= (rad+FTINY)*(rad+FTINY)) |
| 105 |
greg |
1.2 |
return(O_HIT); |
| 106 |
greg |
1.1 |
else |
| 107 |
greg |
1.2 |
return(O_MISS); |
| 108 |
greg |
1.1 |
} |