1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: o_cone.c,v 2.6 2007/11/21 18:51:04 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* o_cone.c - routines for intersecting cubes with cones. |
6 |
* |
7 |
* 2/3/86 |
8 |
*/ |
9 |
|
10 |
#include "standard.h" |
11 |
#include "octree.h" |
12 |
#include "object.h" |
13 |
#include "cone.h" |
14 |
#include "plocate.h" |
15 |
|
16 |
#ifndef STRICT |
17 |
#define STRICT 1 |
18 |
#endif |
19 |
|
20 |
#define ROOT3 1.732050808 |
21 |
|
22 |
/* |
23 |
* The algorithm used to detect cube intersection with cones is |
24 |
* recursive. First, we approximate the cube to be a sphere. Then |
25 |
* we test for cone intersection with the sphere by testing the |
26 |
* segment of the cone which is nearest the sphere's center. |
27 |
* If the cone has points within the cube's bounding sphere, |
28 |
* we must check for intersection with the cube. This is done with |
29 |
* the 3D line clipper. The same cone segment is used in this test. |
30 |
* If the clip fails, we still cannot be sure there is no intersection, |
31 |
* so we subdivide the cube and recurse. |
32 |
* If none of the sub-cubes intersect, then our cube does not intersect. |
33 |
*/ |
34 |
|
35 |
extern double mincusize; /* minimum cube size */ |
36 |
|
37 |
static int findcseg(FVECT ep0, FVECT ep1, CONE *co, FVECT p); |
38 |
|
39 |
|
40 |
|
41 |
extern int |
42 |
o_cone( /* determine if cone intersects cube */ |
43 |
OBJREC *o, |
44 |
CUBE *cu |
45 |
) |
46 |
{ |
47 |
CONE *co; |
48 |
FVECT ep0, ep1; |
49 |
#if STRICT |
50 |
FVECT cumin, cumax; |
51 |
CUBE cukid; |
52 |
int j; |
53 |
#endif |
54 |
double r; |
55 |
FVECT p; |
56 |
int i; |
57 |
/* get cone arguments */ |
58 |
co = getcone(o, 0); |
59 |
if (co == NULL) /* check for degenerate case */ |
60 |
return(O_MISS); |
61 |
/* get cube center */ |
62 |
r = cu->cusize * 0.5; |
63 |
for (i = 0; i < 3; i++) |
64 |
p[i] = cu->cuorg[i] + r; |
65 |
r *= ROOT3; /* bounding radius for cube */ |
66 |
|
67 |
if (findcseg(ep0, ep1, co, p)) { |
68 |
/* check min. distance to cone */ |
69 |
if (dist2lseg(p, ep0, ep1) > (r+FTINY)*(r+FTINY)) |
70 |
return(O_MISS); |
71 |
#if STRICT |
72 |
/* get cube boundaries */ |
73 |
for (i = 0; i < 3; i++) |
74 |
cumax[i] = (cumin[i] = cu->cuorg[i]) + cu->cusize; |
75 |
/* closest segment intersects? */ |
76 |
if (clip(ep0, ep1, cumin, cumax)) |
77 |
return(O_HIT); |
78 |
} |
79 |
/* check sub-cubes */ |
80 |
cukid.cusize = cu->cusize * 0.5; |
81 |
if (cukid.cusize < mincusize) |
82 |
return(O_HIT); /* cube too small */ |
83 |
cukid.cutree = EMPTY; |
84 |
|
85 |
for (j = 0; j < 8; j++) { |
86 |
for (i = 0; i < 3; i++) { |
87 |
cukid.cuorg[i] = cu->cuorg[i]; |
88 |
if (1<<i & j) |
89 |
cukid.cuorg[i] += cukid.cusize; |
90 |
} |
91 |
if (o_cone(o, &cukid)) |
92 |
return(O_HIT); /* sub-cube intersects */ |
93 |
} |
94 |
return(O_MISS); /* no intersection */ |
95 |
#else |
96 |
} |
97 |
return(O_HIT); /* assume intersection */ |
98 |
#endif |
99 |
} |
100 |
|
101 |
|
102 |
static int |
103 |
findcseg( /* find line segment from cone closest to p */ |
104 |
FVECT ep0, |
105 |
FVECT ep1, |
106 |
CONE *co, |
107 |
FVECT p |
108 |
) |
109 |
{ |
110 |
double d; |
111 |
FVECT v; |
112 |
int i; |
113 |
/* find direction from axis to point */ |
114 |
VSUB(v, p, CO_P0(co)); |
115 |
d = DOT(v, co->ad); |
116 |
for (i = 0; i < 3; i++) |
117 |
v[i] -= d*co->ad[i]; |
118 |
if (normalize(v) == 0.0) |
119 |
return(0); |
120 |
/* find endpoints of segment */ |
121 |
for (i = 0; i < 3; i++) { |
122 |
ep0[i] = CO_R0(co)*v[i] + CO_P0(co)[i]; |
123 |
ep1[i] = CO_R1(co)*v[i] + CO_P1(co)[i]; |
124 |
} |
125 |
return(1); /* return distance from axis */ |
126 |
} |