1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: o_cone.c,v 2.3 2004/03/27 12:41:45 schorsch Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* o_cone.c - routines for intersecting cubes with cones. |
6 |
* |
7 |
* 2/3/86 |
8 |
*/ |
9 |
|
10 |
#include "standard.h" |
11 |
#include "octree.h" |
12 |
#include "object.h" |
13 |
#include "cone.h" |
14 |
|
15 |
#define ROOT3 1.732050808 |
16 |
|
17 |
/* |
18 |
* The algorithm used to detect cube intersection with cones is |
19 |
* recursive. First, we approximate the cube to be a sphere. Then |
20 |
* we test for cone intersection with the sphere by testing the |
21 |
* segment of the cone which is nearest the sphere's center. |
22 |
* If the cone has points within the cube's bounding sphere, |
23 |
* we must check for intersection with the cube. This is done with |
24 |
* the 3D line clipper. The same cone segment is used in this test. |
25 |
* If the clip fails, we still cannot be sure there is no intersection, |
26 |
* so we subdivide the cube and recurse. |
27 |
* If none of the sub-cubes intersect, then our cube does not intersect. |
28 |
*/ |
29 |
|
30 |
extern double mincusize; /* minimum cube size */ |
31 |
|
32 |
static double findcseg(FVECT ep0, FVECT ep1, CONE *co, FVECT p); |
33 |
|
34 |
|
35 |
|
36 |
extern int |
37 |
o_cone( /* determine if cone intersects cube */ |
38 |
OBJREC *o, |
39 |
register CUBE *cu |
40 |
) |
41 |
{ |
42 |
CONE *co; |
43 |
FVECT ep0, ep1; |
44 |
#ifdef STRICT |
45 |
FVECT cumin, cumax; |
46 |
CUBE cukid; |
47 |
register int j; |
48 |
#endif |
49 |
double r; |
50 |
FVECT p; |
51 |
register int i; |
52 |
/* get cone arguments */ |
53 |
co = getcone(o, 0); |
54 |
/* get cube center */ |
55 |
r = cu->cusize * 0.5; |
56 |
for (i = 0; i < 3; i++) |
57 |
p[i] = cu->cuorg[i] + r; |
58 |
r *= ROOT3; /* bounding radius for cube */ |
59 |
|
60 |
if (findcseg(ep0, ep1, co, p) > 0.0) { |
61 |
/* check min. distance to cone */ |
62 |
if (dist2lseg(p, ep0, ep1) > (r+FTINY)*(r+FTINY)) |
63 |
return(O_MISS); |
64 |
#ifdef STRICT |
65 |
/* get cube boundaries */ |
66 |
for (i = 0; i < 3; i++) |
67 |
cumax[i] = (cumin[i] = cu->cuorg[i]) + cu->cusize; |
68 |
/* closest segment intersects? */ |
69 |
if (clip(ep0, ep1, cumin, cumax)) |
70 |
return(O_HIT); |
71 |
} |
72 |
/* check sub-cubes */ |
73 |
cukid.cusize = cu->cusize * 0.5; |
74 |
if (cukid.cusize < mincusize) |
75 |
return(O_HIT); /* cube too small */ |
76 |
cukid.cutree = EMPTY; |
77 |
|
78 |
for (j = 0; j < 8; j++) { |
79 |
for (i = 0; i < 3; i++) { |
80 |
cukid.cuorg[i] = cu->cuorg[i]; |
81 |
if (1<<i & j) |
82 |
cukid.cuorg[i] += cukid.cusize; |
83 |
} |
84 |
if (o_cone(o, &cukid)) |
85 |
return(O_HIT); /* sub-cube intersects */ |
86 |
} |
87 |
return(O_MISS); /* no intersection */ |
88 |
#else |
89 |
} |
90 |
return(O_HIT); /* assume intersection */ |
91 |
#endif |
92 |
} |
93 |
|
94 |
|
95 |
static double |
96 |
findcseg( /* find line segment from cone closest to p */ |
97 |
FVECT ep0, |
98 |
FVECT ep1, |
99 |
register CONE *co, |
100 |
FVECT p |
101 |
) |
102 |
{ |
103 |
double d; |
104 |
FVECT v; |
105 |
register int i; |
106 |
/* find direction from axis to point */ |
107 |
for (i = 0; i < 3; i++) |
108 |
v[i] = p[i] - CO_P0(co)[i]; |
109 |
d = DOT(v, co->ad); |
110 |
for (i = 0; i < 3; i++) |
111 |
v[i] = v[i] - d*co->ad[i]; |
112 |
d = normalize(v); |
113 |
if (d > 0.0) /* find endpoints of segment */ |
114 |
for (i = 0; i < 3; i++) { |
115 |
ep0[i] = CO_R0(co)*v[i] + CO_P0(co)[i]; |
116 |
ep1[i] = CO_R1(co)*v[i] + CO_P1(co)[i]; |
117 |
} |
118 |
return(d); /* return distance from axis */ |
119 |
} |