1 |
#ifndef lint |
2 |
static const char RCSid[] = "$Id: mgraph.c,v 1.1 2003/02/22 02:07:26 greg Exp $"; |
3 |
#endif |
4 |
/* |
5 |
* mgraph.c - routines for plotting graphs from variables. |
6 |
* |
7 |
* 6/23/86 |
8 |
* |
9 |
* Greg Ward Larson |
10 |
*/ |
11 |
|
12 |
#include <stdio.h> |
13 |
#include <string.h> |
14 |
|
15 |
#include "meta.h" |
16 |
#include "mgvars.h" |
17 |
#include "mgraph.h" |
18 |
|
19 |
extern char *progname; /* argv[0] */ |
20 |
|
21 |
extern double goodstep(), floor(), ceil(), sin(), cos(); |
22 |
|
23 |
static BOUNDS xbounds, ybounds; /* the boundaries for the graph */ |
24 |
|
25 |
static double period = DEFPERIOD; /* period for polar plot */ |
26 |
|
27 |
static double axbegin, axsize; /* the mapped x axis boundaries */ |
28 |
static double aybegin, aysize; /* the mapped y axis boundaries */ |
29 |
|
30 |
static int npltbl[MAXCUR]; /* plottable points per curve */ |
31 |
|
32 |
static double lastx, lasty; /* last curve postion */ |
33 |
static int nplottable; /* number of plottable points */ |
34 |
static int nplotted; /* number of plotted points */ |
35 |
|
36 |
static void getbounds(void); |
37 |
static void polaraxis(void); |
38 |
static void makeaxis(void); |
39 |
static void plotcurves(void); |
40 |
static void cartaxis(void); |
41 |
static void stretchbounds(int c, double x, double y); |
42 |
static void boxstring(int xmin, int ymin, int xmax, int ymax, |
43 |
char *s, int d, int width, int color); |
44 |
static void drawcircle(int x, int y, int r, int typ, int wid, int col); |
45 |
static int rconv(double r); |
46 |
static int xconv(double x); |
47 |
static int yconv(double y); |
48 |
static void csymbol(int c, double u, double v); |
49 |
static int cmline(int c, int x, int y); |
50 |
static void cmsymbol(int c, int x, int y); |
51 |
static int inbounds(double x, double y); |
52 |
static void climline(int c, double x, double y, double xout, double yout); |
53 |
static void nextpoint(register int c, double x, double y); |
54 |
static void cline(int c, double u1, double v1, double u2, double v2); |
55 |
|
56 |
|
57 |
void |
58 |
mgraph(void) /* plot the current graph */ |
59 |
{ |
60 |
/* load the symbol file */ |
61 |
if (gparam[SYMFILE].flags & DEFINED) |
62 |
minclude(gparam[SYMFILE].v.s); |
63 |
/* check for polar plot */ |
64 |
if (gparam[PERIOD].flags & DEFINED) |
65 |
period = varvalue(gparam[PERIOD].name); |
66 |
|
67 |
getbounds(); /* get the boundaries */ |
68 |
makeaxis(); /* draw the coordinate axis */ |
69 |
plotcurves(); /* plot the curves */ |
70 |
|
71 |
mendpage(); /* advance page */ |
72 |
} |
73 |
|
74 |
|
75 |
void |
76 |
getbounds(void) /* compute the boundaries */ |
77 |
{ |
78 |
int i; |
79 |
|
80 |
xbounds.min = gparam[XMIN].flags & DEFINED ? |
81 |
varvalue(gparam[XMIN].name) - FTINY : |
82 |
FHUGE ; |
83 |
xbounds.max = gparam[XMAX].flags & DEFINED ? |
84 |
varvalue(gparam[XMAX].name) + FTINY : |
85 |
-FHUGE ; |
86 |
ybounds.min = gparam[YMIN].flags & DEFINED ? |
87 |
varvalue(gparam[YMIN].name) - FTINY : |
88 |
FHUGE ; |
89 |
ybounds.max = gparam[YMAX].flags & DEFINED ? |
90 |
varvalue(gparam[YMAX].name) + FTINY : |
91 |
-FHUGE ; |
92 |
|
93 |
nplottable = 0; |
94 |
for (i = 0; i < MAXCUR; i++) { |
95 |
npltbl[i] = 0; |
96 |
mgcurve(i, stretchbounds); |
97 |
nplottable += npltbl[i]; |
98 |
} |
99 |
if (nplottable == 0) { |
100 |
fprintf(stderr, "%s: no plottable data\n", progname); |
101 |
quit(1); |
102 |
} |
103 |
|
104 |
xbounds.step = gparam[XSTEP].flags & DEFINED ? |
105 |
varvalue(gparam[XSTEP].name) : |
106 |
period > FTINY ? |
107 |
DEFPLSTEP*period : |
108 |
goodstep(xbounds.max - xbounds.min) ; |
109 |
if (!(gparam[XMIN].flags & DEFINED)) |
110 |
xbounds.min = floor(xbounds.min/xbounds.step) * |
111 |
xbounds.step; |
112 |
if (!(gparam[XMAX].flags & DEFINED)) |
113 |
xbounds.max = ceil(xbounds.max/xbounds.step) * |
114 |
xbounds.step; |
115 |
ybounds.step = gparam[YSTEP].flags & DEFINED ? |
116 |
varvalue(gparam[YSTEP].name) : |
117 |
period > FTINY ? |
118 |
goodstep((ybounds.max - ybounds.min)*1.75) : |
119 |
goodstep(ybounds.max - ybounds.min) ; |
120 |
if (!(gparam[YMIN].flags & DEFINED)) |
121 |
ybounds.min = floor(ybounds.min/ybounds.step) * |
122 |
ybounds.step; |
123 |
if (!(gparam[YMAX].flags & DEFINED)) |
124 |
ybounds.max = ceil(ybounds.max/ybounds.step) * |
125 |
ybounds.step; |
126 |
if (gparam[XMAP].flags & DEFINED) { |
127 |
axbegin = funvalue(gparam[XMAP].name, 1, &xbounds.min); |
128 |
axsize = funvalue(gparam[XMAP].name, 1, &xbounds.max); |
129 |
axsize -= axbegin; |
130 |
} else { |
131 |
axbegin = xbounds.min; |
132 |
axsize = xbounds.max; |
133 |
axsize -= axbegin; |
134 |
} |
135 |
if (gparam[YMAP].flags & DEFINED) { |
136 |
aybegin = funvalue(gparam[YMAP].name, 1, &ybounds.min); |
137 |
aysize = funvalue(gparam[YMAP].name, 1, &ybounds.max); |
138 |
aysize -= aybegin; |
139 |
} else { |
140 |
aybegin = ybounds.min; |
141 |
aysize = ybounds.max; |
142 |
aysize -= aybegin; |
143 |
} |
144 |
} |
145 |
|
146 |
|
147 |
void |
148 |
makeaxis(void) /* draw the coordinate axis */ |
149 |
{ |
150 |
char stmp[64]; |
151 |
|
152 |
if (period > FTINY) |
153 |
polaraxis(); |
154 |
else |
155 |
cartaxis(); |
156 |
/* x axis label */ |
157 |
if (gparam[XLABEL].flags & DEFINED) |
158 |
boxstring(XL_L,XL_D,XL_R,XL_U,gparam[XLABEL].v.s,'r',0,0); |
159 |
/* x mapping */ |
160 |
if (gparam[XMAP].flags & DEFINED) { |
161 |
mgtoa(stmp, &gparam[XMAP]); |
162 |
boxstring(XM_L,XM_D,XM_R,XM_U,stmp,'r',0,0); |
163 |
} |
164 |
/* y axis label */ |
165 |
if (gparam[YLABEL].flags & DEFINED) |
166 |
boxstring(YL_L,YL_D,YL_R,YL_U,gparam[YLABEL].v.s,'u',0,0); |
167 |
/* y mapping */ |
168 |
if (gparam[YMAP].flags & DEFINED) { |
169 |
mgtoa(stmp, &gparam[YMAP]); |
170 |
boxstring(YM_L,YM_D,YM_R,YM_U,stmp,'u',0,0); |
171 |
} |
172 |
/* title */ |
173 |
if (gparam[TITLE].flags & DEFINED) |
174 |
boxstring(TI_L,TI_D,TI_R,TI_U,gparam[TITLE].v.s,'r',2,0); |
175 |
/* subtitle */ |
176 |
if (gparam[SUBTITLE].flags & DEFINED) |
177 |
boxstring(ST_L,ST_D,ST_R,ST_U,gparam[SUBTITLE].v.s,'r',1,0); |
178 |
/* legend */ |
179 |
if (gparam[LEGEND].flags & DEFINED) |
180 |
mtext(LT_X, LT_Y, gparam[LEGEND].v.s, CPI, 0); |
181 |
} |
182 |
|
183 |
|
184 |
void |
185 |
polaraxis(void) /* print polar coordinate axis */ |
186 |
{ |
187 |
int lw, tstyle, t0, t1; |
188 |
double d, d1, ybeg; |
189 |
char stmp[64], *fmt, *goodformat(); |
190 |
/* get tick style */ |
191 |
if (gparam[TSTYLE].flags & DEFINED) |
192 |
tstyle = varvalue(gparam[TSTYLE].name) + 0.5; |
193 |
else |
194 |
tstyle = DEFTSTYLE; |
195 |
/* start of numbering */ |
196 |
ybeg = ceil(ybounds.min/ybounds.step)*ybounds.step; |
197 |
/* theta (x) numbering */ |
198 |
fmt = goodformat(xbounds.step); |
199 |
for (d = 0.0; d < period-FTINY; d += xbounds.step) { |
200 |
sprintf(stmp, fmt, d); |
201 |
d1 = d*(2*PI)/period; |
202 |
t0 = TN_X + TN_R*cos(d1) + .5; |
203 |
if (t0 < TN_X) |
204 |
t0 -= strlen(stmp)*CWID; |
205 |
mtext(t0,(int)(TN_Y+TN_R*sin(d1)+.5),stmp,CPI,0); |
206 |
} |
207 |
/* radius (y) numbering */ |
208 |
fmt = goodformat(ybounds.step); |
209 |
lw = PL_R+RN_S; |
210 |
for (d = ybeg; d <= ybounds.max+FTINY; d += ybounds.step) { |
211 |
t0 = rconv(d); |
212 |
if (t0 >= lw+RN_S || t0 <= lw-RN_S) { |
213 |
sprintf(stmp, fmt, d); |
214 |
mtext(RN_X+t0-strlen(stmp)*(CWID/2),RN_Y,stmp,CPI,0); |
215 |
lw = t0; |
216 |
} |
217 |
} |
218 |
/* frame */ |
219 |
if (gparam[FTHICK].flags & DEFINED) |
220 |
lw = varvalue(gparam[FTHICK].name) + 0.5; |
221 |
else |
222 |
lw = DEFFTHICK; |
223 |
if (lw-- > 0) { |
224 |
drawcircle(PL_X,PL_Y,PL_R,0,lw,0); |
225 |
switch (tstyle) { |
226 |
case 1: /* outside */ |
227 |
t0 = 0; t1 = TLEN; break; |
228 |
case 2: /* inside */ |
229 |
t0 = TLEN; t1 = 0; break; |
230 |
case 3: /* accross */ |
231 |
t0 = TLEN/2; t1 = TLEN/2; break; |
232 |
default: /* none */ |
233 |
t0 = t1 = 0; break; |
234 |
} |
235 |
if (t0 + t1) { |
236 |
for (d = 0.0; d < 2*PI-FTINY; |
237 |
d += xbounds.step*(2*PI)/period) { |
238 |
mline((int)(PL_X+(PL_R-t0)*cos(d)+.5), |
239 |
(int)(PL_Y+(PL_R-t0)*sin(d)+.5), |
240 |
0, lw, 0); |
241 |
mdraw((int)(PL_X+(PL_R+t1)*cos(d)+.5), |
242 |
(int)(PL_Y+(PL_R+t1)*sin(d)+.5)); |
243 |
} |
244 |
} |
245 |
} |
246 |
/* origin */ |
247 |
if (gparam[OTHICK].flags & DEFINED) |
248 |
lw = varvalue(gparam[OTHICK].name) + 0.5; |
249 |
else |
250 |
lw = DEFOTHICK; |
251 |
if (lw-- > 0) { |
252 |
mline(PL_X-PL_R,PL_Y,0,lw,0); |
253 |
mdraw(PL_X+PL_R,PL_Y); |
254 |
mline(PL_X,PL_Y-PL_R,0,lw,0); |
255 |
mdraw(PL_X,PL_Y+PL_R); |
256 |
if (tstyle > 0) |
257 |
for (d = ybeg; d <= ybounds.max+FTINY; |
258 |
d += ybounds.step) { |
259 |
t0 = rconv(d); |
260 |
mline(PL_X+t0,PL_Y-TLEN/2,0,lw,0); |
261 |
mdraw(PL_X+t0,PL_Y+TLEN/2); |
262 |
mline(PL_X-TLEN/2,PL_Y+t0,0,lw,0); |
263 |
mdraw(PL_X+TLEN/2,PL_Y+t0); |
264 |
mline(PL_X-t0,PL_Y-TLEN/2,0,lw,0); |
265 |
mdraw(PL_X-t0,PL_Y+TLEN/2); |
266 |
mline(PL_X-TLEN/2,PL_Y-t0,0,lw,0); |
267 |
mdraw(PL_X+TLEN/2,PL_Y-t0); |
268 |
} |
269 |
} |
270 |
/* grid */ |
271 |
if (gparam[GRID].flags & DEFINED) |
272 |
lw = varvalue(gparam[GRID].name); |
273 |
else |
274 |
lw = DEFGRID; |
275 |
if (lw-- > 0) { |
276 |
for (d = 0.0; d < PI-FTINY; d += xbounds.step*(2*PI)/period) { |
277 |
mline((int)(PL_X+PL_R*cos(d)+.5), |
278 |
(int)(PL_Y+PL_R*sin(d)+.5),2,0,0); |
279 |
mdraw((int)(PL_X-PL_R*cos(d)+.5), |
280 |
(int)(PL_Y-PL_R*sin(d)+.5)); |
281 |
} |
282 |
for (d = ybeg; d <= ybounds.max + FTINY; d += ybounds.step) |
283 |
drawcircle(PL_X,PL_Y,rconv(d),2,0,0); |
284 |
} |
285 |
} |
286 |
|
287 |
void |
288 |
cartaxis(void) /* print Cartesian coordinate axis */ |
289 |
{ |
290 |
int lw, t0, t1, tstyle; |
291 |
double d, xbeg, ybeg; |
292 |
char stmp[64], *fmt, *goodformat(); |
293 |
register int i; |
294 |
/* get tick style */ |
295 |
if (gparam[TSTYLE].flags & DEFINED) |
296 |
tstyle = varvalue(gparam[TSTYLE].name) + 0.5; |
297 |
else |
298 |
tstyle = DEFTSTYLE; |
299 |
/* start of numbering */ |
300 |
xbeg = ceil(xbounds.min/xbounds.step)*xbounds.step; |
301 |
ybeg = ceil(ybounds.min/ybounds.step)*ybounds.step; |
302 |
|
303 |
/* x numbering */ |
304 |
fmt = goodformat(xbounds.step); |
305 |
lw = 2*AX_L-AX_R; |
306 |
for (d = xbeg; |
307 |
d <= xbounds.max + FTINY; |
308 |
d += xbounds.step) |
309 |
if ((i = xconv(d)) >= lw+XN_S || i <= lw-XN_S) { |
310 |
sprintf(stmp, fmt, d); |
311 |
mtext(i-strlen(stmp)*(CWID/2)+XN_X,XN_Y,stmp,CPI,0); |
312 |
lw = i; |
313 |
} |
314 |
/* y numbering */ |
315 |
fmt = goodformat(ybounds.step); |
316 |
lw = 2*AX_D-AX_U; |
317 |
for (d = ybeg; |
318 |
d <= ybounds.max + FTINY; |
319 |
d += ybounds.step) |
320 |
if ((i = yconv(d)) >= lw+YN_S || i <= lw-YN_S) { |
321 |
sprintf(stmp, fmt, d); |
322 |
mtext(YN_X-strlen(stmp)*CWID,i+YN_Y,stmp,CPI,0); |
323 |
lw = i; |
324 |
} |
325 |
/* frame */ |
326 |
if (gparam[FTHICK].flags & DEFINED) |
327 |
lw = varvalue(gparam[FTHICK].name) + 0.5; |
328 |
else |
329 |
lw = DEFFTHICK; |
330 |
if (lw-- > 0) { |
331 |
mline(AX_L,AX_D,0,lw,0); |
332 |
mdraw(AX_R,AX_D); |
333 |
mdraw(AX_R,AX_U); |
334 |
mdraw(AX_L,AX_U); |
335 |
mdraw(AX_L,AX_D); |
336 |
switch (tstyle) { |
337 |
case 1: /* outside */ |
338 |
t0 = 0; t1 = TLEN; break; |
339 |
case 2: /* inside */ |
340 |
t0 = TLEN; t1 = 0; break; |
341 |
case 3: /* accross */ |
342 |
t0 = TLEN/2; t1 = TLEN/2; break; |
343 |
default: /* none */ |
344 |
t0 = t1 = 0; break; |
345 |
} |
346 |
if (t0 + t1) { |
347 |
for (d = xbeg; |
348 |
d <= xbounds.max + FTINY; |
349 |
d += xbounds.step) { |
350 |
i = xconv(d); |
351 |
mline(i,AX_D+t0,0,lw,0); |
352 |
mdraw(i,AX_D-t1); |
353 |
mline(i,AX_U-t0,0,lw,0); |
354 |
mdraw(i,AX_U+t1); |
355 |
} |
356 |
for (d = ybeg; |
357 |
d <= ybounds.max + FTINY; |
358 |
d += ybounds.step) { |
359 |
i = yconv(d); |
360 |
mline(AX_L+t0,i,0,lw,0); |
361 |
mdraw(AX_L-t1,i); |
362 |
mline(AX_R-t0,i,0,lw,0); |
363 |
mdraw(AX_R+t1,i); |
364 |
} |
365 |
} |
366 |
} |
367 |
/* origin */ |
368 |
if (gparam[OTHICK].flags & DEFINED) |
369 |
lw = varvalue(gparam[OTHICK].name) + 0.5; |
370 |
else |
371 |
lw = DEFOTHICK; |
372 |
if (lw-- > 0) { |
373 |
i = yconv(0.0); |
374 |
if (i >= AX_D && i <= AX_U) { |
375 |
mline(AX_L,i,0,lw,0); |
376 |
mdraw(AX_R,i); |
377 |
if (tstyle > 0) |
378 |
for (d = xbeg; d <= xbounds.max+FTINY; |
379 |
d += xbounds.step) { |
380 |
mline(xconv(d),i+TLEN/2,0,lw,0); |
381 |
mdraw(xconv(d),i-TLEN/2); |
382 |
} |
383 |
} |
384 |
i = xconv(0.0); |
385 |
if (i >= AX_L && i <= AX_R) { |
386 |
mline(i,AX_D,0,lw,0); |
387 |
mdraw(i,AX_U); |
388 |
if (tstyle > 0) |
389 |
for (d = ybeg; d <= ybounds.max+FTINY; |
390 |
d += ybounds.step) { |
391 |
mline(i+TLEN/2,yconv(d),0,lw,0); |
392 |
mdraw(i-TLEN/2,yconv(d)); |
393 |
} |
394 |
} |
395 |
} |
396 |
/* grid */ |
397 |
if (gparam[GRID].flags & DEFINED) |
398 |
lw = varvalue(gparam[GRID].name); |
399 |
else |
400 |
lw = DEFGRID; |
401 |
if (lw-- > 0) { |
402 |
for (d = xbeg; |
403 |
d <= xbounds.max + FTINY; |
404 |
d += xbounds.step) { |
405 |
i = xconv(d); |
406 |
mline(i,AX_D,2,0,0); |
407 |
mdraw(i,AX_U); |
408 |
} |
409 |
for (d = ybeg; |
410 |
d <= ybounds.max + FTINY; |
411 |
d += ybounds.step) { |
412 |
i = yconv(d); |
413 |
mline(AX_L,i,2,0,0); |
414 |
mdraw(AX_R,i); |
415 |
} |
416 |
} |
417 |
} |
418 |
|
419 |
void |
420 |
plotcurves(void) /* plot the curves */ |
421 |
{ |
422 |
int i, j, k; |
423 |
|
424 |
for (i = 0; i < MAXCUR; i++) { |
425 |
nplottable = nplotted = 0; |
426 |
lastx = FHUGE; |
427 |
if (mgcurve(i, nextpoint) > 0 && |
428 |
cparam[i][CLABEL].flags & DEFINED) { |
429 |
j = (LE_U-LE_D)/MAXCUR; |
430 |
k = LE_U - i*j; |
431 |
mtext(LE_L+(LE_R-LE_L)/8,k+j/3, |
432 |
cparam[i][CLABEL].v.s,CPI,0); |
433 |
cmsymbol(i,LE_L,k); |
434 |
if (cmline(i,LE_L,k) == 0) |
435 |
mdraw(LE_R-(LE_R-LE_L)/4,k); |
436 |
} |
437 |
} |
438 |
} |
439 |
|
440 |
void |
441 |
nextpoint( /* plot the next point for c */ |
442 |
register int c, |
443 |
double x, |
444 |
double y |
445 |
) |
446 |
{ |
447 |
if (inbounds(x, y)) { |
448 |
|
449 |
if (!(cparam[c][CNPOINTS].flags & DEFINED) || |
450 |
nplotted * npltbl[c] <= nplottable * |
451 |
(int)varvalue(cparam[c][CNPOINTS].name) ) { |
452 |
csymbol(c, x, y); |
453 |
nplotted++; |
454 |
} |
455 |
nplottable++; |
456 |
if (lastx != FHUGE) |
457 |
climline(c, x, y, lastx, lasty); |
458 |
|
459 |
} else if (inbounds(lastx, lasty)) { |
460 |
|
461 |
climline(c, lastx, lasty, x, y); |
462 |
|
463 |
} |
464 |
lastx = x; |
465 |
lasty = y; |
466 |
} |
467 |
|
468 |
|
469 |
void |
470 |
stretchbounds( /* stretch our boundaries */ |
471 |
int c, |
472 |
double x, |
473 |
double y |
474 |
) |
475 |
{ |
476 |
if (gparam[XMIN].flags & DEFINED && |
477 |
x < xbounds.min) |
478 |
return; |
479 |
if (gparam[XMAX].flags & DEFINED && |
480 |
x > xbounds.max) |
481 |
return; |
482 |
if (gparam[YMIN].flags & DEFINED && |
483 |
y < ybounds.min) |
484 |
return; |
485 |
if (gparam[YMAX].flags & DEFINED && |
486 |
y > ybounds.max) |
487 |
return; |
488 |
|
489 |
if (x < xbounds.min) |
490 |
xbounds.min = x; |
491 |
if (x > xbounds.max) |
492 |
xbounds.max = x; |
493 |
if (y < ybounds.min) |
494 |
ybounds.min = y; |
495 |
if (y > ybounds.max) |
496 |
ybounds.max = y; |
497 |
|
498 |
npltbl[c]++; |
499 |
} |
500 |
|
501 |
|
502 |
#define exp10(x) exp((x)*2.3025850929940456) |
503 |
|
504 |
double |
505 |
goodstep( /* determine a good step for the interval */ |
506 |
double interval |
507 |
) |
508 |
{ |
509 |
static int steps[] = {50, 20, 10, 5, 2, 1}; |
510 |
double fact, exp(), log10(), floor(); |
511 |
int i; |
512 |
|
513 |
if (interval <= FTINY) |
514 |
return(1.0); |
515 |
fact = exp10(floor(log10(interval)))/10; |
516 |
interval /= fact * MINDIVS; |
517 |
for (i = 0; interval < steps[i]; i++) |
518 |
; |
519 |
return(steps[i] * fact); |
520 |
} |
521 |
|
522 |
#undef exp10 |
523 |
|
524 |
|
525 |
int |
526 |
xconv( /* convert x to meta coords */ |
527 |
double x |
528 |
) |
529 |
{ |
530 |
if (gparam[XMAP].flags & DEFINED) |
531 |
x = funvalue(gparam[XMAP].name, 1, &x); |
532 |
x = (x - axbegin)/axsize; |
533 |
return( AX_L + (int)(x*(AX_R-AX_L)) ); |
534 |
} |
535 |
|
536 |
|
537 |
int |
538 |
yconv( /* convert y to meta coords */ |
539 |
double y |
540 |
) |
541 |
{ |
542 |
if (gparam[YMAP].flags & DEFINED) |
543 |
y = funvalue(gparam[YMAP].name, 1, &y); |
544 |
y = (y - aybegin)/aysize; |
545 |
return( AX_D + (int)(y*(AX_U-AX_D)) ); |
546 |
} |
547 |
|
548 |
|
549 |
void |
550 |
pconv( /* convert theta and radius to meta coords */ |
551 |
int *xp, |
552 |
int *yp, |
553 |
double t, |
554 |
double r |
555 |
) |
556 |
{ |
557 |
t *= (2.*PI)/period; |
558 |
r = rconv(r); |
559 |
*xp = r*cos(t) + (PL_X+.5); |
560 |
*yp = r*sin(t) + (PL_Y+.5); |
561 |
} |
562 |
|
563 |
|
564 |
int |
565 |
rconv( /* convert radius to meta coords */ |
566 |
double r |
567 |
) |
568 |
{ |
569 |
if (gparam[YMAP].flags & DEFINED) |
570 |
r = funvalue(gparam[YMAP].name, 1, &r); |
571 |
|
572 |
return((r - aybegin)*PL_R/aysize + .5); |
573 |
} |
574 |
|
575 |
|
576 |
void |
577 |
boxstring( /* put string in box */ |
578 |
int xmin, |
579 |
int ymin, |
580 |
int xmax, |
581 |
int ymax, |
582 |
char *s, |
583 |
int d, |
584 |
int width, |
585 |
int color |
586 |
) |
587 |
{ |
588 |
register long size; |
589 |
|
590 |
if (d == 'u' || d == 'd') { /* up or down */ |
591 |
size = strlen(s)*(xmax-xmin)/ASPECT; |
592 |
size -= ymax-ymin; |
593 |
size /= 2; |
594 |
if (size < 0) { /* center */ |
595 |
ymin -= size; |
596 |
ymax += size; |
597 |
} |
598 |
} else { /* left or right */ |
599 |
size = strlen(s)*(ymax-ymin)/ASPECT; |
600 |
size -= xmax-xmin; |
601 |
size /= 2; |
602 |
if (size < 0) { /* center */ |
603 |
xmin -= size; |
604 |
xmax += size; |
605 |
} |
606 |
} |
607 |
mvstr(xmin, ymin, xmax, ymax, s, d, width, color); /* print */ |
608 |
} |
609 |
|
610 |
|
611 |
char * |
612 |
goodformat( /* return a suitable format string for d */ |
613 |
double d |
614 |
) |
615 |
{ |
616 |
static char *f[5] = {"%.0f", "%.1f", "%.2f", "%.3f", "%.4f"}; |
617 |
double floor(); |
618 |
register int i; |
619 |
|
620 |
if (d < 0.0) |
621 |
d = -d; |
622 |
if (d > 1e-4 && d < 1e6) |
623 |
for (i = 0; i < 5; i++) { |
624 |
if (d - floor(d+FTINY) <= FTINY) |
625 |
return(f[i]); |
626 |
d *= 10.0; |
627 |
} |
628 |
return("%.1e"); |
629 |
} |
630 |
|
631 |
|
632 |
void |
633 |
drawcircle( /* draw a circle */ |
634 |
int x, |
635 |
int y, |
636 |
int r, |
637 |
int typ, |
638 |
int wid, |
639 |
int col |
640 |
) |
641 |
{ |
642 |
double d; |
643 |
|
644 |
if (r <= 0) |
645 |
return; |
646 |
mline(x+r, y, typ, wid, col); |
647 |
for (d = 2*PI*PL_F; d <= 2*PI+FTINY; d += 2*PI*PL_F) |
648 |
mdraw((int)(x+r*cos(d)+.5), (int)(y+r*sin(d)+.5)); |
649 |
} |
650 |
|
651 |
|
652 |
void |
653 |
climline( /* print line from/to out of bounds */ |
654 |
int c, |
655 |
double x, |
656 |
double y, |
657 |
double xout, |
658 |
double yout |
659 |
) |
660 |
{ |
661 |
for ( ; ; ) |
662 |
if (xout < xbounds.min) { |
663 |
yout = y + (yout - y)*(xbounds.min - x)/(xout - x); |
664 |
xout = xbounds.min; |
665 |
} else if (yout < ybounds.min) { |
666 |
xout = x + (xout - x)*(ybounds.min - y)/(yout - y); |
667 |
yout = ybounds.min; |
668 |
} else if (xout > xbounds.max) { |
669 |
yout = y + (yout - y)*(xbounds.max - x)/(xout - x); |
670 |
xout = xbounds.max; |
671 |
} else if (yout > ybounds.max) { |
672 |
xout = x + (xout - x)*(ybounds.max - y)/(yout - y); |
673 |
yout = ybounds.max; |
674 |
} else { |
675 |
cline(c, x, y, xout, yout); |
676 |
break; |
677 |
} |
678 |
} |
679 |
|
680 |
|
681 |
void |
682 |
cline( /* print a curve line */ |
683 |
int c, |
684 |
double u1, |
685 |
double v1, |
686 |
double u2, |
687 |
double v2 |
688 |
) |
689 |
{ |
690 |
int x, y; |
691 |
double ustep, vstep; |
692 |
|
693 |
if (period > FTINY) { /* polar */ |
694 |
if (u1 > u2) { |
695 |
ustep = u1; u1 = u2; u2 = ustep; |
696 |
vstep = v1; v1 = v2; v2 = vstep; |
697 |
} |
698 |
pconv(&x, &y, u1, v1); |
699 |
if (cmline(c, x, y) < 0) |
700 |
return; |
701 |
ustep = period*PL_F; |
702 |
if (u2-u1 > ustep) { |
703 |
vstep = ustep*(v2-v1)/(u2-u1); |
704 |
while ((u1 += ustep) < u2) { |
705 |
v1 += vstep; |
706 |
pconv(&x, &y, u1, v1); |
707 |
mdraw(x, y); |
708 |
} |
709 |
} |
710 |
pconv(&x, &y, u2, v2); |
711 |
mdraw(x, y); |
712 |
} else if (cmline(c, xconv(u1), yconv(v1)) == 0) |
713 |
mdraw(xconv(u2), yconv(v2)); |
714 |
} |
715 |
|
716 |
|
717 |
int |
718 |
cmline( /* start curve line in meta coords */ |
719 |
int c, |
720 |
int x, |
721 |
int y |
722 |
) |
723 |
{ |
724 |
int lw, lt, col; |
725 |
register VARIABLE *cv; |
726 |
|
727 |
cv = cparam[c]; |
728 |
if (cv[CLINTYPE].flags & DEFINED) |
729 |
lt = varvalue(cv[CLINTYPE].name); |
730 |
else |
731 |
lt = DEFLINTYPE; |
732 |
if (lt-- <= 0) |
733 |
return(-1); |
734 |
if (cv[CTHICK].flags & DEFINED) |
735 |
lw = varvalue(cv[CTHICK].name); |
736 |
else |
737 |
lw = DEFTHICK; |
738 |
if (lw-- <= 0) |
739 |
return(-1); |
740 |
if (cv[CCOLOR].flags & DEFINED) |
741 |
col = varvalue(cv[CCOLOR].name); |
742 |
else |
743 |
col = DEFCOLOR; |
744 |
if (col-- <= 0) |
745 |
return(-1); |
746 |
mline(x, y, lt, lw, col); |
747 |
return(0); |
748 |
} |
749 |
|
750 |
|
751 |
void |
752 |
csymbol( /* plot curve symbol */ |
753 |
int c, |
754 |
double u, |
755 |
double v |
756 |
) |
757 |
{ |
758 |
int x, y; |
759 |
|
760 |
if (period > FTINY) { |
761 |
pconv(&x, &y, u, v); |
762 |
cmsymbol(c, x, y); |
763 |
} else |
764 |
cmsymbol(c, xconv(u), yconv(v)); |
765 |
} |
766 |
|
767 |
|
768 |
void |
769 |
cmsymbol( /* print curve symbol in meta coords */ |
770 |
int c, |
771 |
int x, |
772 |
int y |
773 |
) |
774 |
{ |
775 |
int col, ss; |
776 |
register VARIABLE *cv; |
777 |
|
778 |
cv = cparam[c]; |
779 |
if (!(cv[CSYMTYPE].flags & DEFINED)) |
780 |
return; |
781 |
if (cv[CSYMSIZE].flags & DEFINED) |
782 |
ss = varvalue(cv[CSYMSIZE].name); |
783 |
else |
784 |
ss = DEFSYMSIZE; |
785 |
if (ss <= 0) |
786 |
return; |
787 |
if (cv[CCOLOR].flags & DEFINED) |
788 |
col = varvalue(cv[CCOLOR].name); |
789 |
else |
790 |
col = DEFCOLOR; |
791 |
if (col-- <= 0) |
792 |
return; |
793 |
msegment(x-ss,y-ss,x+ss,y+ss, |
794 |
cv[CSYMTYPE].v.s,'r',0,col); |
795 |
} |
796 |
|
797 |
|
798 |
int |
799 |
inbounds( /* determine if x and y are within gbounds */ |
800 |
double x, |
801 |
double y |
802 |
) |
803 |
{ |
804 |
if (x < xbounds.min || x > xbounds.max) |
805 |
return(0); |
806 |
if (y < ybounds.min || y > ybounds.max) |
807 |
return(0); |
808 |
return(1); |
809 |
} |