| 1 |
#ifndef lint
|
| 2 |
static const char RCSid[] = "$Id$";
|
| 3 |
#endif
|
| 4 |
/*
|
| 5 |
* mgraph.c - routines for plotting graphs from variables.
|
| 6 |
*
|
| 7 |
* 6/23/86
|
| 8 |
*
|
| 9 |
* Greg Ward Larson
|
| 10 |
*/
|
| 11 |
|
| 12 |
#include <stdio.h>
|
| 13 |
|
| 14 |
#include "mgvars.h"
|
| 15 |
|
| 16 |
#include "mgraph.h"
|
| 17 |
|
| 18 |
extern char *progname; /* argv[0] */
|
| 19 |
|
| 20 |
extern double goodstep(), floor(), ceil(), sin(), cos();
|
| 21 |
|
| 22 |
static BOUNDS xbounds, ybounds; /* the boundaries for the graph */
|
| 23 |
|
| 24 |
static double period = DEFPERIOD; /* period for polar plot */
|
| 25 |
|
| 26 |
static double axbegin, axsize; /* the mapped x axis boundaries */
|
| 27 |
static double aybegin, aysize; /* the mapped y axis boundaries */
|
| 28 |
|
| 29 |
static int npltbl[MAXCUR]; /* plottable points per curve */
|
| 30 |
|
| 31 |
static double lastx, lasty; /* last curve postion */
|
| 32 |
static int nplottable; /* number of plottable points */
|
| 33 |
static int nplotted; /* number of plotted points */
|
| 34 |
|
| 35 |
|
| 36 |
mgraph() /* plot the current graph */
|
| 37 |
{
|
| 38 |
/* load the symbol file */
|
| 39 |
if (gparam[SYMFILE].flags & DEFINED)
|
| 40 |
minclude(gparam[SYMFILE].v.s);
|
| 41 |
/* check for polar plot */
|
| 42 |
if (gparam[PERIOD].flags & DEFINED)
|
| 43 |
period = varvalue(gparam[PERIOD].name);
|
| 44 |
|
| 45 |
getbounds(); /* get the boundaries */
|
| 46 |
makeaxis(); /* draw the coordinate axis */
|
| 47 |
plotcurves(); /* plot the curves */
|
| 48 |
|
| 49 |
mendpage(); /* advance page */
|
| 50 |
}
|
| 51 |
|
| 52 |
|
| 53 |
getbounds() /* compute the boundaries */
|
| 54 |
{
|
| 55 |
int i, stretchbounds();
|
| 56 |
|
| 57 |
xbounds.min = gparam[XMIN].flags & DEFINED ?
|
| 58 |
varvalue(gparam[XMIN].name) - FTINY :
|
| 59 |
FHUGE ;
|
| 60 |
xbounds.max = gparam[XMAX].flags & DEFINED ?
|
| 61 |
varvalue(gparam[XMAX].name) + FTINY :
|
| 62 |
-FHUGE ;
|
| 63 |
ybounds.min = gparam[YMIN].flags & DEFINED ?
|
| 64 |
varvalue(gparam[YMIN].name) - FTINY :
|
| 65 |
FHUGE ;
|
| 66 |
ybounds.max = gparam[YMAX].flags & DEFINED ?
|
| 67 |
varvalue(gparam[YMAX].name) + FTINY :
|
| 68 |
-FHUGE ;
|
| 69 |
|
| 70 |
nplottable = 0;
|
| 71 |
for (i = 0; i < MAXCUR; i++) {
|
| 72 |
npltbl[i] = 0;
|
| 73 |
mgcurve(i, stretchbounds);
|
| 74 |
nplottable += npltbl[i];
|
| 75 |
}
|
| 76 |
if (nplottable == 0) {
|
| 77 |
fprintf(stderr, "%s: no plottable data\n", progname);
|
| 78 |
quit(1);
|
| 79 |
}
|
| 80 |
|
| 81 |
xbounds.step = gparam[XSTEP].flags & DEFINED ?
|
| 82 |
varvalue(gparam[XSTEP].name) :
|
| 83 |
period > FTINY ?
|
| 84 |
DEFPLSTEP*period :
|
| 85 |
goodstep(xbounds.max - xbounds.min) ;
|
| 86 |
if (!(gparam[XMIN].flags & DEFINED))
|
| 87 |
xbounds.min = floor(xbounds.min/xbounds.step) *
|
| 88 |
xbounds.step;
|
| 89 |
if (!(gparam[XMAX].flags & DEFINED))
|
| 90 |
xbounds.max = ceil(xbounds.max/xbounds.step) *
|
| 91 |
xbounds.step;
|
| 92 |
ybounds.step = gparam[YSTEP].flags & DEFINED ?
|
| 93 |
varvalue(gparam[YSTEP].name) :
|
| 94 |
period > FTINY ?
|
| 95 |
goodstep((ybounds.max - ybounds.min)*1.75) :
|
| 96 |
goodstep(ybounds.max - ybounds.min) ;
|
| 97 |
if (!(gparam[YMIN].flags & DEFINED))
|
| 98 |
ybounds.min = floor(ybounds.min/ybounds.step) *
|
| 99 |
ybounds.step;
|
| 100 |
if (!(gparam[YMAX].flags & DEFINED))
|
| 101 |
ybounds.max = ceil(ybounds.max/ybounds.step) *
|
| 102 |
ybounds.step;
|
| 103 |
if (gparam[XMAP].flags & DEFINED) {
|
| 104 |
axbegin = funvalue(gparam[XMAP].name, 1, &xbounds.min);
|
| 105 |
axsize = funvalue(gparam[XMAP].name, 1, &xbounds.max);
|
| 106 |
axsize -= axbegin;
|
| 107 |
} else {
|
| 108 |
axbegin = xbounds.min;
|
| 109 |
axsize = xbounds.max;
|
| 110 |
axsize -= axbegin;
|
| 111 |
}
|
| 112 |
if (gparam[YMAP].flags & DEFINED) {
|
| 113 |
aybegin = funvalue(gparam[YMAP].name, 1, &ybounds.min);
|
| 114 |
aysize = funvalue(gparam[YMAP].name, 1, &ybounds.max);
|
| 115 |
aysize -= aybegin;
|
| 116 |
} else {
|
| 117 |
aybegin = ybounds.min;
|
| 118 |
aysize = ybounds.max;
|
| 119 |
aysize -= aybegin;
|
| 120 |
}
|
| 121 |
}
|
| 122 |
|
| 123 |
|
| 124 |
makeaxis() /* draw the coordinate axis */
|
| 125 |
{
|
| 126 |
char stmp[64];
|
| 127 |
|
| 128 |
if (period > FTINY)
|
| 129 |
polaraxis();
|
| 130 |
else
|
| 131 |
cartaxis();
|
| 132 |
/* x axis label */
|
| 133 |
if (gparam[XLABEL].flags & DEFINED)
|
| 134 |
boxstring(XL_L,XL_D,XL_R,XL_U,gparam[XLABEL].v.s,'r',0,0);
|
| 135 |
/* x mapping */
|
| 136 |
if (gparam[XMAP].flags & DEFINED) {
|
| 137 |
mgtoa(stmp, &gparam[XMAP]);
|
| 138 |
boxstring(XM_L,XM_D,XM_R,XM_U,stmp,'r',0,0);
|
| 139 |
}
|
| 140 |
/* y axis label */
|
| 141 |
if (gparam[YLABEL].flags & DEFINED)
|
| 142 |
boxstring(YL_L,YL_D,YL_R,YL_U,gparam[YLABEL].v.s,'u',0,0);
|
| 143 |
/* y mapping */
|
| 144 |
if (gparam[YMAP].flags & DEFINED) {
|
| 145 |
mgtoa(stmp, &gparam[YMAP]);
|
| 146 |
boxstring(YM_L,YM_D,YM_R,YM_U,stmp,'u',0,0);
|
| 147 |
}
|
| 148 |
/* title */
|
| 149 |
if (gparam[TITLE].flags & DEFINED)
|
| 150 |
boxstring(TI_L,TI_D,TI_R,TI_U,gparam[TITLE].v.s,'r',2,0);
|
| 151 |
/* subtitle */
|
| 152 |
if (gparam[SUBTITLE].flags & DEFINED)
|
| 153 |
boxstring(ST_L,ST_D,ST_R,ST_U,gparam[SUBTITLE].v.s,'r',1,0);
|
| 154 |
/* legend */
|
| 155 |
if (gparam[LEGEND].flags & DEFINED)
|
| 156 |
mtext(LT_X, LT_Y, gparam[LEGEND].v.s, CPI, 0);
|
| 157 |
}
|
| 158 |
|
| 159 |
|
| 160 |
polaraxis() /* print polar coordinate axis */
|
| 161 |
{
|
| 162 |
int lw, tstyle, t0, t1;
|
| 163 |
double d, d1, ybeg, xstep;
|
| 164 |
char stmp[64], *fmt, *goodformat();
|
| 165 |
/* get tick style */
|
| 166 |
if (gparam[TSTYLE].flags & DEFINED)
|
| 167 |
tstyle = varvalue(gparam[TSTYLE].name) + 0.5;
|
| 168 |
else
|
| 169 |
tstyle = DEFTSTYLE;
|
| 170 |
/* start of numbering */
|
| 171 |
ybeg = ceil(ybounds.min/ybounds.step)*ybounds.step;
|
| 172 |
/* theta (x) numbering */
|
| 173 |
fmt = goodformat(xbounds.step);
|
| 174 |
for (d = 0.0; d < period-FTINY; d += xbounds.step) {
|
| 175 |
sprintf(stmp, fmt, d);
|
| 176 |
d1 = d*(2*PI)/period;
|
| 177 |
t0 = TN_X + TN_R*cos(d1) + .5;
|
| 178 |
if (t0 < TN_X)
|
| 179 |
t0 -= strlen(stmp)*CWID;
|
| 180 |
mtext(t0,(int)(TN_Y+TN_R*sin(d1)+.5),stmp,CPI,0);
|
| 181 |
}
|
| 182 |
/* radius (y) numbering */
|
| 183 |
fmt = goodformat(ybounds.step);
|
| 184 |
lw = PL_R+RN_S;
|
| 185 |
for (d = ybeg; d <= ybounds.max+FTINY; d += ybounds.step) {
|
| 186 |
t0 = rconv(d);
|
| 187 |
if (t0 >= lw+RN_S || t0 <= lw-RN_S) {
|
| 188 |
sprintf(stmp, fmt, d);
|
| 189 |
mtext(RN_X+t0-strlen(stmp)*(CWID/2),RN_Y,stmp,CPI,0);
|
| 190 |
lw = t0;
|
| 191 |
}
|
| 192 |
}
|
| 193 |
/* frame */
|
| 194 |
if (gparam[FTHICK].flags & DEFINED)
|
| 195 |
lw = varvalue(gparam[FTHICK].name) + 0.5;
|
| 196 |
else
|
| 197 |
lw = DEFFTHICK;
|
| 198 |
if (lw-- > 0) {
|
| 199 |
drawcircle(PL_X,PL_Y,PL_R,0,lw,0);
|
| 200 |
switch (tstyle) {
|
| 201 |
case 1: /* outside */
|
| 202 |
t0 = 0; t1 = TLEN; break;
|
| 203 |
case 2: /* inside */
|
| 204 |
t0 = TLEN; t1 = 0; break;
|
| 205 |
case 3: /* accross */
|
| 206 |
t0 = TLEN/2; t1 = TLEN/2; break;
|
| 207 |
default: /* none */
|
| 208 |
t0 = t1 = 0; break;
|
| 209 |
}
|
| 210 |
if (t0 + t1) {
|
| 211 |
for (d = 0.0; d < 2*PI-FTINY;
|
| 212 |
d += xbounds.step*(2*PI)/period) {
|
| 213 |
mline((int)(PL_X+(PL_R-t0)*cos(d)+.5),
|
| 214 |
(int)(PL_Y+(PL_R-t0)*sin(d)+.5),
|
| 215 |
0, lw, 0);
|
| 216 |
mdraw((int)(PL_X+(PL_R+t1)*cos(d)+.5),
|
| 217 |
(int)(PL_Y+(PL_R+t1)*sin(d)+.5));
|
| 218 |
}
|
| 219 |
}
|
| 220 |
}
|
| 221 |
/* origin */
|
| 222 |
if (gparam[OTHICK].flags & DEFINED)
|
| 223 |
lw = varvalue(gparam[OTHICK].name) + 0.5;
|
| 224 |
else
|
| 225 |
lw = DEFOTHICK;
|
| 226 |
if (lw-- > 0) {
|
| 227 |
mline(PL_X-PL_R,PL_Y,0,lw,0);
|
| 228 |
mdraw(PL_X+PL_R,PL_Y);
|
| 229 |
mline(PL_X,PL_Y-PL_R,0,lw,0);
|
| 230 |
mdraw(PL_X,PL_Y+PL_R);
|
| 231 |
if (tstyle > 0)
|
| 232 |
for (d = ybeg; d <= ybounds.max+FTINY;
|
| 233 |
d += ybounds.step) {
|
| 234 |
t0 = rconv(d);
|
| 235 |
mline(PL_X+t0,PL_Y-TLEN/2,0,lw,0);
|
| 236 |
mdraw(PL_X+t0,PL_Y+TLEN/2);
|
| 237 |
mline(PL_X-TLEN/2,PL_Y+t0,0,lw,0);
|
| 238 |
mdraw(PL_X+TLEN/2,PL_Y+t0);
|
| 239 |
mline(PL_X-t0,PL_Y-TLEN/2,0,lw,0);
|
| 240 |
mdraw(PL_X-t0,PL_Y+TLEN/2);
|
| 241 |
mline(PL_X-TLEN/2,PL_Y-t0,0,lw,0);
|
| 242 |
mdraw(PL_X+TLEN/2,PL_Y-t0);
|
| 243 |
}
|
| 244 |
}
|
| 245 |
/* grid */
|
| 246 |
if (gparam[GRID].flags & DEFINED)
|
| 247 |
lw = varvalue(gparam[GRID].name);
|
| 248 |
else
|
| 249 |
lw = DEFGRID;
|
| 250 |
if (lw-- > 0) {
|
| 251 |
for (d = 0.0; d < PI-FTINY; d += xbounds.step*(2*PI)/period) {
|
| 252 |
mline((int)(PL_X+PL_R*cos(d)+.5),
|
| 253 |
(int)(PL_Y+PL_R*sin(d)+.5),2,0,0);
|
| 254 |
mdraw((int)(PL_X-PL_R*cos(d)+.5),
|
| 255 |
(int)(PL_Y-PL_R*sin(d)+.5));
|
| 256 |
}
|
| 257 |
for (d = ybeg; d <= ybounds.max + FTINY; d += ybounds.step)
|
| 258 |
drawcircle(PL_X,PL_Y,rconv(d),2,0,0);
|
| 259 |
}
|
| 260 |
}
|
| 261 |
|
| 262 |
|
| 263 |
cartaxis() /* print Cartesian coordinate axis */
|
| 264 |
{
|
| 265 |
int lw, t0, t1, tstyle;
|
| 266 |
double d, xbeg, ybeg;
|
| 267 |
char stmp[64], *fmt, *goodformat();
|
| 268 |
register int i;
|
| 269 |
/* get tick style */
|
| 270 |
if (gparam[TSTYLE].flags & DEFINED)
|
| 271 |
tstyle = varvalue(gparam[TSTYLE].name) + 0.5;
|
| 272 |
else
|
| 273 |
tstyle = DEFTSTYLE;
|
| 274 |
/* start of numbering */
|
| 275 |
xbeg = ceil(xbounds.min/xbounds.step)*xbounds.step;
|
| 276 |
ybeg = ceil(ybounds.min/ybounds.step)*ybounds.step;
|
| 277 |
|
| 278 |
/* x numbering */
|
| 279 |
fmt = goodformat(xbounds.step);
|
| 280 |
lw = 2*AX_L-AX_R;
|
| 281 |
for (d = xbeg;
|
| 282 |
d <= xbounds.max + FTINY;
|
| 283 |
d += xbounds.step)
|
| 284 |
if ((i = xconv(d)) >= lw+XN_S || i <= lw-XN_S) {
|
| 285 |
sprintf(stmp, fmt, d);
|
| 286 |
mtext(i-strlen(stmp)*(CWID/2)+XN_X,XN_Y,stmp,CPI,0);
|
| 287 |
lw = i;
|
| 288 |
}
|
| 289 |
/* y numbering */
|
| 290 |
fmt = goodformat(ybounds.step);
|
| 291 |
lw = 2*AX_D-AX_U;
|
| 292 |
for (d = ybeg;
|
| 293 |
d <= ybounds.max + FTINY;
|
| 294 |
d += ybounds.step)
|
| 295 |
if ((i = yconv(d)) >= lw+YN_S || i <= lw-YN_S) {
|
| 296 |
sprintf(stmp, fmt, d);
|
| 297 |
mtext(YN_X-strlen(stmp)*CWID,i+YN_Y,stmp,CPI,0);
|
| 298 |
lw = i;
|
| 299 |
}
|
| 300 |
/* frame */
|
| 301 |
if (gparam[FTHICK].flags & DEFINED)
|
| 302 |
lw = varvalue(gparam[FTHICK].name) + 0.5;
|
| 303 |
else
|
| 304 |
lw = DEFFTHICK;
|
| 305 |
if (lw-- > 0) {
|
| 306 |
mline(AX_L,AX_D,0,lw,0);
|
| 307 |
mdraw(AX_R,AX_D);
|
| 308 |
mdraw(AX_R,AX_U);
|
| 309 |
mdraw(AX_L,AX_U);
|
| 310 |
mdraw(AX_L,AX_D);
|
| 311 |
switch (tstyle) {
|
| 312 |
case 1: /* outside */
|
| 313 |
t0 = 0; t1 = TLEN; break;
|
| 314 |
case 2: /* inside */
|
| 315 |
t0 = TLEN; t1 = 0; break;
|
| 316 |
case 3: /* accross */
|
| 317 |
t0 = TLEN/2; t1 = TLEN/2; break;
|
| 318 |
default: /* none */
|
| 319 |
t0 = t1 = 0; break;
|
| 320 |
}
|
| 321 |
if (t0 + t1) {
|
| 322 |
for (d = xbeg;
|
| 323 |
d <= xbounds.max + FTINY;
|
| 324 |
d += xbounds.step) {
|
| 325 |
i = xconv(d);
|
| 326 |
mline(i,AX_D+t0,0,lw,0);
|
| 327 |
mdraw(i,AX_D-t1);
|
| 328 |
mline(i,AX_U-t0,0,lw,0);
|
| 329 |
mdraw(i,AX_U+t1);
|
| 330 |
}
|
| 331 |
for (d = ybeg;
|
| 332 |
d <= ybounds.max + FTINY;
|
| 333 |
d += ybounds.step) {
|
| 334 |
i = yconv(d);
|
| 335 |
mline(AX_L+t0,i,0,lw,0);
|
| 336 |
mdraw(AX_L-t1,i);
|
| 337 |
mline(AX_R-t0,i,0,lw,0);
|
| 338 |
mdraw(AX_R+t1,i);
|
| 339 |
}
|
| 340 |
}
|
| 341 |
}
|
| 342 |
/* origin */
|
| 343 |
if (gparam[OTHICK].flags & DEFINED)
|
| 344 |
lw = varvalue(gparam[OTHICK].name) + 0.5;
|
| 345 |
else
|
| 346 |
lw = DEFOTHICK;
|
| 347 |
if (lw-- > 0) {
|
| 348 |
i = yconv(0.0);
|
| 349 |
if (i >= AX_D && i <= AX_U) {
|
| 350 |
mline(AX_L,i,0,lw,0);
|
| 351 |
mdraw(AX_R,i);
|
| 352 |
if (tstyle > 0)
|
| 353 |
for (d = xbeg; d <= xbounds.max+FTINY;
|
| 354 |
d += xbounds.step) {
|
| 355 |
mline(xconv(d),i+TLEN/2,0,lw,0);
|
| 356 |
mdraw(xconv(d),i-TLEN/2);
|
| 357 |
}
|
| 358 |
}
|
| 359 |
i = xconv(0.0);
|
| 360 |
if (i >= AX_L && i <= AX_R) {
|
| 361 |
mline(i,AX_D,0,lw,0);
|
| 362 |
mdraw(i,AX_U);
|
| 363 |
if (tstyle > 0)
|
| 364 |
for (d = ybeg; d <= ybounds.max+FTINY;
|
| 365 |
d += ybounds.step) {
|
| 366 |
mline(i+TLEN/2,yconv(d),0,lw,0);
|
| 367 |
mdraw(i-TLEN/2,yconv(d));
|
| 368 |
}
|
| 369 |
}
|
| 370 |
}
|
| 371 |
/* grid */
|
| 372 |
if (gparam[GRID].flags & DEFINED)
|
| 373 |
lw = varvalue(gparam[GRID].name);
|
| 374 |
else
|
| 375 |
lw = DEFGRID;
|
| 376 |
if (lw-- > 0) {
|
| 377 |
for (d = xbeg;
|
| 378 |
d <= xbounds.max + FTINY;
|
| 379 |
d += xbounds.step) {
|
| 380 |
i = xconv(d);
|
| 381 |
mline(i,AX_D,2,0,0);
|
| 382 |
mdraw(i,AX_U);
|
| 383 |
}
|
| 384 |
for (d = ybeg;
|
| 385 |
d <= ybounds.max + FTINY;
|
| 386 |
d += ybounds.step) {
|
| 387 |
i = yconv(d);
|
| 388 |
mline(AX_L,i,2,0,0);
|
| 389 |
mdraw(AX_R,i);
|
| 390 |
}
|
| 391 |
}
|
| 392 |
}
|
| 393 |
|
| 394 |
|
| 395 |
plotcurves() /* plot the curves */
|
| 396 |
{
|
| 397 |
int i, j, k, nextpoint();
|
| 398 |
|
| 399 |
for (i = 0; i < MAXCUR; i++) {
|
| 400 |
nplottable = nplotted = 0;
|
| 401 |
lastx = FHUGE;
|
| 402 |
if (mgcurve(i, nextpoint) > 0 &&
|
| 403 |
cparam[i][CLABEL].flags & DEFINED) {
|
| 404 |
j = (LE_U-LE_D)/MAXCUR;
|
| 405 |
k = LE_U - i*j;
|
| 406 |
mtext(LE_L+(LE_R-LE_L)/8,k+j/3,
|
| 407 |
cparam[i][CLABEL].v.s,CPI,0);
|
| 408 |
cmsymbol(i,LE_L,k);
|
| 409 |
if (cmline(i,LE_L,k) == 0)
|
| 410 |
mdraw(LE_R-(LE_R-LE_L)/4,k);
|
| 411 |
}
|
| 412 |
}
|
| 413 |
}
|
| 414 |
|
| 415 |
|
| 416 |
nextpoint(c, x, y) /* plot the next point for c */
|
| 417 |
register int c;
|
| 418 |
double x, y;
|
| 419 |
{
|
| 420 |
if (inbounds(x, y)) {
|
| 421 |
|
| 422 |
if (!(cparam[c][CNPOINTS].flags & DEFINED) ||
|
| 423 |
nplotted * npltbl[c] <= nplottable *
|
| 424 |
(int)varvalue(cparam[c][CNPOINTS].name) ) {
|
| 425 |
csymbol(c, x, y);
|
| 426 |
nplotted++;
|
| 427 |
}
|
| 428 |
nplottable++;
|
| 429 |
if (lastx != FHUGE)
|
| 430 |
climline(c, x, y, lastx, lasty);
|
| 431 |
|
| 432 |
} else if (inbounds(lastx, lasty)) {
|
| 433 |
|
| 434 |
climline(c, lastx, lasty, x, y);
|
| 435 |
|
| 436 |
}
|
| 437 |
lastx = x;
|
| 438 |
lasty = y;
|
| 439 |
}
|
| 440 |
|
| 441 |
|
| 442 |
stretchbounds(c, x, y) /* stretch our boundaries */
|
| 443 |
int c;
|
| 444 |
double x, y;
|
| 445 |
{
|
| 446 |
if (gparam[XMIN].flags & DEFINED &&
|
| 447 |
x < xbounds.min)
|
| 448 |
return;
|
| 449 |
if (gparam[XMAX].flags & DEFINED &&
|
| 450 |
x > xbounds.max)
|
| 451 |
return;
|
| 452 |
if (gparam[YMIN].flags & DEFINED &&
|
| 453 |
y < ybounds.min)
|
| 454 |
return;
|
| 455 |
if (gparam[YMAX].flags & DEFINED &&
|
| 456 |
y > ybounds.max)
|
| 457 |
return;
|
| 458 |
|
| 459 |
if (x < xbounds.min)
|
| 460 |
xbounds.min = x;
|
| 461 |
if (x > xbounds.max)
|
| 462 |
xbounds.max = x;
|
| 463 |
if (y < ybounds.min)
|
| 464 |
ybounds.min = y;
|
| 465 |
if (y > ybounds.max)
|
| 466 |
ybounds.max = y;
|
| 467 |
|
| 468 |
npltbl[c]++;
|
| 469 |
}
|
| 470 |
|
| 471 |
|
| 472 |
#define exp10(x) exp((x)*2.3025850929940456)
|
| 473 |
|
| 474 |
double
|
| 475 |
goodstep(interval) /* determine a good step for the interval */
|
| 476 |
double interval;
|
| 477 |
{
|
| 478 |
static int steps[] = {50, 20, 10, 5, 2, 1};
|
| 479 |
double fact, exp(), log10(), floor();
|
| 480 |
int i;
|
| 481 |
|
| 482 |
if (interval <= FTINY)
|
| 483 |
return(1.0);
|
| 484 |
fact = exp10(floor(log10(interval)))/10;
|
| 485 |
interval /= fact * MINDIVS;
|
| 486 |
for (i = 0; interval < steps[i]; i++)
|
| 487 |
;
|
| 488 |
return(steps[i] * fact);
|
| 489 |
}
|
| 490 |
|
| 491 |
#undef exp10
|
| 492 |
|
| 493 |
|
| 494 |
int
|
| 495 |
xconv(x) /* convert x to meta coords */
|
| 496 |
double x;
|
| 497 |
{
|
| 498 |
if (gparam[XMAP].flags & DEFINED)
|
| 499 |
x = funvalue(gparam[XMAP].name, 1, &x);
|
| 500 |
x = (x - axbegin)/axsize;
|
| 501 |
return( AX_L + (int)(x*(AX_R-AX_L)) );
|
| 502 |
}
|
| 503 |
|
| 504 |
|
| 505 |
int
|
| 506 |
yconv(y) /* convert y to meta coords */
|
| 507 |
double y;
|
| 508 |
{
|
| 509 |
if (gparam[YMAP].flags & DEFINED)
|
| 510 |
y = funvalue(gparam[YMAP].name, 1, &y);
|
| 511 |
y = (y - aybegin)/aysize;
|
| 512 |
return( AX_D + (int)(y*(AX_U-AX_D)) );
|
| 513 |
}
|
| 514 |
|
| 515 |
|
| 516 |
pconv(xp, yp, t, r) /* convert theta and radius to meta coords */
|
| 517 |
int *xp, *yp;
|
| 518 |
double t, r;
|
| 519 |
{
|
| 520 |
t *= (2.*PI)/period;
|
| 521 |
r = rconv(r);
|
| 522 |
*xp = r*cos(t) + (PL_X+.5);
|
| 523 |
*yp = r*sin(t) + (PL_Y+.5);
|
| 524 |
}
|
| 525 |
|
| 526 |
|
| 527 |
int
|
| 528 |
rconv(r) /* convert radius to meta coords */
|
| 529 |
double r;
|
| 530 |
{
|
| 531 |
if (gparam[YMAP].flags & DEFINED)
|
| 532 |
r = funvalue(gparam[YMAP].name, 1, &r);
|
| 533 |
|
| 534 |
return((r - aybegin)*PL_R/aysize + .5);
|
| 535 |
}
|
| 536 |
|
| 537 |
|
| 538 |
boxstring(xmin, ymin, xmax, ymax, s, d, width, color) /* put string in box */
|
| 539 |
int xmin, ymin, xmax, ymax;
|
| 540 |
char *s;
|
| 541 |
int d, width, color;
|
| 542 |
{
|
| 543 |
register long size;
|
| 544 |
|
| 545 |
if (d == 'u' || d == 'd') { /* up or down */
|
| 546 |
size = strlen(s)*(xmax-xmin)/ASPECT;
|
| 547 |
size -= ymax-ymin;
|
| 548 |
size /= 2;
|
| 549 |
if (size < 0) { /* center */
|
| 550 |
ymin -= size;
|
| 551 |
ymax += size;
|
| 552 |
}
|
| 553 |
} else { /* left or right */
|
| 554 |
size = strlen(s)*(ymax-ymin)/ASPECT;
|
| 555 |
size -= xmax-xmin;
|
| 556 |
size /= 2;
|
| 557 |
if (size < 0) { /* center */
|
| 558 |
xmin -= size;
|
| 559 |
xmax += size;
|
| 560 |
}
|
| 561 |
}
|
| 562 |
mvstr(xmin, ymin, xmax, ymax, s, d, width, color); /* print */
|
| 563 |
}
|
| 564 |
|
| 565 |
|
| 566 |
char *
|
| 567 |
goodformat(d) /* return a suitable format string for d */
|
| 568 |
double d;
|
| 569 |
{
|
| 570 |
static char *f[5] = {"%.0f", "%.1f", "%.2f", "%.3f", "%.4f"};
|
| 571 |
double floor();
|
| 572 |
register int i;
|
| 573 |
|
| 574 |
if (d < 0.0)
|
| 575 |
d = -d;
|
| 576 |
if (d > 1e-4 && d < 1e6)
|
| 577 |
for (i = 0; i < 5; i++) {
|
| 578 |
if (d - floor(d+FTINY) <= FTINY)
|
| 579 |
return(f[i]);
|
| 580 |
d *= 10.0;
|
| 581 |
}
|
| 582 |
return("%.1e");
|
| 583 |
}
|
| 584 |
|
| 585 |
|
| 586 |
drawcircle(x, y, r, typ, wid, col) /* draw a circle */
|
| 587 |
int x, y, r;
|
| 588 |
int typ, wid, col;
|
| 589 |
{
|
| 590 |
double d;
|
| 591 |
|
| 592 |
if (r <= 0)
|
| 593 |
return;
|
| 594 |
mline(x+r, y, typ, wid, col);
|
| 595 |
for (d = 2*PI*PL_F; d <= 2*PI+FTINY; d += 2*PI*PL_F)
|
| 596 |
mdraw((int)(x+r*cos(d)+.5), (int)(y+r*sin(d)+.5));
|
| 597 |
}
|
| 598 |
|
| 599 |
|
| 600 |
climline(c, x, y, xout, yout) /* print line from/to out of bounds */
|
| 601 |
int c;
|
| 602 |
double x, y, xout, yout;
|
| 603 |
{
|
| 604 |
for ( ; ; )
|
| 605 |
if (xout < xbounds.min) {
|
| 606 |
yout = y + (yout - y)*(xbounds.min - x)/(xout - x);
|
| 607 |
xout = xbounds.min;
|
| 608 |
} else if (yout < ybounds.min) {
|
| 609 |
xout = x + (xout - x)*(ybounds.min - y)/(yout - y);
|
| 610 |
yout = ybounds.min;
|
| 611 |
} else if (xout > xbounds.max) {
|
| 612 |
yout = y + (yout - y)*(xbounds.max - x)/(xout - x);
|
| 613 |
xout = xbounds.max;
|
| 614 |
} else if (yout > ybounds.max) {
|
| 615 |
xout = x + (xout - x)*(ybounds.max - y)/(yout - y);
|
| 616 |
yout = ybounds.max;
|
| 617 |
} else {
|
| 618 |
cline(c, x, y, xout, yout);
|
| 619 |
break;
|
| 620 |
}
|
| 621 |
}
|
| 622 |
|
| 623 |
|
| 624 |
cline(c, u1, v1, u2, v2) /* print a curve line */
|
| 625 |
int c;
|
| 626 |
double u1, v1, u2, v2;
|
| 627 |
{
|
| 628 |
int x, y;
|
| 629 |
double ustep, vstep;
|
| 630 |
|
| 631 |
if (period > FTINY) { /* polar */
|
| 632 |
if (u1 > u2) {
|
| 633 |
ustep = u1; u1 = u2; u2 = ustep;
|
| 634 |
vstep = v1; v1 = v2; v2 = vstep;
|
| 635 |
}
|
| 636 |
pconv(&x, &y, u1, v1);
|
| 637 |
if (cmline(c, x, y) < 0)
|
| 638 |
return;
|
| 639 |
ustep = period*PL_F;
|
| 640 |
if (u2-u1 > ustep) {
|
| 641 |
vstep = ustep*(v2-v1)/(u2-u1);
|
| 642 |
while ((u1 += ustep) < u2) {
|
| 643 |
v1 += vstep;
|
| 644 |
pconv(&x, &y, u1, v1);
|
| 645 |
mdraw(x, y);
|
| 646 |
}
|
| 647 |
}
|
| 648 |
pconv(&x, &y, u2, v2);
|
| 649 |
mdraw(x, y);
|
| 650 |
} else if (cmline(c, xconv(u1), yconv(v1)) == 0)
|
| 651 |
mdraw(xconv(u2), yconv(v2));
|
| 652 |
}
|
| 653 |
|
| 654 |
|
| 655 |
int
|
| 656 |
cmline(c, x, y) /* start curve line in meta coords */
|
| 657 |
int c;
|
| 658 |
int x, y;
|
| 659 |
{
|
| 660 |
int lw, lt, col;
|
| 661 |
register VARIABLE *cv;
|
| 662 |
|
| 663 |
cv = cparam[c];
|
| 664 |
if (cv[CLINTYPE].flags & DEFINED)
|
| 665 |
lt = varvalue(cv[CLINTYPE].name);
|
| 666 |
else
|
| 667 |
lt = DEFLINTYPE;
|
| 668 |
if (lt-- <= 0)
|
| 669 |
return(-1);
|
| 670 |
if (cv[CTHICK].flags & DEFINED)
|
| 671 |
lw = varvalue(cv[CTHICK].name);
|
| 672 |
else
|
| 673 |
lw = DEFTHICK;
|
| 674 |
if (lw-- <= 0)
|
| 675 |
return(-1);
|
| 676 |
if (cv[CCOLOR].flags & DEFINED)
|
| 677 |
col = varvalue(cv[CCOLOR].name);
|
| 678 |
else
|
| 679 |
col = DEFCOLOR;
|
| 680 |
if (col-- <= 0)
|
| 681 |
return(-1);
|
| 682 |
mline(x, y, lt, lw, col);
|
| 683 |
return(0);
|
| 684 |
}
|
| 685 |
|
| 686 |
|
| 687 |
csymbol(c, u, v) /* plot curve symbol */
|
| 688 |
int c;
|
| 689 |
double u, v;
|
| 690 |
{
|
| 691 |
int x, y;
|
| 692 |
|
| 693 |
if (period > FTINY) {
|
| 694 |
pconv(&x, &y, u, v);
|
| 695 |
cmsymbol(c, x, y);
|
| 696 |
} else
|
| 697 |
cmsymbol(c, xconv(u), yconv(v));
|
| 698 |
}
|
| 699 |
|
| 700 |
|
| 701 |
cmsymbol(c, x, y) /* print curve symbol in meta coords */
|
| 702 |
int c;
|
| 703 |
int x, y;
|
| 704 |
{
|
| 705 |
int col, ss;
|
| 706 |
register VARIABLE *cv;
|
| 707 |
|
| 708 |
cv = cparam[c];
|
| 709 |
if (!(cv[CSYMTYPE].flags & DEFINED))
|
| 710 |
return;
|
| 711 |
if (cv[CSYMSIZE].flags & DEFINED)
|
| 712 |
ss = varvalue(cv[CSYMSIZE].name);
|
| 713 |
else
|
| 714 |
ss = DEFSYMSIZE;
|
| 715 |
if (ss <= 0)
|
| 716 |
return;
|
| 717 |
if (cv[CCOLOR].flags & DEFINED)
|
| 718 |
col = varvalue(cv[CCOLOR].name);
|
| 719 |
else
|
| 720 |
col = DEFCOLOR;
|
| 721 |
if (col-- <= 0)
|
| 722 |
return;
|
| 723 |
msegment(x-ss,y-ss,x+ss,y+ss,
|
| 724 |
cv[CSYMTYPE].v.s,'r',0,col);
|
| 725 |
}
|
| 726 |
|
| 727 |
|
| 728 |
inbounds(x, y) /* determine if x and y are within gbounds */
|
| 729 |
double x, y;
|
| 730 |
{
|
| 731 |
if (x < xbounds.min || x > xbounds.max)
|
| 732 |
return(0);
|
| 733 |
if (y < ybounds.min || y > ybounds.max)
|
| 734 |
return(0);
|
| 735 |
return(1);
|
| 736 |
}
|