1 |
greg |
1.1 |
#ifndef lint |
2 |
|
|
static const char RCSid[] = "$Id$"; |
3 |
|
|
#endif |
4 |
|
|
/* |
5 |
|
|
* mgraph.c - routines for plotting graphs from variables. |
6 |
|
|
* |
7 |
|
|
* 6/23/86 |
8 |
|
|
* |
9 |
|
|
* Greg Ward Larson |
10 |
|
|
*/ |
11 |
|
|
|
12 |
|
|
#include <stdio.h> |
13 |
|
|
|
14 |
|
|
#include "mgvars.h" |
15 |
|
|
|
16 |
|
|
#include "mgraph.h" |
17 |
|
|
|
18 |
|
|
extern char *progname; /* argv[0] */ |
19 |
|
|
|
20 |
|
|
extern double goodstep(), floor(), ceil(), sin(), cos(); |
21 |
|
|
|
22 |
|
|
static BOUNDS xbounds, ybounds; /* the boundaries for the graph */ |
23 |
|
|
|
24 |
|
|
static double period = DEFPERIOD; /* period for polar plot */ |
25 |
|
|
|
26 |
|
|
static double axbegin, axsize; /* the mapped x axis boundaries */ |
27 |
|
|
static double aybegin, aysize; /* the mapped y axis boundaries */ |
28 |
|
|
|
29 |
|
|
static int npltbl[MAXCUR]; /* plottable points per curve */ |
30 |
|
|
|
31 |
|
|
static double lastx, lasty; /* last curve postion */ |
32 |
|
|
static int nplottable; /* number of plottable points */ |
33 |
|
|
static int nplotted; /* number of plotted points */ |
34 |
|
|
|
35 |
|
|
|
36 |
|
|
mgraph() /* plot the current graph */ |
37 |
|
|
{ |
38 |
|
|
/* load the symbol file */ |
39 |
|
|
if (gparam[SYMFILE].flags & DEFINED) |
40 |
|
|
minclude(gparam[SYMFILE].v.s); |
41 |
|
|
/* check for polar plot */ |
42 |
|
|
if (gparam[PERIOD].flags & DEFINED) |
43 |
|
|
period = varvalue(gparam[PERIOD].name); |
44 |
|
|
|
45 |
|
|
getbounds(); /* get the boundaries */ |
46 |
|
|
makeaxis(); /* draw the coordinate axis */ |
47 |
|
|
plotcurves(); /* plot the curves */ |
48 |
|
|
|
49 |
|
|
mendpage(); /* advance page */ |
50 |
|
|
} |
51 |
|
|
|
52 |
|
|
|
53 |
|
|
getbounds() /* compute the boundaries */ |
54 |
|
|
{ |
55 |
|
|
int i, stretchbounds(); |
56 |
|
|
|
57 |
|
|
xbounds.min = gparam[XMIN].flags & DEFINED ? |
58 |
|
|
varvalue(gparam[XMIN].name) - FTINY : |
59 |
|
|
FHUGE ; |
60 |
|
|
xbounds.max = gparam[XMAX].flags & DEFINED ? |
61 |
|
|
varvalue(gparam[XMAX].name) + FTINY : |
62 |
|
|
-FHUGE ; |
63 |
|
|
ybounds.min = gparam[YMIN].flags & DEFINED ? |
64 |
|
|
varvalue(gparam[YMIN].name) - FTINY : |
65 |
|
|
FHUGE ; |
66 |
|
|
ybounds.max = gparam[YMAX].flags & DEFINED ? |
67 |
|
|
varvalue(gparam[YMAX].name) + FTINY : |
68 |
|
|
-FHUGE ; |
69 |
|
|
|
70 |
|
|
nplottable = 0; |
71 |
|
|
for (i = 0; i < MAXCUR; i++) { |
72 |
|
|
npltbl[i] = 0; |
73 |
|
|
mgcurve(i, stretchbounds); |
74 |
|
|
nplottable += npltbl[i]; |
75 |
|
|
} |
76 |
|
|
if (nplottable == 0) { |
77 |
|
|
fprintf(stderr, "%s: no plottable data\n", progname); |
78 |
|
|
quit(1); |
79 |
|
|
} |
80 |
|
|
|
81 |
|
|
xbounds.step = gparam[XSTEP].flags & DEFINED ? |
82 |
|
|
varvalue(gparam[XSTEP].name) : |
83 |
|
|
period > FTINY ? |
84 |
|
|
DEFPLSTEP*period : |
85 |
|
|
goodstep(xbounds.max - xbounds.min) ; |
86 |
|
|
if (!(gparam[XMIN].flags & DEFINED)) |
87 |
|
|
xbounds.min = floor(xbounds.min/xbounds.step) * |
88 |
|
|
xbounds.step; |
89 |
|
|
if (!(gparam[XMAX].flags & DEFINED)) |
90 |
|
|
xbounds.max = ceil(xbounds.max/xbounds.step) * |
91 |
|
|
xbounds.step; |
92 |
|
|
ybounds.step = gparam[YSTEP].flags & DEFINED ? |
93 |
|
|
varvalue(gparam[YSTEP].name) : |
94 |
|
|
period > FTINY ? |
95 |
|
|
goodstep((ybounds.max - ybounds.min)*1.75) : |
96 |
|
|
goodstep(ybounds.max - ybounds.min) ; |
97 |
|
|
if (!(gparam[YMIN].flags & DEFINED)) |
98 |
|
|
ybounds.min = floor(ybounds.min/ybounds.step) * |
99 |
|
|
ybounds.step; |
100 |
|
|
if (!(gparam[YMAX].flags & DEFINED)) |
101 |
|
|
ybounds.max = ceil(ybounds.max/ybounds.step) * |
102 |
|
|
ybounds.step; |
103 |
|
|
if (gparam[XMAP].flags & DEFINED) { |
104 |
|
|
axbegin = funvalue(gparam[XMAP].name, 1, &xbounds.min); |
105 |
|
|
axsize = funvalue(gparam[XMAP].name, 1, &xbounds.max); |
106 |
|
|
axsize -= axbegin; |
107 |
|
|
} else { |
108 |
|
|
axbegin = xbounds.min; |
109 |
|
|
axsize = xbounds.max; |
110 |
|
|
axsize -= axbegin; |
111 |
|
|
} |
112 |
|
|
if (gparam[YMAP].flags & DEFINED) { |
113 |
|
|
aybegin = funvalue(gparam[YMAP].name, 1, &ybounds.min); |
114 |
|
|
aysize = funvalue(gparam[YMAP].name, 1, &ybounds.max); |
115 |
|
|
aysize -= aybegin; |
116 |
|
|
} else { |
117 |
|
|
aybegin = ybounds.min; |
118 |
|
|
aysize = ybounds.max; |
119 |
|
|
aysize -= aybegin; |
120 |
|
|
} |
121 |
|
|
} |
122 |
|
|
|
123 |
|
|
|
124 |
|
|
makeaxis() /* draw the coordinate axis */ |
125 |
|
|
{ |
126 |
|
|
char stmp[64]; |
127 |
|
|
|
128 |
|
|
if (period > FTINY) |
129 |
|
|
polaraxis(); |
130 |
|
|
else |
131 |
|
|
cartaxis(); |
132 |
|
|
/* x axis label */ |
133 |
|
|
if (gparam[XLABEL].flags & DEFINED) |
134 |
|
|
boxstring(XL_L,XL_D,XL_R,XL_U,gparam[XLABEL].v.s,'r',0,0); |
135 |
|
|
/* x mapping */ |
136 |
|
|
if (gparam[XMAP].flags & DEFINED) { |
137 |
|
|
mgtoa(stmp, &gparam[XMAP]); |
138 |
|
|
boxstring(XM_L,XM_D,XM_R,XM_U,stmp,'r',0,0); |
139 |
|
|
} |
140 |
|
|
/* y axis label */ |
141 |
|
|
if (gparam[YLABEL].flags & DEFINED) |
142 |
|
|
boxstring(YL_L,YL_D,YL_R,YL_U,gparam[YLABEL].v.s,'u',0,0); |
143 |
|
|
/* y mapping */ |
144 |
|
|
if (gparam[YMAP].flags & DEFINED) { |
145 |
|
|
mgtoa(stmp, &gparam[YMAP]); |
146 |
|
|
boxstring(YM_L,YM_D,YM_R,YM_U,stmp,'u',0,0); |
147 |
|
|
} |
148 |
|
|
/* title */ |
149 |
|
|
if (gparam[TITLE].flags & DEFINED) |
150 |
|
|
boxstring(TI_L,TI_D,TI_R,TI_U,gparam[TITLE].v.s,'r',2,0); |
151 |
|
|
/* subtitle */ |
152 |
|
|
if (gparam[SUBTITLE].flags & DEFINED) |
153 |
|
|
boxstring(ST_L,ST_D,ST_R,ST_U,gparam[SUBTITLE].v.s,'r',1,0); |
154 |
|
|
/* legend */ |
155 |
|
|
if (gparam[LEGEND].flags & DEFINED) |
156 |
|
|
mtext(LT_X, LT_Y, gparam[LEGEND].v.s, CPI, 0); |
157 |
|
|
} |
158 |
|
|
|
159 |
|
|
|
160 |
|
|
polaraxis() /* print polar coordinate axis */ |
161 |
|
|
{ |
162 |
|
|
int lw, tstyle, t0, t1; |
163 |
|
|
double d, d1, ybeg, xstep; |
164 |
|
|
char stmp[64], *fmt, *goodformat(); |
165 |
|
|
/* get tick style */ |
166 |
|
|
if (gparam[TSTYLE].flags & DEFINED) |
167 |
|
|
tstyle = varvalue(gparam[TSTYLE].name) + 0.5; |
168 |
|
|
else |
169 |
|
|
tstyle = DEFTSTYLE; |
170 |
|
|
/* start of numbering */ |
171 |
|
|
ybeg = ceil(ybounds.min/ybounds.step)*ybounds.step; |
172 |
|
|
/* theta (x) numbering */ |
173 |
|
|
fmt = goodformat(xbounds.step); |
174 |
|
|
for (d = 0.0; d < period-FTINY; d += xbounds.step) { |
175 |
|
|
sprintf(stmp, fmt, d); |
176 |
|
|
d1 = d*(2*PI)/period; |
177 |
|
|
t0 = TN_X + TN_R*cos(d1) + .5; |
178 |
|
|
if (t0 < TN_X) |
179 |
|
|
t0 -= strlen(stmp)*CWID; |
180 |
|
|
mtext(t0,(int)(TN_Y+TN_R*sin(d1)+.5),stmp,CPI,0); |
181 |
|
|
} |
182 |
|
|
/* radius (y) numbering */ |
183 |
|
|
fmt = goodformat(ybounds.step); |
184 |
|
|
lw = PL_R+RN_S; |
185 |
|
|
for (d = ybeg; d <= ybounds.max+FTINY; d += ybounds.step) { |
186 |
|
|
t0 = rconv(d); |
187 |
|
|
if (t0 >= lw+RN_S || t0 <= lw-RN_S) { |
188 |
|
|
sprintf(stmp, fmt, d); |
189 |
|
|
mtext(RN_X+t0-strlen(stmp)*(CWID/2),RN_Y,stmp,CPI,0); |
190 |
|
|
lw = t0; |
191 |
|
|
} |
192 |
|
|
} |
193 |
|
|
/* frame */ |
194 |
|
|
if (gparam[FTHICK].flags & DEFINED) |
195 |
|
|
lw = varvalue(gparam[FTHICK].name) + 0.5; |
196 |
|
|
else |
197 |
|
|
lw = DEFFTHICK; |
198 |
|
|
if (lw-- > 0) { |
199 |
|
|
drawcircle(PL_X,PL_Y,PL_R,0,lw,0); |
200 |
|
|
switch (tstyle) { |
201 |
|
|
case 1: /* outside */ |
202 |
|
|
t0 = 0; t1 = TLEN; break; |
203 |
|
|
case 2: /* inside */ |
204 |
|
|
t0 = TLEN; t1 = 0; break; |
205 |
|
|
case 3: /* accross */ |
206 |
|
|
t0 = TLEN/2; t1 = TLEN/2; break; |
207 |
|
|
default: /* none */ |
208 |
|
|
t0 = t1 = 0; break; |
209 |
|
|
} |
210 |
|
|
if (t0 + t1) { |
211 |
|
|
for (d = 0.0; d < 2*PI-FTINY; |
212 |
|
|
d += xbounds.step*(2*PI)/period) { |
213 |
|
|
mline((int)(PL_X+(PL_R-t0)*cos(d)+.5), |
214 |
|
|
(int)(PL_Y+(PL_R-t0)*sin(d)+.5), |
215 |
|
|
0, lw, 0); |
216 |
|
|
mdraw((int)(PL_X+(PL_R+t1)*cos(d)+.5), |
217 |
|
|
(int)(PL_Y+(PL_R+t1)*sin(d)+.5)); |
218 |
|
|
} |
219 |
|
|
} |
220 |
|
|
} |
221 |
|
|
/* origin */ |
222 |
|
|
if (gparam[OTHICK].flags & DEFINED) |
223 |
|
|
lw = varvalue(gparam[OTHICK].name) + 0.5; |
224 |
|
|
else |
225 |
|
|
lw = DEFOTHICK; |
226 |
|
|
if (lw-- > 0) { |
227 |
|
|
mline(PL_X-PL_R,PL_Y,0,lw,0); |
228 |
|
|
mdraw(PL_X+PL_R,PL_Y); |
229 |
|
|
mline(PL_X,PL_Y-PL_R,0,lw,0); |
230 |
|
|
mdraw(PL_X,PL_Y+PL_R); |
231 |
|
|
if (tstyle > 0) |
232 |
|
|
for (d = ybeg; d <= ybounds.max+FTINY; |
233 |
|
|
d += ybounds.step) { |
234 |
|
|
t0 = rconv(d); |
235 |
|
|
mline(PL_X+t0,PL_Y-TLEN/2,0,lw,0); |
236 |
|
|
mdraw(PL_X+t0,PL_Y+TLEN/2); |
237 |
|
|
mline(PL_X-TLEN/2,PL_Y+t0,0,lw,0); |
238 |
|
|
mdraw(PL_X+TLEN/2,PL_Y+t0); |
239 |
|
|
mline(PL_X-t0,PL_Y-TLEN/2,0,lw,0); |
240 |
|
|
mdraw(PL_X-t0,PL_Y+TLEN/2); |
241 |
|
|
mline(PL_X-TLEN/2,PL_Y-t0,0,lw,0); |
242 |
|
|
mdraw(PL_X+TLEN/2,PL_Y-t0); |
243 |
|
|
} |
244 |
|
|
} |
245 |
|
|
/* grid */ |
246 |
|
|
if (gparam[GRID].flags & DEFINED) |
247 |
|
|
lw = varvalue(gparam[GRID].name); |
248 |
|
|
else |
249 |
|
|
lw = DEFGRID; |
250 |
|
|
if (lw-- > 0) { |
251 |
|
|
for (d = 0.0; d < PI-FTINY; d += xbounds.step*(2*PI)/period) { |
252 |
|
|
mline((int)(PL_X+PL_R*cos(d)+.5), |
253 |
|
|
(int)(PL_Y+PL_R*sin(d)+.5),2,0,0); |
254 |
|
|
mdraw((int)(PL_X-PL_R*cos(d)+.5), |
255 |
|
|
(int)(PL_Y-PL_R*sin(d)+.5)); |
256 |
|
|
} |
257 |
|
|
for (d = ybeg; d <= ybounds.max + FTINY; d += ybounds.step) |
258 |
|
|
drawcircle(PL_X,PL_Y,rconv(d),2,0,0); |
259 |
|
|
} |
260 |
|
|
} |
261 |
|
|
|
262 |
|
|
|
263 |
|
|
cartaxis() /* print Cartesian coordinate axis */ |
264 |
|
|
{ |
265 |
|
|
int lw, t0, t1, tstyle; |
266 |
|
|
double d, xbeg, ybeg; |
267 |
|
|
char stmp[64], *fmt, *goodformat(); |
268 |
|
|
register int i; |
269 |
|
|
/* get tick style */ |
270 |
|
|
if (gparam[TSTYLE].flags & DEFINED) |
271 |
|
|
tstyle = varvalue(gparam[TSTYLE].name) + 0.5; |
272 |
|
|
else |
273 |
|
|
tstyle = DEFTSTYLE; |
274 |
|
|
/* start of numbering */ |
275 |
|
|
xbeg = ceil(xbounds.min/xbounds.step)*xbounds.step; |
276 |
|
|
ybeg = ceil(ybounds.min/ybounds.step)*ybounds.step; |
277 |
|
|
|
278 |
|
|
/* x numbering */ |
279 |
|
|
fmt = goodformat(xbounds.step); |
280 |
|
|
lw = 2*AX_L-AX_R; |
281 |
|
|
for (d = xbeg; |
282 |
|
|
d <= xbounds.max + FTINY; |
283 |
|
|
d += xbounds.step) |
284 |
|
|
if ((i = xconv(d)) >= lw+XN_S || i <= lw-XN_S) { |
285 |
|
|
sprintf(stmp, fmt, d); |
286 |
|
|
mtext(i-strlen(stmp)*(CWID/2)+XN_X,XN_Y,stmp,CPI,0); |
287 |
|
|
lw = i; |
288 |
|
|
} |
289 |
|
|
/* y numbering */ |
290 |
|
|
fmt = goodformat(ybounds.step); |
291 |
|
|
lw = 2*AX_D-AX_U; |
292 |
|
|
for (d = ybeg; |
293 |
|
|
d <= ybounds.max + FTINY; |
294 |
|
|
d += ybounds.step) |
295 |
|
|
if ((i = yconv(d)) >= lw+YN_S || i <= lw-YN_S) { |
296 |
|
|
sprintf(stmp, fmt, d); |
297 |
|
|
mtext(YN_X-strlen(stmp)*CWID,i+YN_Y,stmp,CPI,0); |
298 |
|
|
lw = i; |
299 |
|
|
} |
300 |
|
|
/* frame */ |
301 |
|
|
if (gparam[FTHICK].flags & DEFINED) |
302 |
|
|
lw = varvalue(gparam[FTHICK].name) + 0.5; |
303 |
|
|
else |
304 |
|
|
lw = DEFFTHICK; |
305 |
|
|
if (lw-- > 0) { |
306 |
|
|
mline(AX_L,AX_D,0,lw,0); |
307 |
|
|
mdraw(AX_R,AX_D); |
308 |
|
|
mdraw(AX_R,AX_U); |
309 |
|
|
mdraw(AX_L,AX_U); |
310 |
|
|
mdraw(AX_L,AX_D); |
311 |
|
|
switch (tstyle) { |
312 |
|
|
case 1: /* outside */ |
313 |
|
|
t0 = 0; t1 = TLEN; break; |
314 |
|
|
case 2: /* inside */ |
315 |
|
|
t0 = TLEN; t1 = 0; break; |
316 |
|
|
case 3: /* accross */ |
317 |
|
|
t0 = TLEN/2; t1 = TLEN/2; break; |
318 |
|
|
default: /* none */ |
319 |
|
|
t0 = t1 = 0; break; |
320 |
|
|
} |
321 |
|
|
if (t0 + t1) { |
322 |
|
|
for (d = xbeg; |
323 |
|
|
d <= xbounds.max + FTINY; |
324 |
|
|
d += xbounds.step) { |
325 |
|
|
i = xconv(d); |
326 |
|
|
mline(i,AX_D+t0,0,lw,0); |
327 |
|
|
mdraw(i,AX_D-t1); |
328 |
|
|
mline(i,AX_U-t0,0,lw,0); |
329 |
|
|
mdraw(i,AX_U+t1); |
330 |
|
|
} |
331 |
|
|
for (d = ybeg; |
332 |
|
|
d <= ybounds.max + FTINY; |
333 |
|
|
d += ybounds.step) { |
334 |
|
|
i = yconv(d); |
335 |
|
|
mline(AX_L+t0,i,0,lw,0); |
336 |
|
|
mdraw(AX_L-t1,i); |
337 |
|
|
mline(AX_R-t0,i,0,lw,0); |
338 |
|
|
mdraw(AX_R+t1,i); |
339 |
|
|
} |
340 |
|
|
} |
341 |
|
|
} |
342 |
|
|
/* origin */ |
343 |
|
|
if (gparam[OTHICK].flags & DEFINED) |
344 |
|
|
lw = varvalue(gparam[OTHICK].name) + 0.5; |
345 |
|
|
else |
346 |
|
|
lw = DEFOTHICK; |
347 |
|
|
if (lw-- > 0) { |
348 |
|
|
i = yconv(0.0); |
349 |
|
|
if (i >= AX_D && i <= AX_U) { |
350 |
|
|
mline(AX_L,i,0,lw,0); |
351 |
|
|
mdraw(AX_R,i); |
352 |
|
|
if (tstyle > 0) |
353 |
|
|
for (d = xbeg; d <= xbounds.max+FTINY; |
354 |
|
|
d += xbounds.step) { |
355 |
|
|
mline(xconv(d),i+TLEN/2,0,lw,0); |
356 |
|
|
mdraw(xconv(d),i-TLEN/2); |
357 |
|
|
} |
358 |
|
|
} |
359 |
|
|
i = xconv(0.0); |
360 |
|
|
if (i >= AX_L && i <= AX_R) { |
361 |
|
|
mline(i,AX_D,0,lw,0); |
362 |
|
|
mdraw(i,AX_U); |
363 |
|
|
if (tstyle > 0) |
364 |
|
|
for (d = ybeg; d <= ybounds.max+FTINY; |
365 |
|
|
d += ybounds.step) { |
366 |
|
|
mline(i+TLEN/2,yconv(d),0,lw,0); |
367 |
|
|
mdraw(i-TLEN/2,yconv(d)); |
368 |
|
|
} |
369 |
|
|
} |
370 |
|
|
} |
371 |
|
|
/* grid */ |
372 |
|
|
if (gparam[GRID].flags & DEFINED) |
373 |
|
|
lw = varvalue(gparam[GRID].name); |
374 |
|
|
else |
375 |
|
|
lw = DEFGRID; |
376 |
|
|
if (lw-- > 0) { |
377 |
|
|
for (d = xbeg; |
378 |
|
|
d <= xbounds.max + FTINY; |
379 |
|
|
d += xbounds.step) { |
380 |
|
|
i = xconv(d); |
381 |
|
|
mline(i,AX_D,2,0,0); |
382 |
|
|
mdraw(i,AX_U); |
383 |
|
|
} |
384 |
|
|
for (d = ybeg; |
385 |
|
|
d <= ybounds.max + FTINY; |
386 |
|
|
d += ybounds.step) { |
387 |
|
|
i = yconv(d); |
388 |
|
|
mline(AX_L,i,2,0,0); |
389 |
|
|
mdraw(AX_R,i); |
390 |
|
|
} |
391 |
|
|
} |
392 |
|
|
} |
393 |
|
|
|
394 |
|
|
|
395 |
|
|
plotcurves() /* plot the curves */ |
396 |
|
|
{ |
397 |
|
|
int i, j, k, nextpoint(); |
398 |
|
|
|
399 |
|
|
for (i = 0; i < MAXCUR; i++) { |
400 |
|
|
nplottable = nplotted = 0; |
401 |
|
|
lastx = FHUGE; |
402 |
|
|
if (mgcurve(i, nextpoint) > 0 && |
403 |
|
|
cparam[i][CLABEL].flags & DEFINED) { |
404 |
|
|
j = (LE_U-LE_D)/MAXCUR; |
405 |
|
|
k = LE_U - i*j; |
406 |
|
|
mtext(LE_L+(LE_R-LE_L)/8,k+j/3, |
407 |
|
|
cparam[i][CLABEL].v.s,CPI,0); |
408 |
|
|
cmsymbol(i,LE_L,k); |
409 |
|
|
if (cmline(i,LE_L,k) == 0) |
410 |
|
|
mdraw(LE_R-(LE_R-LE_L)/4,k); |
411 |
|
|
} |
412 |
|
|
} |
413 |
|
|
} |
414 |
|
|
|
415 |
|
|
|
416 |
|
|
nextpoint(c, x, y) /* plot the next point for c */ |
417 |
|
|
register int c; |
418 |
|
|
double x, y; |
419 |
|
|
{ |
420 |
|
|
if (inbounds(x, y)) { |
421 |
|
|
|
422 |
|
|
if (!(cparam[c][CNPOINTS].flags & DEFINED) || |
423 |
|
|
nplotted * npltbl[c] <= nplottable * |
424 |
|
|
(int)varvalue(cparam[c][CNPOINTS].name) ) { |
425 |
|
|
csymbol(c, x, y); |
426 |
|
|
nplotted++; |
427 |
|
|
} |
428 |
|
|
nplottable++; |
429 |
|
|
if (lastx != FHUGE) |
430 |
|
|
climline(c, x, y, lastx, lasty); |
431 |
|
|
|
432 |
|
|
} else if (inbounds(lastx, lasty)) { |
433 |
|
|
|
434 |
|
|
climline(c, lastx, lasty, x, y); |
435 |
|
|
|
436 |
|
|
} |
437 |
|
|
lastx = x; |
438 |
|
|
lasty = y; |
439 |
|
|
} |
440 |
|
|
|
441 |
|
|
|
442 |
|
|
stretchbounds(c, x, y) /* stretch our boundaries */ |
443 |
|
|
int c; |
444 |
|
|
double x, y; |
445 |
|
|
{ |
446 |
|
|
if (gparam[XMIN].flags & DEFINED && |
447 |
|
|
x < xbounds.min) |
448 |
|
|
return; |
449 |
|
|
if (gparam[XMAX].flags & DEFINED && |
450 |
|
|
x > xbounds.max) |
451 |
|
|
return; |
452 |
|
|
if (gparam[YMIN].flags & DEFINED && |
453 |
|
|
y < ybounds.min) |
454 |
|
|
return; |
455 |
|
|
if (gparam[YMAX].flags & DEFINED && |
456 |
|
|
y > ybounds.max) |
457 |
|
|
return; |
458 |
|
|
|
459 |
|
|
if (x < xbounds.min) |
460 |
|
|
xbounds.min = x; |
461 |
|
|
if (x > xbounds.max) |
462 |
|
|
xbounds.max = x; |
463 |
|
|
if (y < ybounds.min) |
464 |
|
|
ybounds.min = y; |
465 |
|
|
if (y > ybounds.max) |
466 |
|
|
ybounds.max = y; |
467 |
|
|
|
468 |
|
|
npltbl[c]++; |
469 |
|
|
} |
470 |
|
|
|
471 |
|
|
|
472 |
|
|
#define exp10(x) exp((x)*2.3025850929940456) |
473 |
|
|
|
474 |
|
|
double |
475 |
|
|
goodstep(interval) /* determine a good step for the interval */ |
476 |
|
|
double interval; |
477 |
|
|
{ |
478 |
|
|
static int steps[] = {50, 20, 10, 5, 2, 1}; |
479 |
|
|
double fact, exp(), log10(), floor(); |
480 |
|
|
int i; |
481 |
|
|
|
482 |
|
|
if (interval <= FTINY) |
483 |
|
|
return(1.0); |
484 |
|
|
fact = exp10(floor(log10(interval)))/10; |
485 |
|
|
interval /= fact * MINDIVS; |
486 |
|
|
for (i = 0; interval < steps[i]; i++) |
487 |
|
|
; |
488 |
|
|
return(steps[i] * fact); |
489 |
|
|
} |
490 |
|
|
|
491 |
|
|
#undef exp10 |
492 |
|
|
|
493 |
|
|
|
494 |
|
|
int |
495 |
|
|
xconv(x) /* convert x to meta coords */ |
496 |
|
|
double x; |
497 |
|
|
{ |
498 |
|
|
if (gparam[XMAP].flags & DEFINED) |
499 |
|
|
x = funvalue(gparam[XMAP].name, 1, &x); |
500 |
|
|
x = (x - axbegin)/axsize; |
501 |
|
|
return( AX_L + (int)(x*(AX_R-AX_L)) ); |
502 |
|
|
} |
503 |
|
|
|
504 |
|
|
|
505 |
|
|
int |
506 |
|
|
yconv(y) /* convert y to meta coords */ |
507 |
|
|
double y; |
508 |
|
|
{ |
509 |
|
|
if (gparam[YMAP].flags & DEFINED) |
510 |
|
|
y = funvalue(gparam[YMAP].name, 1, &y); |
511 |
|
|
y = (y - aybegin)/aysize; |
512 |
|
|
return( AX_D + (int)(y*(AX_U-AX_D)) ); |
513 |
|
|
} |
514 |
|
|
|
515 |
|
|
|
516 |
|
|
pconv(xp, yp, t, r) /* convert theta and radius to meta coords */ |
517 |
|
|
int *xp, *yp; |
518 |
|
|
double t, r; |
519 |
|
|
{ |
520 |
|
|
t *= (2.*PI)/period; |
521 |
|
|
r = rconv(r); |
522 |
|
|
*xp = r*cos(t) + (PL_X+.5); |
523 |
|
|
*yp = r*sin(t) + (PL_Y+.5); |
524 |
|
|
} |
525 |
|
|
|
526 |
|
|
|
527 |
|
|
int |
528 |
|
|
rconv(r) /* convert radius to meta coords */ |
529 |
|
|
double r; |
530 |
|
|
{ |
531 |
|
|
if (gparam[YMAP].flags & DEFINED) |
532 |
|
|
r = funvalue(gparam[YMAP].name, 1, &r); |
533 |
|
|
|
534 |
|
|
return((r - aybegin)*PL_R/aysize + .5); |
535 |
|
|
} |
536 |
|
|
|
537 |
|
|
|
538 |
|
|
boxstring(xmin, ymin, xmax, ymax, s, d, width, color) /* put string in box */ |
539 |
|
|
int xmin, ymin, xmax, ymax; |
540 |
|
|
char *s; |
541 |
|
|
int d, width, color; |
542 |
|
|
{ |
543 |
|
|
register long size; |
544 |
|
|
|
545 |
|
|
if (d == 'u' || d == 'd') { /* up or down */ |
546 |
|
|
size = strlen(s)*(xmax-xmin)/ASPECT; |
547 |
|
|
size -= ymax-ymin; |
548 |
|
|
size /= 2; |
549 |
|
|
if (size < 0) { /* center */ |
550 |
|
|
ymin -= size; |
551 |
|
|
ymax += size; |
552 |
|
|
} |
553 |
|
|
} else { /* left or right */ |
554 |
|
|
size = strlen(s)*(ymax-ymin)/ASPECT; |
555 |
|
|
size -= xmax-xmin; |
556 |
|
|
size /= 2; |
557 |
|
|
if (size < 0) { /* center */ |
558 |
|
|
xmin -= size; |
559 |
|
|
xmax += size; |
560 |
|
|
} |
561 |
|
|
} |
562 |
|
|
mvstr(xmin, ymin, xmax, ymax, s, d, width, color); /* print */ |
563 |
|
|
} |
564 |
|
|
|
565 |
|
|
|
566 |
|
|
char * |
567 |
|
|
goodformat(d) /* return a suitable format string for d */ |
568 |
|
|
double d; |
569 |
|
|
{ |
570 |
|
|
static char *f[5] = {"%.0f", "%.1f", "%.2f", "%.3f", "%.4f"}; |
571 |
|
|
double floor(); |
572 |
|
|
register int i; |
573 |
|
|
|
574 |
|
|
if (d < 0.0) |
575 |
|
|
d = -d; |
576 |
|
|
if (d > 1e-4 && d < 1e6) |
577 |
|
|
for (i = 0; i < 5; i++) { |
578 |
|
|
if (d - floor(d+FTINY) <= FTINY) |
579 |
|
|
return(f[i]); |
580 |
|
|
d *= 10.0; |
581 |
|
|
} |
582 |
|
|
return("%.1e"); |
583 |
|
|
} |
584 |
|
|
|
585 |
|
|
|
586 |
|
|
drawcircle(x, y, r, typ, wid, col) /* draw a circle */ |
587 |
|
|
int x, y, r; |
588 |
|
|
int typ, wid, col; |
589 |
|
|
{ |
590 |
|
|
double d; |
591 |
|
|
|
592 |
|
|
if (r <= 0) |
593 |
|
|
return; |
594 |
|
|
mline(x+r, y, typ, wid, col); |
595 |
|
|
for (d = 2*PI*PL_F; d <= 2*PI+FTINY; d += 2*PI*PL_F) |
596 |
|
|
mdraw((int)(x+r*cos(d)+.5), (int)(y+r*sin(d)+.5)); |
597 |
|
|
} |
598 |
|
|
|
599 |
|
|
|
600 |
|
|
climline(c, x, y, xout, yout) /* print line from/to out of bounds */ |
601 |
|
|
int c; |
602 |
|
|
double x, y, xout, yout; |
603 |
|
|
{ |
604 |
|
|
for ( ; ; ) |
605 |
|
|
if (xout < xbounds.min) { |
606 |
|
|
yout = y + (yout - y)*(xbounds.min - x)/(xout - x); |
607 |
|
|
xout = xbounds.min; |
608 |
|
|
} else if (yout < ybounds.min) { |
609 |
|
|
xout = x + (xout - x)*(ybounds.min - y)/(yout - y); |
610 |
|
|
yout = ybounds.min; |
611 |
|
|
} else if (xout > xbounds.max) { |
612 |
|
|
yout = y + (yout - y)*(xbounds.max - x)/(xout - x); |
613 |
|
|
xout = xbounds.max; |
614 |
|
|
} else if (yout > ybounds.max) { |
615 |
|
|
xout = x + (xout - x)*(ybounds.max - y)/(yout - y); |
616 |
|
|
yout = ybounds.max; |
617 |
|
|
} else { |
618 |
|
|
cline(c, x, y, xout, yout); |
619 |
|
|
break; |
620 |
|
|
} |
621 |
|
|
} |
622 |
|
|
|
623 |
|
|
|
624 |
|
|
cline(c, u1, v1, u2, v2) /* print a curve line */ |
625 |
|
|
int c; |
626 |
|
|
double u1, v1, u2, v2; |
627 |
|
|
{ |
628 |
|
|
int x, y; |
629 |
|
|
double ustep, vstep; |
630 |
|
|
|
631 |
|
|
if (period > FTINY) { /* polar */ |
632 |
|
|
if (u1 > u2) { |
633 |
|
|
ustep = u1; u1 = u2; u2 = ustep; |
634 |
|
|
vstep = v1; v1 = v2; v2 = vstep; |
635 |
|
|
} |
636 |
|
|
pconv(&x, &y, u1, v1); |
637 |
|
|
if (cmline(c, x, y) < 0) |
638 |
|
|
return; |
639 |
|
|
ustep = period*PL_F; |
640 |
|
|
if (u2-u1 > ustep) { |
641 |
|
|
vstep = ustep*(v2-v1)/(u2-u1); |
642 |
|
|
while ((u1 += ustep) < u2) { |
643 |
|
|
v1 += vstep; |
644 |
|
|
pconv(&x, &y, u1, v1); |
645 |
|
|
mdraw(x, y); |
646 |
|
|
} |
647 |
|
|
} |
648 |
|
|
pconv(&x, &y, u2, v2); |
649 |
|
|
mdraw(x, y); |
650 |
|
|
} else if (cmline(c, xconv(u1), yconv(v1)) == 0) |
651 |
|
|
mdraw(xconv(u2), yconv(v2)); |
652 |
|
|
} |
653 |
|
|
|
654 |
|
|
|
655 |
|
|
int |
656 |
|
|
cmline(c, x, y) /* start curve line in meta coords */ |
657 |
|
|
int c; |
658 |
|
|
int x, y; |
659 |
|
|
{ |
660 |
|
|
int lw, lt, col; |
661 |
|
|
register VARIABLE *cv; |
662 |
|
|
|
663 |
|
|
cv = cparam[c]; |
664 |
|
|
if (cv[CLINTYPE].flags & DEFINED) |
665 |
|
|
lt = varvalue(cv[CLINTYPE].name); |
666 |
|
|
else |
667 |
|
|
lt = DEFLINTYPE; |
668 |
|
|
if (lt-- <= 0) |
669 |
|
|
return(-1); |
670 |
|
|
if (cv[CTHICK].flags & DEFINED) |
671 |
|
|
lw = varvalue(cv[CTHICK].name); |
672 |
|
|
else |
673 |
|
|
lw = DEFTHICK; |
674 |
|
|
if (lw-- <= 0) |
675 |
|
|
return(-1); |
676 |
|
|
if (cv[CCOLOR].flags & DEFINED) |
677 |
|
|
col = varvalue(cv[CCOLOR].name); |
678 |
|
|
else |
679 |
|
|
col = DEFCOLOR; |
680 |
|
|
if (col-- <= 0) |
681 |
|
|
return(-1); |
682 |
|
|
mline(x, y, lt, lw, col); |
683 |
|
|
return(0); |
684 |
|
|
} |
685 |
|
|
|
686 |
|
|
|
687 |
|
|
csymbol(c, u, v) /* plot curve symbol */ |
688 |
|
|
int c; |
689 |
|
|
double u, v; |
690 |
|
|
{ |
691 |
|
|
int x, y; |
692 |
|
|
|
693 |
|
|
if (period > FTINY) { |
694 |
|
|
pconv(&x, &y, u, v); |
695 |
|
|
cmsymbol(c, x, y); |
696 |
|
|
} else |
697 |
|
|
cmsymbol(c, xconv(u), yconv(v)); |
698 |
|
|
} |
699 |
|
|
|
700 |
|
|
|
701 |
|
|
cmsymbol(c, x, y) /* print curve symbol in meta coords */ |
702 |
|
|
int c; |
703 |
|
|
int x, y; |
704 |
|
|
{ |
705 |
|
|
int col, ss; |
706 |
|
|
register VARIABLE *cv; |
707 |
|
|
|
708 |
|
|
cv = cparam[c]; |
709 |
|
|
if (!(cv[CSYMTYPE].flags & DEFINED)) |
710 |
|
|
return; |
711 |
|
|
if (cv[CSYMSIZE].flags & DEFINED) |
712 |
|
|
ss = varvalue(cv[CSYMSIZE].name); |
713 |
|
|
else |
714 |
|
|
ss = DEFSYMSIZE; |
715 |
|
|
if (ss <= 0) |
716 |
|
|
return; |
717 |
|
|
if (cv[CCOLOR].flags & DEFINED) |
718 |
|
|
col = varvalue(cv[CCOLOR].name); |
719 |
|
|
else |
720 |
|
|
col = DEFCOLOR; |
721 |
|
|
if (col-- <= 0) |
722 |
|
|
return; |
723 |
|
|
msegment(x-ss,y-ss,x+ss,y+ss, |
724 |
|
|
cv[CSYMTYPE].v.s,'r',0,col); |
725 |
|
|
} |
726 |
|
|
|
727 |
|
|
|
728 |
|
|
inbounds(x, y) /* determine if x and y are within gbounds */ |
729 |
|
|
double x, y; |
730 |
|
|
{ |
731 |
|
|
if (x < xbounds.min || x > xbounds.max) |
732 |
|
|
return(0); |
733 |
|
|
if (y < ybounds.min || y > ybounds.max) |
734 |
|
|
return(0); |
735 |
|
|
return(1); |
736 |
|
|
} |