7 |
|
* |
8 |
|
*/ |
9 |
|
|
10 |
< |
#include "sm_qtree.h" |
10 |
> |
#define STR_INDEX(s) (stRoot_indices[(s)]) |
11 |
> |
#define STR_NTH_INDEX(s,n) (stRoot_indices[(s)][(n)]) |
12 |
|
|
13 |
< |
#define SQRT3_INV 0.5773502692 |
13 |
> |
#define ST_NUM_ROOT_NODES 8 |
14 |
|
|
15 |
|
|
16 |
+ |
|
17 |
+ |
/* The base is an octahedron: Each face contains a planar quadtree. At |
18 |
+ |
the root level, the "top" (positive y) four faces, and bottom four faces |
19 |
+ |
are stored together:forming two root quadtree nodes |
20 |
+ |
*/ |
21 |
+ |
|
22 |
|
typedef struct _STREE { |
23 |
< |
QUADTREE root; /* quadtree triangulation of sphere */ |
24 |
< |
FVECT center; /* sphere center */ |
18 |
< |
FVECT base[4]; /* 4 vertices on sphere that define base triangulation |
19 |
< |
of 4 triangles: assume cover sphere and triangles |
20 |
< |
are base verts (0,1,2),(0,2,3),(0,3,1), and (1,3,2) |
21 |
< |
*/ |
23 |
> |
QUADTREE qt[2]; /* root[0]= top four faces, root[1]=bottom 4 faces*/ |
24 |
> |
|
25 |
|
}STREE; |
26 |
|
|
24 |
– |
#define ST_ROOT(s) ((s)->root) |
25 |
– |
#define ST_ROOT_PTR(s) (&(s)->root) |
26 |
– |
#define ST_NTH_ROOT(s,n) QT_NTH_CHILD(ST_ROOT(s),n) |
27 |
– |
#define ST_NTH_ROOT_PTR(s,n) QT_NTH_CHILD_PTR(ST_ROOT(s),n) |
28 |
– |
#define ST_CLEAR_ROOT(s) QT_CLEAR_CHILDREN(ST_ROOT(s)) |
27 |
|
|
28 |
< |
#define ST_CENTER(s) ((s)->center) |
29 |
< |
#define ST_SET_CENTER(s,b) VCOPY(ST_CENTER(s),b) |
30 |
< |
#define ST_BASE(s) ((s)->base) |
31 |
< |
#define ST_NTH_BASE(s,n) ((s)->base[(n)]) |
32 |
< |
#define ST_SET_NTH_BASE(s,n,b) VCOPY(ST_NTH_BASE(s,n),b) |
33 |
< |
#define ST_SET_BASE(s,b) (VCOPY(ST_NTH_BASE(s,0),(b)[0]), \ |
34 |
< |
VCOPY(ST_NTH_BASE(s,1),(b)[1]), \ |
35 |
< |
VCOPY(ST_NTH_BASE(s,2),(b)[2]), \ |
36 |
< |
VCOPY(ST_NTH_BASE(s,3),(b)[3])) |
37 |
< |
#define ST_COORD(s,p,r) VSUB(r,p,ST_CENTER(s)) |
28 |
> |
#define ST_BASEI(n) ((n)>>2) /* root index: top or bottom */ |
29 |
> |
#define ST_INDEX(n) ((n) & 0x3) /* which child in root */ |
30 |
> |
#define ST_QT(s,i) ((s)->qt[ST_BASEI(i)]) /* top or bottom root*/ |
31 |
> |
#define ST_QT_PTR(s,i) (&ST_QT(s,i)) /* ptr to top(0)/bottom(1)root*/ |
32 |
> |
#define ST_TOP_QT(s) ((s)->qt[0]) /* top root (y>0)*/ |
33 |
> |
#define ST_BOTTOM_QT(s) ((s)->qt[1]) /* bottom qt (y <= 0)*/ |
34 |
> |
#define ST_TOP_QT_PTR(s) (&ST_TOP_QT(s)) /* ptr to top qt */ |
35 |
> |
#define ST_BOTTOM_QT_PTR(s) (&ST_BOTTOM_QT(s)) /* ptr to bottom qt*/ |
36 |
> |
|
37 |
> |
#define ST_NTH_V(s,n,w) (stDefault_base[stBase_verts[n][w]]) |
38 |
> |
#define ST_ROOT_QT(s,n) QT_NTH_CHILD(ST_QT(s,n),ST_INDEX(n)) |
39 |
> |
|
40 |
> |
#define ST_CLEAR_QT(st) (ST_TOP_QT(st)=EMPTY,ST_BOTTOM_QT(st)=EMPTY) |
41 |
> |
#define ST_INIT_QT(st) (QT_CLEAR_CHILDREN(ST_TOP_QT(st)), \ |
42 |
> |
QT_CLEAR_CHILDREN(ST_BOTTOM_QT(st))) |
43 |
> |
|
44 |
|
#define ST_CLEAR_FLAGS(s) qtClearAllFlags() |
45 |
+ |
|
46 |
+ |
/* Point location based on coordinate signs */ |
47 |
+ |
#define stLocate_root(p) (((p)[2]>0.0?0:4)|((p)[1]>0.0?0:2)|((p)[0]>0.0?0:1)) |
48 |
+ |
#define stClear(st) stInit(st) |
49 |
+ |
|
50 |
+ |
#define ST_CLIP_VERTS 16 |
51 |
|
/* STREE functions |
52 |
+ |
void stInit(STREE *st,FVECT center) |
53 |
+ |
Initializes an stree structure with origin 'center': |
54 |
+ |
Frees existing quadtrees hanging off of the roots |
55 |
|
|
56 |
+ |
STREE *stAlloc(STREE *st) |
57 |
+ |
Allocates a stree structure and creates octahedron base |
58 |
|
|
59 |
< |
STREE *stInit(STREE *st) |
60 |
< |
Initialize STREE: if st = NULL, allocate a new one, else clear |
61 |
< |
return pointer to initialized structure |
59 |
> |
|
60 |
> |
QUADTREE stPoint_locate(STREE *st,FVECT p) |
61 |
> |
Returns quadtree leaf node containing point 'p'. |
62 |
|
|
63 |
< |
QUADTREE *stPoint_locate(STREE *st,FVECT pt) |
64 |
< |
Find stree node that projection of pt on sphere falls in |
63 |
> |
int stAdd_tri(STREE *st,int id,FVECT t0,t1,t2) |
64 |
> |
Add triangle 'id' with coordinates 't0,t1,t2' to the stree: returns |
65 |
> |
FALSE on error, TRUE otherwise |
66 |
> |
|
67 |
> |
int stRemove_tri(STREE *st,int id,FVECT t0,t1,t2) |
68 |
> |
Removes triangle 'id' with coordinates 't0,t1,t2' from stree: returns |
69 |
> |
FALSE on error, TRUE otherwise |
70 |
> |
|
71 |
> |
int stTrace_ray(STREE *st,FVECT orig,dir,int (*func)(),int *arg1,*arg2) |
72 |
> |
Trace ray 'orig-dir' through stree and apply 'func(arg1,arg2)' at each |
73 |
> |
node that it intersects |
74 |
|
|
75 |
< |
stInsert_tri() |
76 |
< |
for every quadtree tri in the base- find node all leaf nodes that |
77 |
< |
tri overlaps and add tri to set. If this causes any of the nodes |
78 |
< |
to be over threshhold- split |
79 |
< |
stDelete_tri() |
56 |
< |
for every quadtree tri in the base- find node all leaf nodes that |
57 |
< |
tri overlaps. If this causes any of the nodes to be under |
58 |
< |
threshold- merge |
75 |
> |
int stApply_to_tri(STREE *st,FVECT t0,t1,t2,int (*edge_func)(), |
76 |
> |
(*tri_func)(),int arg1,*arg2) |
77 |
> |
Visit nodes intersected by tri 't0,t1,t2'.Apply 'edge_func(arg1,arg2,arg3)', |
78 |
> |
to those nodes intersected by edges, and interior_func to ALL nodes: |
79 |
> |
ie some Nodes will be visited more than once |
80 |
|
*/ |
60 |
– |
extern int stTri_verts[4][3]; |
61 |
– |
extern int stTri_nbrs[4][3]; |
62 |
– |
extern FVECT stDefault_base[4]; |
81 |
|
|
82 |
< |
|
82 |
> |
extern int stBase_verts[8][3]; |
83 |
> |
extern FVECT stDefault_base[6]; |
84 |
|
extern STREE *stAlloc(); |
85 |
< |
extern QUADTREE *stPoint_locate_cell(); |
67 |
< |
|
85 |
> |
extern QUADTREE stPoint_locate(); |
86 |
|
|
87 |
|
|
88 |
|
|