ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/hd/sm_stree.c
(Generate patch)

Comparing ray/src/hd/sm_stree.c (file contents):
Revision 3.5 by gwlarson, Wed Sep 16 18:16:29 1998 UTC vs.
Revision 3.7 by gwlarson, Wed Nov 11 12:05:41 1998 UTC

# Line 6 | Line 6 | static char SCCSid[] = "$SunId$ SGI";
6  
7   /*
8   * sm_stree.c
9 + *  An stree (spherical quadtree) is defined by an octahedron in
10 + *  canonical form,and a world center point. Each face of the
11 + *  octahedron is adaptively subdivided as a planar triangular quadtree.
12 + *  World space geometry is projected onto the quadtree faces from the
13 + *  sphere center.
14   */
15   #include "standard.h"
16 + #include "sm_flag.h"
17   #include "sm_geom.h"
18 + #include "sm_qtree.h"
19   #include "sm_stree.h"
20  
14 /* Define 4 vertices on the sphere to create a tetrahedralization on
15   the sphere: triangles are as follows:
16        (2,1,0),(3,2,0), (1,3,0), (2,3,1)
17 */
18
21   #ifdef TEST_DRIVER
22   extern FVECT Pick_point[500],Pick_v0[500],Pick_v1[500],Pick_v2[500];
23   extern int Pick_cnt;
24   #endif
25 < FVECT stDefault_base[4] = { {SQRT3_INV, SQRT3_INV, SQRT3_INV},
26 <                          {-SQRT3_INV, -SQRT3_INV, SQRT3_INV},
27 <                          {-SQRT3_INV, SQRT3_INV, -SQRT3_INV},
28 <                          {SQRT3_INV, -SQRT3_INV, -SQRT3_INV}};
29 < int stTri_verts[4][3] = { {2,1,0},{3,2,0},{1,3,0},{2,3,1}};
30 < int stTri_nbrs[4][3] =  { {2,1,3},{0,2,3},{1,0,3},{2,0,1}};
25 > /* octahedron coordinates */
26 > FVECT stDefault_base[6] = {  {1.,0.,0.},{0.,1.,0.}, {0.,0.,1.},
27 >                            {-1.,0.,0.},{0.,-1.,0.},{0.,0.,-1.}};
28 > /* octahedron triangle vertices */
29 > int stBase_verts[8][3] = { {2,1,0},{1,5,0},{5,1,3},{1,2,3},
30 >                          {4,2,0},{4,0,5},{3,4,5},{4,3,2}};
31 > /* octahedron triangle nbrs ; nbr i is the face opposite vertex i*/
32 > int stBase_nbrs[8][3] =  { {1,4,3},{5,0,2},{3,6,1},{7,2,0},
33 >                          {0,5,7},{1,6,4},{5,2,7},{3,4,6}};
34 > /* look up table for octahedron point location */
35 > int stlocatetbl[8] = {6,7,2,3,5,4,1,0};
36  
37 < stNth_base_verts(st,i,v1,v2,v3)
37 >
38 > /* Initializes an stree structure with origin 'center':
39 >   Frees existing quadtrees hanging off of the roots
40 > */
41 > stInit(st)
42   STREE *st;
32 int i;
33 FVECT v1,v2,v3;
43   {
44 <  VCOPY(v1,ST_NTH_BASE(st,stTri_verts[i][0]));
45 <  VCOPY(v2,ST_NTH_BASE(st,stTri_verts[i][1]));
46 <  VCOPY(v3,ST_NTH_BASE(st,stTri_verts[i][2]));
44 >    ST_TOP_ROOT(st) = qtAlloc();
45 >    ST_BOTTOM_ROOT(st) = qtAlloc();
46 >    ST_INIT_ROOT(st);
47   }
48  
49 < /* Frees the 4 quadtrees rooted at st */
49 > /* Frees the children of the 2 quadtrees rooted at st,
50 >   Does not free root nodes: just clears
51 > */
52   stClear(st)
53 < STREE *st;
53 >   STREE *st;
54   {
55 <  int i;
56 <
46 <  /* stree always has 4 children corresponding to the base tris
47 <  */
48 <  for (i = 0; i < 4; i++)
49 <    qtFree(ST_NTH_ROOT(st, i));
50 <
51 <  QT_CLEAR_CHILDREN(ST_ROOT(st));
52 <
55 >    qtDone();
56 >    stInit(st);
57   }
58  
59 <
59 > /* Allocates a stree structure  and creates octahedron base */
60   STREE
57 *stInit(st,center,base)
58 STREE *st;
59 FVECT  center,base[4];
60 {
61
62  if(base)
63    ST_SET_BASE(st,base);
64  else
65    ST_SET_BASE(st,stDefault_base);
66
67  ST_SET_CENTER(st,center);
68  stClear(st);
69
70  return(st);
71 }
72
73
74 /* "base" defines 4 vertices on the sphere to create a tetrahedralization on
75     the sphere: triangles are as follows:(0,1,2),(0,2,3), (0,3,1), (1,3,2)
76     if base is null: does default.
77
78 */
79 STREE
61   *stAlloc(st)
62   STREE *st;
63   {
64 <  int i;
65 <
64 >  int i,m;
65 >  FVECT v0,v1,v2;
66 >  FVECT n;
67 >  
68    if(!st)
69 <    st = (STREE *)malloc(sizeof(STREE));
69 >    if(!(st = (STREE *)malloc(sizeof(STREE))))
70 >       error(SYSTEM,"stAlloc(): Unable to allocate memory\n");
71  
72 <  ST_ROOT(st) = qtAlloc();
73 <    
74 <  QT_CLEAR_CHILDREN(ST_ROOT(st));
72 >  /* Allocate the top and bottom quadtree root nodes */
73 >  stInit(st);
74 >  
75 >  /* Set the octahedron base */
76 >  ST_SET_BASE(st,stDefault_base);
77  
78 +  /* Calculate octahedron face and edge normals */
79 +  for(i=0; i < ST_NUM_ROOT_NODES; i++)
80 +  {
81 +      VCOPY(v0,ST_NTH_V(st,i,0));
82 +      VCOPY(v1,ST_NTH_V(st,i,1));
83 +      VCOPY(v2,ST_NTH_V(st,i,2));
84 +      tri_plane_equation(v0,v1,v2, &ST_NTH_PLANE(st,i),FALSE);
85 +      m = max_index(FP_N(ST_NTH_PLANE(st,i)),NULL);
86 +      FP_X(ST_NTH_PLANE(st,i)) = (m+1)%3;
87 +      FP_Y(ST_NTH_PLANE(st,i)) = (m+2)%3;
88 +      FP_Z(ST_NTH_PLANE(st,i)) = m;
89 +      VCROSS(ST_EDGE_NORM(st,i,0),v0,v1);
90 +      VCROSS(ST_EDGE_NORM(st,i,1),v1,v2);
91 +      VCROSS(ST_EDGE_NORM(st,i,2),v2,v0);
92 +  }
93    return(st);
94   }
95  
96  
97 < /* Find location of sample point in the DAG and return lowest level
97 <   containing triangle. "type" indicates whether the point was found
98 <   to be in interior to the triangle: GT_FACE, on one of its
99 <   edges GT_EDGE or coinciding with one of its vertices GT_VERTEX.
100 <   "which" specifies which vertex (0,1,2) or edge (0=v0v1, 1 = v1v2, 2 = v21)
101 < */
102 < int
103 < stPoint_locate(st,npt)
104 <    STREE *st;
105 <    FVECT npt;
106 < {
107 <    int i,d,j,id;
108 <    QUADTREE *rootptr,*qtptr;
109 <    FVECT v1,v2,v3;
110 <    OBJECT os[QT_MAXSET+1],*optr;
111 <    FVECT p0,p1,p2;
112 <
113 <    /* Test each of the root triangles against point id */
114 <    for(i=0; i < 4; i++)
115 <     {
116 <         rootptr = ST_NTH_ROOT_PTR(st,i);
117 <         stNth_base_verts(st,i,v1,v2,v3);
118 <         /* Return tri that p falls in */
119 <         qtptr = qtRoot_point_locate(rootptr,v1,v2,v3,npt,NULL,NULL,NULL);
120 <         if(!qtptr || QT_IS_EMPTY(*qtptr))
121 <            continue;
122 <         /* Get the set */
123 <         optr = qtqueryset(*qtptr);
124 <         for (j = QT_SET_CNT(optr),optr = QT_SET_PTR(optr);j > 0; j--)
125 <         {
126 <             /* Find the first triangle that pt falls */
127 <             id = QT_SET_NEXT_ELEM(optr);
128 <             qtTri_from_id(id,p0,p1,p2,NULL,NULL,NULL,NULL,NULL,NULL);
129 <             d = point_in_stri(p0,p1,p2,npt);  
130 <             if(d)
131 <               return(id);
132 <         }
133 <     }
134 <    return(EMPTY);
135 < }
136 <
97 > /* Return quadtree leaf node containing point 'p'*/
98   QUADTREE
99 < *stPoint_locate_cell(st,p,t0,t1,t2)
99 > stPoint_locate(st,p)
100      STREE *st;
101      FVECT p;
141    FVECT t0,t1,t2;
102   {
103 <    int i,d;
104 <    QUADTREE *rootptr,*qtptr;
145 <    FVECT v0,v1,v2;
103 >    int i;
104 >    QUADTREE root,qt;
105  
106 +    /* Find root quadtree that contains p */
107 +    i = stPoint_in_root(p);
108 +    root = ST_NTH_ROOT(st,i);
109      
110 <    /* Test each of the root triangles against point id */
111 <    for(i=0; i < 4; i++)
112 <     {
113 <         rootptr = ST_NTH_ROOT_PTR(st,i);
152 <         stNth_base_verts(st,i,v0,v1,v2);
153 <         /* Return quadtree tri that p falls in */
154 <         qtptr = qtRoot_point_locate(rootptr,v0,v1,v2,p,t0,t1,t2);
155 <         if(qtptr)
156 <            return(qtptr);
157 <     }    /* Point not found */
158 <    return(NULL);
110 >    /* Traverse quadtree to leaf level */
111 >    qt = qtRoot_point_locate(root,ST_NTH_V(st,i,0),ST_NTH_V(st,i,1),
112 >                        ST_NTH_V(st,i,2),ST_NTH_PLANE(st,i),p);
113 >    return(qt);
114   }
115  
116 + /* Add triangle 'id' with coordinates 't0,t1,t2' to the stree: returns
117 +   FALSE on error, TRUE otherwise
118 + */
119  
120 < int
163 < stAdd_tri(st,id,v0,v1,v2)
120 > stAdd_tri(st,id,t0,t1,t2)
121   STREE *st;
122   int id;
123 < FVECT v0,v1,v2;
123 > FVECT t0,t1,t2;
124   {
125 <  
126 <  int i,found;
170 <  QUADTREE *rootptr;
171 <  FVECT t0,t1,t2;
125 >  int i;
126 >  QUADTREE root;
127  
128 <  found = 0;
174 <  for(i=0; i < 4; i++)
128 >  for(i=0; i < ST_NUM_ROOT_NODES; i++)
129    {
130 <    rootptr = ST_NTH_ROOT_PTR(st,i);
131 <    stNth_base_verts(st,i,t0,t1,t2);
132 <    found |= qtRoot_add_tri(rootptr,t0,t1,t2,v0,v1,v2,id,0);
130 >    root = ST_NTH_ROOT(st,i);
131 >    ST_NTH_ROOT(st,i) = qtRoot_add_tri(root,ST_NTH_V(st,i,0),ST_NTH_V(st,i,1),
132 >                            ST_NTH_V(st,i,2),t0,t1,t2,id,0);
133    }
180  return(found);
134   }
135  
136 < int
137 < stApply_to_tri_cells(st,v0,v1,v2,func,arg)
138 < STREE *st;
186 < FVECT v0,v1,v2;
187 < int (*func)();
188 < int *arg;
189 < {
190 <  int i,found;
191 <  QUADTREE *rootptr;
192 <  FVECT t0,t1,t2;
136 > /* Remove triangle 'id' with coordinates 't0,t1,t2' to the stree: returns
137 >   FALSE on error, TRUE otherwise
138 > */
139  
140 <  found = 0;
195 <  func(ST_ROOT_PTR(st),arg);
196 <  QT_SET_FLAG(ST_ROOT(st));
197 <  for(i=0; i < 4; i++)
198 <  {
199 <    rootptr = ST_NTH_ROOT_PTR(st,i);
200 <    stNth_base_verts(st,i,t0,t1,t2);
201 <    found |= qtApply_to_tri_cells(rootptr,v0,v1,v2,t0,t1,t2,func,arg);
202 <  }
203 <  return(found);
204 < }
205 <
206 <
207 <
208 <
209 < int
210 < stRemove_tri(st,id,v0,v1,v2)
140 > stRemove_tri(st,id,t0,t1,t2)
141   STREE *st;
142   int id;
143 < FVECT v0,v1,v2;
143 > FVECT t0,t1,t2;
144   {
145 <  
146 <  int i,found;
217 <  QUADTREE *rootptr;
218 <  FVECT t0,t1,t2;
145 >  int i;
146 >  QUADTREE root;
147  
148 <  found = 0;
221 <  for(i=0; i < 4; i++)
148 >  for(i=0; i < ST_NUM_ROOT_NODES; i++)
149    {
150 <    rootptr = ST_NTH_ROOT_PTR(st,i);
151 <    stNth_base_verts(st,i,t0,t1,t2);
152 <   found |= qtRemove_tri(rootptr,id,v0,v1,v2,t0,t1,t2);
150 >    root = ST_NTH_ROOT(st,i);
151 >    ST_NTH_ROOT(st,i)=qtRoot_remove_tri(root,id,ST_NTH_V(st,i,0),ST_NTH_V(st,i,1),
152 >                          ST_NTH_V(st,i,2),t0,t1,t2);
153    }
227  return(found);
154   }
155  
156 < int
157 < stVisit_tri_edges(st,t0,t1,t2,func,arg1,arg2,arg3)
156 > /* Visit all nodes that are intersected by the edges of triangle 't0,t1,t2'
157 >   and apply 'func'
158 > */
159 >
160 > stVisit_tri_edges(st,t0,t1,t2,func,fptr,argptr)
161     STREE *st;
162     FVECT t0,t1,t2;
163 <   int (*func)();
164 <   int *arg1,arg2,*arg3;
163 >   int (*func)(),*fptr;
164 >   int *argptr;
165   {
166 <    int id,i,w;
167 <    QUADTREE *rootptr;
168 <    FVECT q0,q1,q2,v[3],i_pt;
166 >    int id,i,w,next;
167 >    QUADTREE root;
168 >    FVECT v[3],i_pt;
169  
170      VCOPY(v[0],t0); VCOPY(v[1],t1); VCOPY(v[2],t2);
171      w = -1;
172 <    QT_SET_FLAG(ST_ROOT(st));
173 <    for(i=0; i < 4; i++)
174 <     {
175 < #ifdef TEST_DRIVER
176 < Pick_cnt = 0;
177 < #endif
178 <         rootptr = ST_NTH_ROOT_PTR(st,i);
179 <         stNth_base_verts(st,i,q0,q1,q2);
180 <         /* Return quadtree tri that p falls in */
181 <         if(!point_in_stri(q0,q1,q2,v[0]))  
182 <           continue;
183 < #ifdef TEST_DRIVER
255 <         id = qtRoot_visit_tri_edges(rootptr,q0,q1,q2,v,i_pt,&w,
256 <                                      func,arg1,arg2,arg3);
257 < #else
258 <         id = qtRoot_visit_tri_edgesi(rootptr,q0,q1,q2,v,i_pt,&w,
259 <                                      func,arg1,arg2,arg3);
260 < #endif
261 <         if(id == INVALID)
262 <         {
263 < #ifdef DEBUG
264 <           eputs("stVisit_tri_edges(): Unable to trace edges\n");
265 < #endif
266 <           return(INVALID);
267 <         }
268 <         if(id == QT_DONE)
269 <            return(*arg1);
172 >
173 >    /* Locate the root containing triangle vertex v0 */
174 >    i = stPoint_in_root(v[0]);
175 >    /* Mark the root node as visited */
176 >    QT_SET_FLAG(ST_ROOT(st,i));
177 >    root = ST_NTH_ROOT(st,i);
178 >    
179 >    ST_NTH_ROOT(st,i) = qtRoot_visit_tri_edges(root,ST_NTH_V(st,i,0),
180 >       ST_NTH_V(st,i,1),ST_NTH_V(st,i,2),ST_NTH_PLANE(st,i),v,i_pt,&w,
181 >                                               &next,func,fptr,argptr);
182 >    if(QT_FLAG_IS_DONE(*fptr))
183 >      return;
184          
185 <         /* Crossed over to next cell: id = nbr */
186 <         while(1)
187 <         {
188 <             /* test if ray crosses plane between this quadtree triangle and
189 <                its neighbor- if it does then find intersection point with
190 <                ray and plane- this is the new origin
191 <                */
192 <           i = stTri_nbrs[i][id];
193 <           rootptr = ST_NTH_ROOT_PTR(st,i);
194 <           stNth_base_verts(st,i,q0,q1,q2);
195 < #ifdef TEST_DRIVER
196 <           id=qtRoot_visit_tri_edges(rootptr,q0,q1,q2,v,i_pt,&w,
197 <                                      func,arg1,arg2,arg3);
198 < #else
199 <           id=qtRoot_visit_tri_edgesi(rootptr,q0,q1,q2,v,i_pt,&w,
286 <                                      func,arg1,arg2,arg3);
287 < #endif
288 <           if(id == QT_DONE)
289 <             return(*arg1);
290 <           if(id == INVALID)
291 <             {
292 < #ifdef DEBUG
293 <             eputs("stVisit_tri_edges(): point not found\n");
294 < #endif  
295 <             return(INVALID);
296 <             }
297 <          
298 <         }
299 <     }    /* Point not found */
300 <    return(INVALID);
185 >    /* Crossed over to next node: id = nbr */
186 >    while(1)
187 >    {
188 >        /* test if ray crosses plane between this quadtree triangle and
189 >           its neighbor- if it does then find intersection point with
190 >           ray and plane- this is the new start point
191 >           */
192 >        i = stBase_nbrs[i][next];
193 >        root = ST_NTH_ROOT(st,i);
194 >        ST_NTH_ROOT(st,i) =
195 >          qtRoot_visit_tri_edges(root,ST_NTH_V(st,i,0),ST_NTH_V(st,i,1),
196 >         ST_NTH_V(st,i,2),ST_NTH_PLANE(st,i),v,i_pt,&w,&next,func,fptr,argptr);
197 >        if(QT_FLAG_IS_DONE(*fptr))
198 >          return;
199 >    }
200   }
201  
202 + /* Trace ray 'orig-dir' through stree and apply 'func(qtptr,f,argptr)' at each
203 +   node that it intersects
204 + */
205   int
206 < stTrace_ray(st,orig,dir,func,arg1,arg2)
206 > stTrace_ray(st,orig,dir,func,argptr)
207     STREE *st;
208     FVECT orig,dir;
209     int (*func)();
210 <   int *arg1,arg2;
210 >   int *argptr;
211   {
212 <    int id,i;
213 <    QUADTREE *rootptr;
214 <    FVECT q0,q1,q2,o,n;
215 <    double pd,t;
212 >    int next,last,i,f=0;
213 >    QUADTREE root;
214 >    FVECT o,n,v;
215 >    double pd,t,d;
216  
217      VCOPY(o,orig);
218 <    for(i=0; i < 4; i++)
219 <     {
220 < #ifdef TEST_DRIVER
221 < Pick_cnt = 0;
222 < #endif
223 <         rootptr = ST_NTH_ROOT_PTR(st,i);
224 <         stNth_base_verts(st,i,q0,q1,q2);
225 <         /* Return quadtree tri that p falls in */
226 <         id= qtRoot_trace_ray(rootptr,q0,q1,q2,o,dir,func,arg1,arg2);
227 <         if(id == INVALID)
326 <           continue;
327 <         if(id == QT_DONE)
328 <            return(*arg1);
329 <        
330 <         /* Crossed over to next cell: id = nbr */
331 <         while(1)
332 <         {
333 <             /* test if ray crosses plane between this quadtree triangle and
334 <                its neighbor- if it does then find intersection point with
335 <                ray and plane- this is the new origin
336 <                */
337 <           if(id==0)
338 <             VCROSS(n,q1,q2);
339 <           else
340 <             if(id==1)
341 <               VCROSS(n,q2,q0);
342 <           else
343 <             VCROSS(n,q0,q1);
218 > #ifdef TEST_DRIVER
219 >       Pick_cnt=0;
220 > #endif;
221 >    /* Find the root node that o falls in */
222 >    i = stPoint_in_root(o);
223 >    root = ST_NTH_ROOT(st,i);
224 >    
225 >    ST_NTH_ROOT(st,i) =
226 >      qtRoot_trace_ray(root,ST_NTH_V(st,i,0),ST_NTH_V(st,i,1),
227 >          ST_NTH_V(st,i,2),ST_NTH_PLANE(st,i),o,dir,&next,func,&f,argptr);
228  
229 +    if(QT_FLAG_IS_DONE(f))
230 +      return(TRUE);
231 +    
232 +    d = DOT(orig,dir)/sqrt(DOT(orig,orig));
233 +    VSUM(v,orig,dir,-d);
234 +    /* Crossed over to next cell: id = nbr */
235 +    while(1)
236 +      {
237 +        /* test if ray crosses plane between this quadtree triangle and
238 +           its neighbor- if it does then find intersection point with
239 +           ray and plane- this is the new origin
240 +           */
241 +        if(next == INVALID)
242 +          return(FALSE);
243 + #if 0
244 +        if(!intersect_ray_oplane(o,dir,ST_EDGE_NORM(st,i,(next+1)%3),NULL,o))
245 + #endif
246 +           if(DOT(o,v) < 0.0)
247             /* Ray does not cross into next cell: done and tri not found*/
248 <           if(!intersect_ray_plane(orig,dir,n,0.0,NULL,o))
347 <             return(INVALID);
248 >           return(FALSE);
249  
250 <           VSUM(o,o,dir,10*FTINY);
251 <           i = stTri_nbrs[i][id];
252 <           rootptr = ST_NTH_ROOT_PTR(st,i);
253 <           stNth_base_verts(st,i,q0,q1,q2);
254 <           id = qtRoot_trace_ray(rootptr,q0,q1,q2,o,dir,func,arg1,arg2);
255 <           if(id == QT_DONE)
256 <             return(*arg1);
257 <           if(id == INVALID)
258 <             return(INVALID);
259 <          
359 <         }
360 <     }    /* Point not found */
361 <    return(INVALID);
250 >        VSUM(o,o,dir,10*FTINY);
251 >        i = stBase_nbrs[i][next];
252 >        root = ST_NTH_ROOT(st,i);
253 >        
254 >        ST_NTH_ROOT(st,i) =
255 >          qtRoot_trace_ray(root, ST_NTH_V(st,i,0),ST_NTH_V(st,i,1),
256 >               ST_NTH_V(st,i,2),ST_NTH_PLANE(st,i),o,dir,&next,func,&f,argptr);
257 >        if(QT_FLAG_IS_DONE(f))
258 >          return(TRUE);
259 >      }
260   }
261  
262  
263 <
264 < stVisit_tri_interior(st,t0,t1,t2,func,arg1,arg2,arg3)
263 > /* Visit nodes intersected by tri 't0,t1,t2' and apply 'func(arg1,arg2,arg3):
264 >   assumes that stVisit_tri_edges has already been called such that all nodes
265 >   intersected by tri edges are already marked as visited
266 > */
267 > stVisit_tri(st,t0,t1,t2,func,f,argptr)
268     STREE *st;
269     FVECT t0,t1,t2;
270 <   int (*func)();
271 <   int *arg1,arg2,*arg3;
270 >   int (*func)(),*f;
271 >   int *argptr;
272   {
273    int i;
274 <  QUADTREE *rootptr;
275 <  FVECT q0,q1,q2;
274 >  QUADTREE root;
275 >  FVECT n0,n1,n2;
276  
277 <  for(i=0; i < 4; i++)
277 >  /* Calcuate the edge normals for tri */
278 >  VCROSS(n0,t0,t1);
279 >  VCROSS(n1,t1,t2);
280 >  VCROSS(n2,t2,t0);
281 >
282 >  for(i=0; i < ST_NUM_ROOT_NODES; i++)
283    {
284 <    rootptr = ST_NTH_ROOT_PTR(st,i);
285 <    stNth_base_verts(st,i,q0,q1,q2);
286 <    qtVisit_tri_interior(rootptr,q0,q1,q2,t0,t1,t2,0,func,arg1,arg2,arg3);
284 >    root = ST_NTH_ROOT(st,i);
285 >    ST_NTH_ROOT(st,i) = qtVisit_tri_interior(root,ST_NTH_V(st,i,0),
286 >        ST_NTH_V(st,i,1),ST_NTH_V(st,i,2),t0,t1,t2,n0,n1,n2,0,func,f,argptr);
287 >
288    }
289   }
290  
291 <
291 > /* Visit nodes intersected by tri 't0,t1,t2'.Apply 'edge_func(arg1,arg2,arg3)',
292 >   to those nodes intersected by edges, and interior_func to ALL nodes:
293 >   ie some Nodes  will be visited more than once
294 > */
295   int
296 < stApply_to_tri(st,t0,t1,t2,edge_func,interior_func,arg1,arg2)
296 > stApply_to_tri(st,t0,t1,t2,edge_func,tri_func,argptr)
297     STREE *st;
298     FVECT t0,t1,t2;
299 <   int (*edge_func)(),(*interior_func)();
300 <   int arg1,*arg2;
299 >   int (*edge_func)(),(*tri_func)();
300 >   int *argptr;
301   {
302      int f;
303      FVECT dir;
304 <    
304 >
305 > #ifdef TEST_DRIVER
306 >    Pick_cnt=0;
307 > #endif;
308    /* First add all of the leaf cells lying on the triangle perimeter:
309       mark all cells seen on the way
310     */
311      f = 0;
312      /* Visit cells along edges of the tri */
313 +    stVisit_tri_edges(st,t0,t1,t2,edge_func,&f,argptr);
314  
315 <    stVisit_tri_edges(st,t0,t1,t2,edge_func,&f,arg1,arg2);
402 <
403 <    /* Now visit interior */
315 >    /* Now visit All cells interior */
316      if(QT_FLAG_FILL_TRI(f) || QT_FLAG_UPDATE(f))
317 <       stVisit_tri_interior(st,t0,t1,t2,interior_func,&f,arg1,arg2);
317 >       stVisit_tri(st,t0,t1,t2,tri_func,&f,argptr);
318   }
319 +
320 +
321 +
322 +
323 +
324 +
325 +
326 +
327  
328  
329  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines