ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/radiance/ray/src/hd/sm_stree.c
(Generate patch)

Comparing ray/src/hd/sm_stree.c (file contents):
Revision 3.1 by gwlarson, Wed Aug 19 17:45:24 1998 UTC vs.
Revision 3.13 by greg, Sat Feb 22 02:07:25 2003 UTC

# Line 1 | Line 1
1 /* Copyright (c) 1998 Silicon Graphics, Inc. */
2
1   #ifndef lint
2 < static char SCCSid[] = "$SunId$ SGI";
2 > static const char       RCSid[] = "$Id$";
3   #endif
6
4   /*
5   * sm_stree.c
6 + *  An stree (spherical quadtree) is defined by an octahedron in
7 + *  canonical form,and a world center point. Each face of the
8 + *  octahedron is adaptively subdivided as a planar triangular quadtree.
9 + *  World space geometry is projected onto the quadtree faces from the
10 + *  sphere center.
11   */
12   #include "standard.h"
13 < #include "object.h"
14 <
13 > #include "sm_list.h"
14 > #include "sm_flag.h"
15   #include "sm_geom.h"
16 + #include "object.h"
17 + #include "sm_qtree.h"
18   #include "sm_stree.h"
19  
20  
21 < /* Define 4 vertices on the sphere to create a tetrahedralization on
22 <   the sphere: triangles are as follows:
23 <        (0,1,2),(0,2,3), (0,3,1), (1,3,2)
21 > #ifdef TEST_DRIVER
22 > extern FVECT Pick_point[500],Pick_v0[500],Pick_v1[500],Pick_v2[500];
23 > extern int Pick_cnt;
24 > #endif
25 > /* octahedron coordinates */
26 > FVECT stDefault_base[6] = {  {1.,0.,0.},{0.,1.,0.}, {0.,0.,1.},
27 >                            {-1.,0.,0.},{0.,-1.,0.},{0.,0.,-1.}};
28 > /* octahedron triangle vertices */
29 > int stBase_verts[8][3] = { {0,1,2},{3,1,2},{0,4,2},{3,4,2},
30 >                           {0,1,5},{3,1,5},{0,4,5},{3,4,5}};
31 > /* octahedron triangle nbrs ; nbr i is the face opposite vertex i*/
32 > int stBase_nbrs[8][3] =  { {1,2,4},{0,3,5},{3,0,6},{2,1,7},
33 >                           {5,6,0},{4,7,1},{7,4,2},{6,5,3}};
34 > int stRoot_indices[8][3] = {{1,1,1},{-1,1,1},{1,-1,1},{-1,-1,1},
35 >                            {1,1,-1},{-1,1,-1},{1,-1,-1},{-1,-1,-1}};
36 > /*
37 > +z   y                -z   y
38 >      |                     |
39 > 1    |   0             5   |   4
40 > ______|______ x      _______|______ x
41 > 3    |   2             7   |   6  
42 >      |                     |
43 >
44 > Nbrs
45 >  +z   y                -z   y
46 >     /0|1\                 /1|0\
47 > 5  /  |  \ 4             /  |  \
48 >   /(1)|(0)\           1 /(5)|(4)\ 0
49 >  /    |    \           /    |    \
50 > /2   1|0   2\         /2   0|1   2\
51 > /------|------\x      /------|------\x
52 > \0    1|2    0/       \0    2|2    1/
53 > \     |     /         \     |     /
54 > 7\ (3)|(2) / 6       3 \ (7)|(6) / 2
55 >   \   |   /             \   |   /
56 >    \ 2|1 /               \ 1|0 /
57   */
58  
22 FVECT stDefault_base[4] = { {SQRT3_INV, SQRT3_INV, SQRT3_INV},
23                          {-SQRT3_INV, -SQRT3_INV, SQRT3_INV},
24                          {-SQRT3_INV, SQRT3_INV, -SQRT3_INV},
25                          {SQRT3_INV, -SQRT3_INV, -SQRT3_INV}};
26 int stTri_verts[4][3] = { {2,1,0},
27                          {3,2,0},
28                          {1,3,0},
29                          {2,3,1}};
59  
60 < stNth_base_verts(st,i,v1,v2,v3)
60 > stInit(st)
61   STREE *st;
33 int i;
34 FVECT v1,v2,v3;
62   {
63 <  VCOPY(v1,ST_NTH_BASE(st,stTri_verts[i][0]));
64 <  VCOPY(v2,ST_NTH_BASE(st,stTri_verts[i][1]));
65 <  VCOPY(v3,ST_NTH_BASE(st,stTri_verts[i][2]));
63 >  int i,j;
64 >
65 >  qtDone();
66 >
67 >  ST_TOP_QT(st) = qtAlloc();
68 >  ST_BOTTOM_QT(st) = qtAlloc();
69 >  /* Clear the children */
70 >
71 >   QT_CLEAR_CHILDREN(ST_TOP_QT(st));
72 >   QT_CLEAR_CHILDREN(ST_BOTTOM_QT(st));
73   }
74  
75 < /* Frees the 4 quadtrees rooted at st */
42 < stClear(st)
75 > stFree(st)
76   STREE *st;
77   {
78 <  int i;
78 >  qtDone();
79 >  free(st);
80 > }
81  
82 <  /* stree always has 4 children corresponding to the base tris
83 <  */
84 <  for (i = 0; i < 4; i++)
85 <    qtFree(ST_NTH_ROOT(st, i));
82 > /* Allocates a stree structure  and creates octahedron base */
83 > STREE
84 > *stAlloc(st)
85 > STREE *st;
86 > {
87 >  int i,m;
88 >  FVECT v0,v1,v2;
89 >  FVECT n;
90 >  
91 >  if(!st)
92 >    if(!(st = (STREE *)malloc(sizeof(STREE))))
93 >       error(SYSTEM,"stAlloc(): Unable to allocate memory\n");
94  
95 <  QT_CLEAR_CHILDREN(ST_ROOT(st));
96 <
95 >  /* Allocate the top and bottom quadtree root nodes */
96 >  stInit(st);
97 >  
98 >  return(st);
99   }
100  
101 + #define BARY_INT(v,b)  if((v)>2.0) (b) = MAXBCOORD;else \
102 +  if((v)<-2.0) (b)=-MAXBCOORD;else (b)=(BCOORD)((v)*MAXBCOORD2);
103  
104 < STREE
105 < *stInit(st,center,base)
106 < STREE *st;
107 < FVECT  center,base[4];
104 > vert_to_qt_frame(root,v,b)
105 > int root;
106 > FVECT v;
107 > BCOORD b[3];
108   {
109 +  int i;
110 +  double scale;
111 +  double d0,d1,d2;
112  
113 <  if(base)
114 <    ST_SET_BASE(st,base);
113 >  if(STR_NTH_INDEX(root,0)==-1)
114 >    d0 = -v[0];
115    else
116 <    ST_SET_BASE(st,stDefault_base);
116 >    d0 = v[0];
117 >  if(STR_NTH_INDEX(root,1)==-1)
118 >    d1 = -v[1];
119 >  else
120 >    d1 = v[1];
121 >  if(STR_NTH_INDEX(root,2)==-1)
122 >    d2 = -v[2];
123 >  else
124 >    d2 = v[2];
125  
126 <  ST_SET_CENTER(st,center);
127 <  stClear(st);
126 >  /* Plane is now x+y+z = 1 - intersection of pt ray is qtv/den */
127 >  scale = 1.0/ (d0 + d1 + d2);
128 >  d0 *= scale;
129 >  d1 *= scale;
130 >  d2 *= scale;
131  
132 <  return(st);
132 >  BARY_INT(d0,b[0])
133 >  BARY_INT(d1,b[1])
134 >  BARY_INT(d2,b[2])
135   }
136  
137  
75 /* "base" defines 4 vertices on the sphere to create a tetrahedralization on
76     the sphere: triangles are as follows:(0,1,2),(0,2,3), (0,3,1), (1,3,2)
77     if base is null: does default.
138  
139 < */
140 < STREE
141 < *stAlloc(st)
142 < STREE *st;
139 >
140 > ray_to_qt_frame(root,v,dir,b,db)
141 > int root;
142 > FVECT v,dir;
143 > BCOORD b[3],db[3];
144   {
145    int i;
146 +  double scale;
147 +  double d0,d1,d2;
148 +  double dir0,dir1,dir2;
149  
150 <  if(!st)
151 <    st = (STREE *)malloc(sizeof(STREE));
150 >  if(STR_NTH_INDEX(root,0)==-1)
151 >  {
152 >    d0 = -v[0];
153 >    dir0 = -dir[0];
154 >  }
155 >  else
156 >  {
157 >    d0 = v[0];
158 >    dir0 = dir[0];
159 >  }
160 >  if(STR_NTH_INDEX(root,1)==-1)
161 >  {
162 >    d1 = -v[1];
163 >    dir1 = -dir[1];
164 >  }
165 >  else
166 >  {
167 >    d1 = v[1];
168 >    dir1 = dir[1];
169 >  }
170 >  if(STR_NTH_INDEX(root,2)==-1)
171 >  {
172 >    d2 = -v[2];
173 >    dir2 = -dir[2];
174 >  }
175 >  else
176 >  {
177 >    d2 = v[2];
178 >    dir2 = dir[2];
179 >  }
180 >  /* Plane is now x+y+z = 1 - intersection of pt ray is qtv/den */
181 >  scale = 1.0/ (d0 + d1 + d2);
182 >  d0 *= scale;
183 >  d1 *= scale;
184 >  d2 *= scale;
185  
186 <  ST_ROOT(st) = qtAlloc();
187 <    
188 <  QT_CLEAR_CHILDREN(ST_ROOT(st));
186 >  /* Calculate intersection point of orig+dir: This calculation is done
187 >     after the origin is projected into the plane in order to constrain
188 >     the projection( i.e. the size of the projection of the unit direction
189 >     vector translated to the origin depends on how close
190 >     the origin is to the view center
191 >     */
192 >  /* Must divide by at least root2 to insure that projection will fit
193 >     int [-2,2] bounds: assumed length is 1: therefore greatest projection
194 >     from endpoint of triangle is at 45 degrees or projected length of root2
195 >  */
196 >  dir0 = d0 + dir0*0.5;
197 >  dir1 = d1 + dir1*0.5;
198 >  dir2 = d2 + dir2*0.5;
199  
200 <  return(st);
200 >  scale = 1.0/ (dir0 + dir1 + dir2);
201 >  dir0 *= scale;
202 >  dir1 *= scale;
203 >  dir2 *= scale;
204 >
205 >  BARY_INT(d0,b[0])
206 >  BARY_INT(d1,b[1])
207 >  BARY_INT(d2,b[2])
208 >  BARY_INT(dir0,db[0])
209 >  BARY_INT(dir1,db[1])
210 >  BARY_INT(dir2,db[2])
211 >
212 >  db[0]  -= b[0];
213 >  db[1]  -= b[1];
214 >  db[2]  -= b[2];
215   }
216  
217 + qt_frame_to_vert(root,b,v)
218 + int root;
219 + BCOORD b[3];
220 + FVECT v;
221 + {
222 +  int i;
223 +  double d0,d1,d2;
224  
225 < /* Find location of sample point in the DAG and return lowest level
226 <   containing triangle. "type" indicates whether the point was found
227 <   to be in interior to the triangle: GT_FACE, on one of its
228 <   edges GT_EDGE or coinciding with one of its vertices GT_VERTEX.
229 <   "which" specifies which vertex (0,1,2) or edge (0=v0v1, 1 = v1v2, 2 = v21)
230 < */
231 < int
232 < stPoint_locate(st,npt,type,which)
225 >  d0 = b[0]/(double)MAXBCOORD2;
226 >  d1 = b[1]/(double)MAXBCOORD2;
227 >  d2 = b[2]/(double)MAXBCOORD2;
228 >  
229 >  if(STR_NTH_INDEX(root,0)==-1)
230 >    v[0] = -d0;
231 >  else
232 >    v[0] = d0;
233 >  if(STR_NTH_INDEX(root,1)==-1)
234 >    v[1] = -d1;
235 >  else
236 >    v[1] = d1;
237 >  if(STR_NTH_INDEX(root,2)==-1)
238 >    v[2] = -d2;
239 >  else
240 >    v[2] = d2;
241 > }
242 >
243 >
244 > /* Return quadtree leaf node containing point 'p'*/
245 > QUADTREE
246 > stPoint_locate(st,p)
247      STREE *st;
248 <    FVECT npt;
107 <    char *type,*which;
248 >    FVECT p;
249   {
250 <    int i,d,j,id;
251 <    QUADTREE *rootptr,qt;
252 <    FVECT v1,v2,v3;
253 <    OBJECT os[MAXSET+1],*optr;
254 <    FVECT p0,p1,p2;
255 <    char w;
250 >    QUADTREE qt;
251 >    BCOORD bcoordi[3];
252 >    int i;
253 >
254 >    /* Find root quadtree that contains p */
255 >    i = stLocate_root(p);
256 >    qt = ST_ROOT_QT(st,i);
257      
258 <    /* Test each of the root triangles against point id */
259 <    for(i=0; i < 4; i++)
260 <     {
261 <         rootptr = ST_NTH_ROOT_PTR(st,i);
262 <         stNth_base_verts(st,i,v1,v2,v3);
263 <         /* Return tri that p falls in */
264 <         qt = qtPoint_locate(rootptr,v1,v2,v3,npt,type,which,p0,p1,p2);
265 <         if(QT_IS_EMPTY(qt))
266 <            continue;
267 <         /* Get the set */
268 <         qtgetset(os,qt);
269 <         for (j = QT_SET_CNT(os),optr = QT_SET_PTR(os); j > 0; j--)
270 <         {
129 <             /* Find the first triangle that pt falls */
130 <             id = QT_SET_NEXT_ELEM(optr);
131 <             qtTri_verts_from_id(id,p0,p1,p2);
132 <             d = test_single_point_against_spherical_tri(p0,p1,p2,npt,&w);  
133 <             if(d)
134 <                {
135 <                    if(type)
136 <                       *type = d;
137 <                    if(which)
138 <                       *which = w;
139 <                    return(id);
140 <                }
141 <         }
142 <     }
143 <    if(which)
144 <      *which = 0;
145 <    if(type)
146 <      *type = 0;
147 <    return(EMPTY);
258 >     /* Will return lowest level triangle containing point: It the
259 >       point is on an edge or vertex: will return first associated
260 >       triangle encountered in the child traversal- the others can
261 >       be derived using triangle adjacency information
262 >    */
263 >    if(QT_IS_TREE(qt))
264 >    {  
265 >      vert_to_qt_frame(i,p,bcoordi);
266 >      i = bary_child(bcoordi);
267 >      return(qtLocate(QT_NTH_CHILD(qt,i),bcoordi));
268 >    }
269 >    else
270 >      return(qt);
271   }
272  
273 + static unsigned int nbr_b[8][3] ={{2,4,16},{1,8,32},{8,1,64},{4,2,128},
274 +                           {32,64,1},{16,128,2},{128,16,4},{64,32,8}};
275 + unsigned int
276 + stTri_cells(st,v)
277 +     STREE *st;
278 +     FVECT v[3];
279 + {
280 +  unsigned int cells,cross;
281 +  unsigned int vcell[3];
282 +  double t0,t1;
283 +  int i,inext;
284 +
285 +  /* First find base cells that tri vertices are in (0-7)*/
286 +  vcell[0] = stLocate_root(v[0]);
287 +  vcell[1] = stLocate_root(v[1]);
288 +  vcell[2] = stLocate_root(v[2]);
289 +
290 +  /* If all in same cell- return that bit only */
291 +  if(vcell[0] == vcell[1] && vcell[1] == vcell[2])
292 +    return( 1 << vcell[0]);
293 +
294 +  cells = 0;
295 +  for(i=0;i<3; i++)
296 +  {
297 +    if(i==2)
298 +      inext = 0;
299 +    else
300 +      inext = i+1;
301 +    /* Mark cell containing initial vertex */
302 +    cells |= 1 << vcell[i];
303 +
304 +    /* Take the exclusive or: will have bits set where edge crosses axis=0*/
305 +    cross = vcell[i] ^ vcell[inext];
306 +    /* If crosses 2 planes: then have 2 options for edge crossing-pick closest
307 +     otherwise just hits two*/
308 +    /* Neighbors are zyx */
309 +    switch(cross){
310 +    case 3: /* crosses x=0 and y=0 */
311 +      t0 = -v[i][0]/(v[inext][0]-v[i][0]);
312 +      t1 = -v[i][1]/(v[inext][1]-v[i][1]);
313 +      if(t0==t1)
314 +        break;
315 +      else if(t0 < t1)
316 +        cells |= nbr_b[vcell[i]][0];
317 +          else
318 +            cells |= nbr_b[vcell[i]][1];
319 +      break;
320 +    case 5: /* crosses x=0 and z=0 */
321 +      t0 = -v[i][0]/(v[inext][0]-v[i][0]);
322 +      t1 = -v[i][2]/(v[inext][2]-v[i][2]);
323 +      if(t0==t1)
324 +        break;
325 +      else if(t0 < t1)
326 +        cells |= nbr_b[vcell[i]][0];
327 +          else
328 +            cells |=nbr_b[vcell[i]][2];
329 +
330 +      break;
331 +    case 6:/* crosses  z=0 and y=0 */
332 +      t0 = -v[i][2]/(v[inext][2]-v[i][2]);
333 +      t1 = -v[i][1]/(v[inext][1]-v[i][1]);
334 +      if(t0==t1)
335 +        break;
336 +      else if(t0 < t1)
337 +      {
338 +        cells |= nbr_b[vcell[i]][2];
339 +      }
340 +      else
341 +      {
342 +        cells |=nbr_b[vcell[i]][1];
343 +      }
344 +      break;
345 +    case 7:
346 +      error(CONSISTENCY," Insert:Edge shouldnt be able to span 3 cells");
347 +      break;
348 +    }
349 +  }
350 +  return(cells);
351 + }
352 +
353 +
354 + stRoot_trace_ray(qt,root,orig,dir,nextptr,func,f)
355 +   QUADTREE qt;
356 +   int root;
357 +   FVECT orig,dir;
358 +   int *nextptr;
359 +   FUNC func;
360 +   int *f;
361 + {
362 +  double br[3];
363 +  BCOORD bi[3],dbi[3];
364 +  
365 +  /* Project the origin onto the root node plane */
366 +  /* Find the intersection point of the origin */
367 +  ray_to_qt_frame(root,orig,dir,bi,dbi);
368 +
369 +  /* trace the ray starting with this node */
370 +  qtTrace_ray(qt,bi,dbi[0],dbi[1],dbi[2],nextptr,0,0,func,f);
371 +  if(!QT_FLAG_IS_DONE(*f))
372 +    qt_frame_to_vert(root,bi,orig);
373 +
374 + }
375 +
376 + /* Trace ray 'orig-dir' through stree and apply 'func(qtptr,f,argptr)' at each
377 +   node that it intersects
378 + */
379   int
380 < stPoint_locate_cell(st,p,p0,p1,p2,type,which)
381 <    STREE *st;
382 <    FVECT p,p0,p1,p2;
383 <    char *type,*which;
380 > stTrace_ray(st,orig,dir,func)
381 >   STREE *st;
382 >   FVECT orig,dir;
383 >   FUNC func;
384   {
385 <    int i,d;
386 <    QUADTREE *rootptr,qt;
387 <    FVECT v0,v1,v2;
385 >    int next,last,i,f=0;
386 >    QUADTREE qt;
387 >    FVECT o,n,v;
388 >    double pd,t,d;
389  
390 +    VCOPY(o,orig);
391 + #ifdef TEST_DRIVER
392 +       Pick_cnt=0;
393 + #endif;
394 +    /* Find the qt node that o falls in */
395 +    i = stLocate_root(o);
396 +    qt = ST_ROOT_QT(st,i);
397      
398 <    /* Test each of the root triangles against point id */
399 <    for(i=0; i < 4; i++)
400 <     {
401 <         rootptr = ST_NTH_ROOT_PTR(st,i);
402 <         stNth_base_verts(st,i,v0,v1,v2);
403 <         /* Return tri that p falls in */
404 <         qt = qtPoint_locate(rootptr,v0,v1,v2,p,type,which,p0,p1,p2);
405 <         /* NOTE: For now return only one triangle */
406 <         if(!QT_IS_EMPTY(qt))
407 <            return(qt);
408 <     }    /* Point not found */
409 <    if(which)
410 <      *which = 0;
411 <    if(type)
412 <      *type = 0;
413 <    return(EMPTY);
398 >    stRoot_trace_ray(qt,i,o,dir,&next,func,&f);
399 >
400 >    if(QT_FLAG_IS_DONE(f))
401 >      return(TRUE);
402 >    /*
403 >    d = DOT(orig,dir)/sqrt(DOT(orig,orig));
404 >    VSUM(v,orig,dir,-d);
405 >    */
406 >    /* Crossed over to next cell: id = nbr */
407 >    while(1)
408 >      {
409 >        /* test if ray crosses plane between this quadtree triangle and
410 >           its neighbor- if it does then find intersection point with
411 >           ray and plane- this is the new origin
412 >           */
413 >        if(next == INVALID)
414 >          return(FALSE);
415 >        /*
416 >        if(DOT(o,v) < 0.0)
417 >          return(FALSE);
418 >          */
419 >        i = stBase_nbrs[i][next];
420 >        qt = ST_ROOT_QT(st,i);
421 >        stRoot_trace_ray(qt,i,o,dir,&next,func,&f);
422 >        if(QT_FLAG_IS_DONE(f))
423 >          return(TRUE);
424 >      }
425   }
426  
427 < int
428 < stAdd_tri(st,id,v1,v2,v3)
427 >
428 > stVisit_poly(st,verts,l,root,func,n)
429   STREE *st;
430 < int id;
431 < FVECT v1,v2,v3;
430 > FVECT *verts;
431 > LIST *l;
432 > unsigned int root;
433 > FUNC func;
434 > int n;
435   {
436 <  
437 <  int i,found;
438 <  QUADTREE *rootptr;
439 <  FVECT t1,t2,t3;
440 <  
441 <  found = 0;
191 <  for(i=0; i < 4; i++)
436 >  int id0,id1,id2;
437 >  FVECT tri[3];
438 >
439 >  id0 = pop_list(&l);
440 >  id1 = pop_list(&l);
441 >  while(l)
442    {
443 <    rootptr = ST_NTH_ROOT_PTR(st,i);
444 <    stNth_base_verts(st,i,t1,t2,t3);
445 <    found |= qtAdd_tri(rootptr,id,v1,v2,v3,t1,t2,t3,0);
443 >    id2 = pop_list(&l);
444 >    VCOPY(tri[0],verts[id0]);
445 >    VCOPY(tri[1],verts[id1]);
446 >    VCOPY(tri[2],verts[id2]);
447 >    stRoot_visit_tri(st,root,tri,func,n);
448 >    id1 = id2;
449    }
197  return(found);
450   }
451 + /* Assumption: know crosses plane:dont need to check for 'on' case */
452 + intersect_edge_coord_plane(v0,v1,w,r)
453 + FVECT v0,v1;
454 + int w;
455 + FVECT r;
456 + {
457 +  FVECT dv;
458 +  int wnext;
459 +  double t;
460  
461 < int
462 < stApply_to_tri_cells(st,v0,v1,v2,func,arg)
463 < STREE *st;
464 < FVECT v0,v1,v2;
465 < int (*func)();
466 < char *arg;
461 >  VSUB(dv,v1,v0);
462 >  t = -v0[w]/dv[w];
463 >  r[w] = 0.0;
464 >  wnext = (w+1)%3;
465 >  r[wnext] = v0[wnext] + dv[wnext]*t;
466 >  wnext = (w+2)%3;
467 >  r[wnext] = v0[wnext] + dv[wnext]*t;
468 > }
469 >
470 >
471 > stVisit_clip(st,i,verts,vcnt,l,cell,func,n)
472 >     STREE *st;
473 >     int i;
474 >     FVECT *verts;
475 >     int *vcnt;
476 >     LIST *l;
477 >     unsigned int cell;
478 >     FUNC func;
479 >     int n;
480   {
207  int i,found;
208  QUADTREE *rootptr;
209  FVECT t0,t1,t2;
481  
482 <  found = 0;
483 <  for(i=0; i < 4; i++)
482 >  LIST *labove,*lbelow,*endb,*enda;
483 >  int last = -1;
484 >  int id,last_id;
485 >  int first,first_id;
486 >  unsigned int cellb;
487 >
488 >  labove = lbelow = NULL;
489 >  enda = endb = NULL;
490 >  while(l)
491    {
492 <    rootptr = ST_NTH_ROOT_PTR(st,i);
493 <    stNth_base_verts(st,i,t0,t1,t2);
494 <    found |= qtApply_to_tri_cells(rootptr,v0,v1,v2,t0,t1,t2,func,arg);
492 >    id = pop_list(&l);
493 >    if(ZERO(verts[id][i]))
494 >    {
495 >      if(last==-1)
496 >      {/* add below and above */
497 >        first = 2;
498 >        first_id= id;
499 >      }
500 >      lbelow=add_data(lbelow,id,&endb);
501 >      labove=add_data(labove,id,&enda);
502 >      last_id = id;
503 >      last = 2;
504 >      continue;
505 >    }
506 >    if(verts[id][i] < 0)
507 >    {
508 >      if(last != 1)
509 >      {
510 >        lbelow=add_data(lbelow,id,&endb);
511 >        if(last==-1)
512 >        {
513 >          first = 0;
514 >          first_id = id;
515 >        }
516 >        last_id = id;
517 >        last = 0;
518 >        continue;
519 >      }
520 >      /* intersect_edges */
521 >      intersect_edge_coord_plane(verts[last_id],verts[id],i,verts[*vcnt]);
522 >      /*newpoint goes to above and below*/
523 >      lbelow=add_data(lbelow,*vcnt,&endb);
524 >      lbelow=add_data(lbelow,id,&endb);
525 >      labove=add_data(labove,*vcnt,&enda);
526 >      last = 0;
527 >      last_id = id;
528 >      (*vcnt)++;
529 >    }
530 >    else
531 >    {
532 >      if(last != 0)
533 >      {
534 >        labove=add_data(labove,id,&enda);
535 >        if(last==-1)
536 >        {
537 >          first = 1;
538 >          first_id = id;
539 >        }
540 >        last_id = id;
541 >        last = 1;
542 >        continue;
543 >      }
544 >      /* intersect_edges */
545 >      /*newpoint goes to above and below*/
546 >      intersect_edge_coord_plane(verts[last_id],verts[id],i,verts[*vcnt]);
547 >      lbelow=add_data(lbelow,*vcnt,&endb);
548 >      labove=add_data(labove,*vcnt,&enda);
549 >      labove=add_data(labove,id,&enda);
550 >      last_id = id;
551 >      (*vcnt)++;
552 >      last = 1;
553 >    }
554    }
555 <  return(found);
555 >  if(first != 2 && first != last)
556 >  {
557 >    intersect_edge_coord_plane(verts[id],verts[first_id],i,verts[*vcnt]);
558 >    /*newpoint goes to above and below*/
559 >    lbelow=add_data(lbelow,*vcnt,&endb);
560 >    labove=add_data(labove,*vcnt,&enda);
561 >    (*vcnt)++;
562 >
563 >  }
564 >  if(i==2)
565 >  {
566 >    if(lbelow)
567 >    {
568 >      if(LIST_NEXT(lbelow) && LIST_NEXT(LIST_NEXT(lbelow)))
569 >      {
570 >        cellb = cell | (1 << i);
571 >        stVisit_poly(st,verts,lbelow,cellb,func,n);
572 >      }
573 >      else
574 >        free_list(lbelow);
575 >    }
576 >    if(labove)
577 >     {
578 >      if(LIST_NEXT(labove) && LIST_NEXT(LIST_NEXT(labove)))
579 >        stVisit_poly(st,verts,labove,cell,func,n);
580 >      else
581 >        free_list(labove);
582 >     }
583 >  }
584 >  else
585 >  {
586 >    if(lbelow)
587 >    {
588 >      if(LIST_NEXT(lbelow) && LIST_NEXT(LIST_NEXT(lbelow)))
589 >        {
590 >          cellb = cell | (1 << i);
591 >          stVisit_clip(st,i+1,verts,vcnt,lbelow,cellb,func,n);
592 >        }
593 >      else
594 >        free_list(lbelow);
595 >    }
596 >    if(labove)
597 >     {
598 >       if(LIST_NEXT(labove) && LIST_NEXT(LIST_NEXT(labove)))
599 >         stVisit_clip(st,i+1,verts,vcnt,labove,cell,func,n);
600 >       else
601 >         free_list(labove);
602 >     }
603 >  }
604 >
605   }
606  
607 + stVisit(st,tri,func,n)
608 +   STREE *st;
609 +   FVECT tri[3];
610 +   FUNC func;
611 +   int n;
612 + {
613 +    int r0,r1,r2;
614 +    LIST *l;
615  
616 +    r0 = stLocate_root(tri[0]);
617 +    r1 = stLocate_root(tri[1]);
618 +    r2 = stLocate_root(tri[2]);
619 +    if(r0 == r1 && r1==r2)
620 +      stRoot_visit_tri(st,r0,tri,func,n);
621 +    else
622 +      {
623 +        FVECT verts[ST_CLIP_VERTS];
624 +        int cnt;
625  
626 +        VCOPY(verts[0],tri[0]);
627 +        VCOPY(verts[1],tri[1]);
628 +        VCOPY(verts[2],tri[2]);
629 +        
630 +        l = add_data(NULL,0,NULL);
631 +        l = add_data(l,1,NULL);
632 +        l = add_data(l,2,NULL);
633 +        cnt = 3;
634 +        stVisit_clip(st,0,verts,&cnt,l,0,func,n);
635 +      }
636 + }
637  
638 < int
639 < stRemove_tri(st,id,v0,v1,v2)
640 < STREE *st;
641 < int id;
642 < FVECT v0,v1,v2;
638 >
639 > BCOORD qtRoot[3][3] = { {MAXBCOORD2,0,0},{0,MAXBCOORD2,0},{0,0,MAXBCOORD2}};
640 >
641 >
642 > convert_tri_to_frame(root,tri,b0,b1,b2,db10,db21,db02)
643 > int root;
644 > FVECT tri[3];
645 > BCOORD b0[3],b1[3],b2[3];
646 > BCOORD db10[3],db21[3],db02[3];
647   {
648 +  /* Project the vertex into the qtree plane */
649 +  vert_to_qt_frame(root,tri[0],b0);
650 +  vert_to_qt_frame(root,tri[1],b1);
651 +  vert_to_qt_frame(root,tri[2],b2);
652 +
653 +  /* calculate triangle edge differences in new frame */
654 +  db10[0] = b1[0] - b0[0]; db10[1] = b1[1] - b0[1]; db10[2] = b1[2] - b0[2];
655 +  db21[0] = b2[0] - b1[0]; db21[1] = b2[1] - b1[1]; db21[2] = b2[2] - b1[2];
656 +  db02[0] = b0[0] - b2[0]; db02[1] = b0[1] - b2[1]; db02[2] = b0[2] - b2[2];
657 + }
658 +
659 +
660 + QUADTREE
661 + stRoot_insert_tri(st,root,tri,f)
662 +   STREE *st;
663 +   int root;
664 +   FVECT tri[3];
665 +   FUNC f;
666 + {
667 +  BCOORD b0[3],b1[3],b2[3];
668 +  BCOORD db10[3],db21[3],db02[3];
669 +  unsigned int s0,s1,s2,sq0,sq1,sq2;
670 +  QUADTREE qt;
671 +
672 +  /* Map the triangle vertices into the canonical barycentric frame */
673 +  convert_tri_to_frame(root,tri,b0,b1,b2,db10,db21,db02);
674 +
675 +  /* Calculate initial sidedness info */
676 +  SIDES_GTR(b0,b1,b2,s0,s1,s2,qtRoot[1][0],qtRoot[0][1],qtRoot[0][2]);
677 +  SIDES_GTR(b0,b1,b2,sq0,sq1,sq2,qtRoot[0][0],qtRoot[1][1],qtRoot[2][2]);
678 +
679 +  qt = ST_ROOT_QT(st,root);
680 +  /* Visit cells that triangle intersects */
681 +  qt = qtInsert_tri(root,qt,qtRoot[0],qtRoot[1],qtRoot[2],
682 +       b0,b1,b2,db10,db21,db02,MAXBCOORD2 >> 1,s0,s1,s2, sq0,sq1,sq2,f,0);
683 +
684 +  return(qt);
685 + }
686 +
687 + stRoot_visit_tri(st,root,tri,f,n)
688 +   STREE *st;
689 +   int root;
690 +   FVECT tri[3];
691 +   FUNC f;
692 +   int n;
693 + {
694 +  BCOORD b0[3],b1[3],b2[3];
695 +  BCOORD db10[3],db21[3],db02[3];
696 +  unsigned int s0,s1,s2,sq0,sq1,sq2;
697 +  QUADTREE qt;
698 +
699 +  /* Map the triangle vertices into the canonical barycentric frame */
700 +  convert_tri_to_frame(root,tri,b0,b1,b2,db10,db21,db02);
701 +
702 +  /* Calculate initial sidedness info */
703 +  SIDES_GTR(b0,b1,b2,s0,s1,s2,qtRoot[1][0],qtRoot[0][1],qtRoot[0][2]);
704 +  SIDES_GTR(b0,b1,b2,sq0,sq1,sq2,qtRoot[0][0],qtRoot[1][1],qtRoot[2][2]);
705 +
706 +  qt = ST_ROOT_QT(st,root);
707 +  QT_SET_FLAG(ST_QT(st,root));
708 +  /* Visit cells that triangle intersects */
709 +  qtVisit_tri(root,qt,qtRoot[0],qtRoot[1],qtRoot[2],
710 +       b0,b1,b2,db10,db21,db02,MAXBCOORD2 >> 1,s0,s1,s2, sq0,sq1,sq2,f,n);
711 +
712 + }
713 +
714 + stInsert_tri(st,tri,f)
715 +   STREE *st;
716 +   FVECT tri[3];
717 +   FUNC f;
718 + {
719 +  unsigned int cells,which;
720 +  int root;
721    
231  int i,found;
232  QUADTREE *rootptr;
233  FVECT t0,t1,t2;
722  
723 <  found = 0;
724 <  for(i=0; i < 4; i++)
723 >  /* calculate entry/exit points of edges through the cells */
724 >  cells = stTri_cells(st,tri);
725 >
726 >  /* For each cell that quadtree intersects: Map the triangle vertices into
727 >     the canonical barycentric frame of (1,0,0), (0,1,0),(0,0,1). Insert
728 >     by first doing a trivial reject on the interior nodes, and then a
729 >     tri/tri intersection at the leaf nodes.
730 >  */
731 >  for(root=0,which=1; root < ST_NUM_ROOT_NODES; root++,which <<= 1)
732    {
733 <    rootptr = ST_NTH_ROOT_PTR(st,i);
734 <    stNth_base_verts(st,i,t0,t1,t2);
735 <   found |= qtRemove_tri(rootptr,id,v0,v1,v2,t0,t1,t2);
733 >    /* For each of the quadtree roots: check if marked as intersecting tri*/
734 >    if(cells & which)
735 >      /* Visit tri cells */
736 >      ST_ROOT_QT(st,root) = stRoot_insert_tri(st,root,tri,f);
737    }
242  return(found);
738   }
739 +
740 + stInsert_samp(st,p,f)
741 +   STREE *st;
742 +   FVECT p;
743 +   FUNC f;
744 + {
745 +
746 +    QUADTREE qt;
747 +    BCOORD bcoordi[3];
748 +    int i,done;
749 +
750 +    /* Find root quadtree that contains p */
751 +    i = stLocate_root(p);
752 +    qt = ST_ROOT_QT(st,i);
753 +    
754 +    vert_to_qt_frame(i,p,bcoordi);
755 +    ST_ROOT_QT(st,i) =  qtInsert_point(i,qt,EMPTY,qtRoot[0],qtRoot[1],
756 +                          qtRoot[2],bcoordi,MAXBCOORD2>>1,f,0,&done);
757 +
758 + }
759 +
760 +
761 +
762 +
763 +
764  
765  
766  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines